首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
卵母细胞退化是衰老造成母源性生育力下降的主要因素。退化的卵母细胞通常表现为细胞周期阻滞、减数分裂紊乱以及一些基因的表达异常,表观遗传修饰在此过程中亦发生了显著改变。本文介绍了卵子发生过程中的表观遗传修饰调控机理,综述了卵母细胞退化的表现,着重探讨了卵母细胞退化过程中表观遗传修饰的改变。  相似文献   

2.
卵胞质移植的研究进展   总被引:3,自引:1,他引:2  
李军锋  张家骅 《遗传》2004,26(3):373-376
许多研究表明,线粒体对卵母细胞的受精和胚胎发育有显著影响,卵胞质中线粒体DNA含量和ATP含量的减少,以及线粒体DNA缺失均能降低卵母细胞的受精和胚胎发育,是老龄妇女和老龄动物生育率下降的重要原因之一。卵胞质移植技术能有效改善老龄卵母细胞的受精能力和早期胚胎的发育能力,在人类已有健康后代出生,它已成为人类辅助生殖生物技术和动物克隆研究的新热点。但是,卵胞质转移也可能会导致线粒体DNA异质,即供体和受体的线粒体DNA同时存在于后代体内。目前,人们对于转入的异质卵胞质中对胚胎的发生和发育造成影响的因素并不完全了解。通过卵胞质移植研究概况、卵胞质与受精和胚胎发育、异种线粒体DNA遗传方式和卵胞质转移遗传物质的检测4个方面对卵胞质移植技术进行讨论。  相似文献   

3.
张楠  张珏  林戈 《遗传》2023,(5):379-394
DNA损伤是影响配子发生和胚胎发育的关键因素之一。卵母细胞容易被各种内外源因素(如活性氧、辐射、化疗药物等)诱发DNA损伤。目前研究发现,对于各类DNA损伤,各发育阶段的卵母细胞能够做出相应的DNA损伤反应,通过复杂的机制对DNA进行修复或者启动细胞凋亡。相比于进入生长阶段的卵母细胞,原始卵泡卵母细胞更容易被DNA损伤诱导凋亡。DNA损伤不易诱导卵母细胞减数分裂成熟进程停滞,然而携带DNA损伤的卵母细胞的发育能力明显下降。在临床上,衰老、放疗和化疗是导致女性卵母细胞DNA损伤、卵巢储备降低和不孕的常见原因。为此,人们尝试了能够减轻卵母细胞DNA损伤和增强DNA修复能力的多种方法,试图保护卵母细胞。本文对哺乳动物的各发育阶段卵母细胞的DNA损伤与修复的相关研究进行了梳理和总结,并讨论了其潜在的临床价值,以期为生育力保护提供新的策略。  相似文献   

4.
小鼠卵母细胞减数分裂染色体的简易制备   总被引:1,自引:0,他引:1  
张子峰 《生物学通报》2004,39(10):55-55
正常的减数分裂是有性生殖的前提,它保证了上下代之间染色体结构和数目的稳定性。几乎所有的核型异常都来自减数分裂过程中的错误,这些错误包括同源染色体不配对、染色体不分离(首次和二次不分离)、染色体结构畸变等。卵母细胞减数分裂过程中存在着两次停滞期,其中第一次停滞期长达几个月至几年甚至几十年。在此期间卵母细胞受环境或自身病变的影响,极容易发生染色体畸变。有报道表明,卵母细胞比精母细胞在减数分裂过程中更容易发生错误。  相似文献   

5.
卵母细胞成熟包括细胞核和细胞质成熟。核成熟主要涉及染色体的分离,细胞质成熟囊括了一系列复杂的过程。Sirtuins是NAD~+依赖的组蛋白去乙酰酶家族,其中,SIRT1、SIRT2、SIRT3、SIRT4、SIRT6、SIRT7均和减数分裂相关。现综述了卵母细胞成熟过程中细胞核成熟和细胞质成熟的变化及sirtuins在卵母细胞成熟过程中的作用,并总结了sirtuins与老龄鼠卵母细胞成熟异常的关系。  相似文献   

6.
周舟  桑庆  王磊 《遗传》2023,(12):1087-1099
正常的卵子发生是人类成功繁育后代的关键步骤。女性胚胎发育时期,原始生殖细胞从有丝分裂转变为减数分裂,经过同源染色体配对和重组后,减数分裂被阻滞在减数第一次分裂前期的双线期。卵泡内卵母细胞的减数分裂阻滞的维持主要归因于胞质中高浓度的环磷酸腺苷。在月经周期中,卵泡刺激素和黄体生成素促进某些卵母细胞恢复减数分裂,完成排卵过程。卵母细胞减数分裂过程中发生任何缺陷都可能影响卵子发生,进而影响受精和胚胎发育过程。辅助生殖、高通量测序和分子生物学技术的快速发展,为人类认识减数分裂背后的精确分子机制以及卵母细胞成熟缺陷疾病的发病机制与诊疗提供新的思路和手段。本文主要介绍了近年来发现的调控卵子发生的生理和病理机制,涉及同源重组、减数分裂阻滞与恢复、母源mRNA降解、翻译后调节、透明带组装等过程,旨在增进相关领域研究人员对卵母细胞减数分裂的了解,并为进一步机制研究和疾病治疗提供理论基础。  相似文献   

7.
本实验以随机屠宰山羊的卵巢为实验材料,研究了不同直径卵泡卵母细胞的减数分裂进程。结果显示,不同直径卵泡卵母细胞在体外成熟培养条件下的减数分裂能力不同:≤0.5mm直径卵泡的卵母细胞不能恢复减数分裂;0.8-1.2mm卵泡的卵母细胞可恢复减数分裂,但只能发育到MⅠ期,培养24h发育到MⅠ期比率60%;1.5-5.0mm卵泡卵母细胞已经完全获得减数分裂能力,培养24h发育到MⅡ的比例91%。完全获得减数分裂能力的1.5-5.0mm卵泡卵母细胞处于生发泡(GV)期的比率在成熟培养2-8h期间明显下降;其中,4-6h期间GⅤ比率下降最为迅速(由61%降低到19%,p<0.0005);体外培养6-12h期间MⅠ比率由25%上升到60%,随后下降,到24h仅有2%卵母细胞处于MⅠ期;培养16h有21%卵母细胞进入MⅡ期,24h 91%卵母细胞到达MⅡ期。对卵母细胞体外核成熟进程的数据做折线图计算结果表明,1.5-5.0mm卵泡卵母细胞减数分裂进程(各细胞周期事件出现和维持的时间)为:0-3.0h为GⅤ期,3.0-7.0h为前中期Ⅰ,7.0-14.6h为MⅠ期,14.6-18.4h处于后期-Ⅰ和末期-Ⅰ,18.4-24h为MⅡ期。本实验还证明,部分获得减数分裂能力(0.8-1.2mm卵泡)与完全获得减数分裂能力(1.5-5mm卵泡)的卵母细胞,其各细胞周期事件一旦发生,所需的时间是相同的。这些结果为进一步研究山羊卵母细胞减数分裂机制及其调控提供了重要的基础数据。  相似文献   

8.
卵丘在卵母细胞成熟中的作用   总被引:5,自引:0,他引:5  
卵丘是指在卵母细胞外周并与之进行代谢联系的颗粒细胞群;卵丘对于卵母细胞成熟有极其重要的作用。主要表现在卵丘参与维持卵母细胞减数分裂阻滞,诱导卵母细胞减数分裂恢复、支持卵母细胞细胞质的成熟。卵丘形态和卵丘扩展影响卵母细胞成熟。了解卵丘在卵母细胞成熟中的作用有助于帮助人们进一步揭示哺乳动物卵母细胞成熟的机制。  相似文献   

9.
大多数物种的卵母细胞在减数分裂前都要经历长时间停滞,其中cAMP对卵母细胞减数分裂停滞具有重要作用,本研究关注c AMP对卵母细胞减数分裂的影响及其机制。本研究通过将卵母细胞与cAMP预孵育,再用胰岛素刺激研究胰岛素诱导的卵母细胞成熟的影响,接着本研究通过显微注射和Zeiss 100TV显微镜分析cAMP对PKA在卵母细胞中定位的影响,并且本研究用Western blotting的方法研究cAMP/PKA对mos蛋白的表达和MAPK蛋白磷酸化的影响。结果显示,本研究通过亲和层析得到了高纯度的PKA蛋白,且cAMP/PKA能够抑制卵母细胞的成熟,而PKA的热稳定抑制剂PKI能够解除PKA对卵母细胞减数分裂的抑制,cAMP/PKA也能够影响mos的积累以及MAPK的磷酸化。cAMP能够影响PKA在卵母细胞中的定位,cAMP/PKA能够通过影响mos积累抑制卵母细胞的减数分裂,这可能与cAMP能够抑制MAPK磷酸化有关。  相似文献   

10.
组蛋白修饰作为表观遗传调控网络的重要组成部分,其主要的修饰类型包括乙酰化、甲基化、磷酸化等,在卵母细胞减数分裂过程中呈现动态变化.在卵母细胞发育过程中,表观遗传调控因子涉及的乙酰化、甲基化维持、磷酸化和组蛋白置换调控着卵母细胞减数分裂过程中基因的表达、纺锤体的组装、染色体的排列和基因组的稳定性,确保了卵母细胞减数分裂的...  相似文献   

11.
Studies of human cleavage stage embryos, 3 days after fertilization of the oocyte, have revealed remarkably high levels of chromosome abnormality. In addition to meiotic errors derived from the gametes, principally the oocyte, mitotic errors occurring after fertilization are also common, leading to widespread chromosomal mosaicism. The prevalence of chromosome anomalies in embryos may explain the relatively poor fertility and fecundity in humans and the low success rates of assisted reproductive treatments (e.g., IVF). While much is known concerning the incidence of aneuploidy during the first 3 days following fertilization, it is only in the last couple of years that large numbers of embryos at the final stage of preimplantation development, the blastocyst stage, 5 days after fertilization, have been subjected to detailed analysis. Here we discuss the latest data from the comprehensive cytogenetic analysis of blastocysts. These findings indicate that the majority of selection against chromosome abnormalities does not occur until the time of implantation or shortly after, with aneuploidy typically affecting more than 50% of blastocysts. Additionally, clinical results presented suggest that screening of blastocyst stage embryos for chromosome abnormality, with preferential transfer to the uterus of those found to be euploid, may help to improve the success rates of assisted reproductive treatments.  相似文献   

12.
The study of aneuploidy in human oocytes, discarded from IVF cycles, has provided a better understanding of the incidence of aneuploidy of female origin and the responsible mechanisms. Comparative genomic hybridization (CGH) is an established technique that allows for the detection of aneuploidy in all chromosomes avoiding artifactual chromosome losses. In this review, results obtained using CGH in single cells (1PB and/or MII oocytes) are included. The results of oocyte aneuploidy rates obtained by CGH from discarded oocytes of IVF patients and of oocyte donors are summarized. Moreover, the mechanisms involved in the aneuploid events, e.g. whether alterations occurred due to first meiotic errors or germ-line mitotic errors are also discussed. Finally, the incidence of aneuploid oocyte production due to first meiotic errors and germ-line mitotic errors observed in oocytes coming from IVF patients and IVF oocyte donors was assessed.  相似文献   

13.
Effects of maternal age on oocyte developmental competence   总被引:5,自引:0,他引:5  
Armstrong DT 《Theriogenology》2001,55(6):1303-1322
The widespread use of a variety of assisted reproductive technologies has removed many of the constraints that previously restricted mammalian reproduction to the period between onset of puberty and reproductive senescence. In vitro embryo production systems now allow oocytes from very young animals to undergo fertilization and form embryos capable of development to normal offspring, albeit at somewhat reduced efficiencies compared to oocytes from adult females. They also can overcome infertility associated with advanced age of animals and women. This review examines oocyte developmental competence as the limiting factor in applications of assisted reproductive technologies for both juvenile and aged females. Age of oocyte donor is a significant factor influencing developmental competence of the oocyte. Age-related abnormalities of oocytes include a) meiotic incompetence or inability to complete meiotic maturation resulting in oocytes incapable of fertilization; b) errors in meiosis that can be compatible with fertilization but lead to genetic abnormalities that compromise embryo viability; and c) cytoplasmic deficiencies that are expressed at several stages of development before or after fertilization. In general, oocytes from juvenile donors and the embryos derived therefrom appear less robust and may be less tolerant to suboptimal handling and in vitro culture conditions than are adult oocytes. Research to identify specific cytoplasmic deficiencies of juvenile oocytes may enable modifications of culture conditions to correct such deficiencies and thus enhance developmental competence. Use of oocytes from aged donors for assisted reproduction can have a variety of applications such as extending the reproductive life of individual old females whose offspring still have high commercial value, and conservation of genetic resources such as rare breeds of livestock and endangered species. In general, female fertility decreases with advancing age. Studies of women in oocyte donation programs have established reduced oocyte competence as the major cause of declining fertility with age, although inadequate endometrial function can also be a contributing factor. Most research has emphasized the importance of chromosomal abnormalities because of the well established increase in aneuploidy with increasing maternal age but little is known about the underlying cellular and molecular mechanisms. Research aimed at identifying the specific developmental deficiencies of oocytes from juvenile donors and abnormalities of oocytes from aged females will assist in overcoming present bottlenecks that limit the efficiency of assisted reproduction technologies. Such research will also be crucial to the development of new oocyte-based technologies for overcoming infertility and possibly subverting chromosomal abnormalities in women approaching menopause.  相似文献   

14.
雷公藤多甙对小鼠卵母细胞成熟和体外受精的影响   总被引:1,自引:0,他引:1  
采用超排卵技术研究雷公藤多甙(GTW)对小鼠卵母细胞的成熟和体外受精以及脏器等的影响,GTW对小鼠卵母细胞生发泡破裂没有影响,但可以抑制卵母细胞第一极体的释放,影响卵母细胞的存活率并可降低体外受精率和超排卵的卵母细胞数量。GTW可以破坏卵母细胞成熟,降低卵母细胞的体外受精能力,影响小鼠的正常生殖功能。  相似文献   

15.
In most animals, female meiotic spindles assemble in the absence of centrosomes; instead, microtubule nucleation by chromatin, motor activity, and microtubule dynamics drive the self-organization of a bipolar meiotic spindle. Meiotic spindle assembly commences when microtubules gain access to chromatin after nuclear envelope breakdown (NEBD) during meiotic maturation. Although many studies have addressed the chromatin-based mechanism of female meiotic spindle assembly, it is less clear how signaling influences microtubule localization and dynamics prior to NEBD. Here we analyze microtubule behavior in Caenorhabditis elegans oocytes at early stages of the meiotic maturation process using confocal microscopy and live-cell imaging. In C. elegans, sperm trigger oocyte meiotic maturation and ovulation using the major sperm protein (MSP) as an extracellular signaling molecule. We show that MSP signaling reorganizes oocyte microtubules prior to NEBD and fertilization by affecting their localization and dynamics. We present evidence that MSP signaling reorganizes oocyte microtubules through a signaling network involving antagonistic G alpha(o/i) and G alpha(s) pathways and gap-junctional communication with somatic cells of the gonad. We propose that MSP-dependent microtubule reorganization promotes meiotic spindle assembly by facilitating the search and capture of microtubules by meiotic chromatin following NEBD.  相似文献   

16.
Bisphenol a exposure causes meiotic aneuploidy in the female mouse   总被引:22,自引:0,他引:22  
BACKGROUND: There is increasing concern that exposure to man-made substances that mimic endogenous hormones may adversely affect mammalian reproduction. Although a variety of reproductive complications have been ascribed to compounds with androgenic or estrogenic properties, little attention has been directed at the potential consequences of such exposures to the genetic quality of the gamete. RESULTS: A sudden, spontaneous increase in meiotic disturbances, including aneuploidy, in studies of oocytes from control female mice in our laboratory coincided with the accidental exposure of our animals to an environmental source of bisphenol A (BPA). BPA is an estrogenic compound widely used in the production of polycarbonate plastics and epoxy resins. We identified damaged caging material as the source of the exposure, as we were able to recapitulate the meiotic abnormalities by intentionally damaging cages and water bottles. In subsequent studies of female mice, we administered daily oral doses of BPA to directly test the hypothesis that low levels of BPA disrupt female meiosis. Our results demonstrated that the meiotic effects were dose dependent and could be induced by environmentally relevant doses of BPA. CONCLUSIONS: Both the initial inadvertent exposure and subsequent experimental studies suggest that BPA is a potent meiotic aneugen. Specifically, in the female mouse, short-term, low-dose exposure during the final stages of oocyte growth is sufficient to elicit detectable meiotic effects. These results provide the first unequivocal link between mammalian meiotic aneuploidy and an accidental environmental exposure and suggest that the oocyte and its meiotic spindle will provide a sensitive assay system for the study of reproductive toxins.  相似文献   

17.
Female reproductive capacity declines dramatically in the fourth decade of life as a result of an age‐related decrease in oocyte quality and quantity. The primary causes of reproductive aging and the molecular factors responsible for decreased oocyte quality remain elusive. Here, we show that aging of the female germ line is accompanied by mitochondrial dysfunction associated with decreased oxidative phosphorylation and reduced Adenosine tri‐phosphate (ATP) level. Diminished expression of the enzymes responsible for CoQ production, Pdss2 and Coq6, was observed in oocytes of older females in both mouse and human. The age‐related decline in oocyte quality and quantity could be reversed by the administration of CoQ10. Oocyte‐specific disruption of Pdss2 recapitulated many of the mitochondrial and reproductive phenotypes observed in the old females including reduced ATP production and increased meiotic spindle abnormalities, resulting in infertility. Ovarian reserve in the oocyte‐specific Pdss2‐deficient animals was diminished, leading to premature ovarian failure which could be prevented by maternal dietary administration of CoQ10. We conclude that impaired mitochondrial performance created by suboptimal CoQ10 availability can drive age‐associated oocyte deficits causing infertility.  相似文献   

18.
Although it is established that cAMP accumulation plays a pivotal role in preventing meiotic resumption in mammalian oocytes, the mechanisms controlling cAMP levels in the female gamete have remained elusive. Both production of cAMP via GPCRs/Gs/adenylyl cyclases endogenous to the oocyte as well as diffusion from the somatic compartment through gap junctions have been implicated in maintaining cAMP at levels that preclude maturation. Here we have used a genetic approach to investigate the different biochemical pathways contributing to cAMP accumulation and maturation in mouse oocytes. Because cAMP hydrolysis is greatly decreased and cAMP accumulates above a threshold, oocytes deficient in PDE3A do not resume meiosis in vitro or in vivo, resulting in complete female infertility. In vitro, inactivation of Gs or downregulation of the GPCR GPR3 causes meiotic resumption in the Pde3a null oocytes. Crossing of Pde3a/ mice with Gpr3/ mice causes partial recovery of female fertility. Unlike the complete meiotic block of the Pde3a null mice, oocyte maturation is restored in the double knockout, although it occurs prematurely as described for the Gpr3/ mouse. The increase in cAMP that follows PDE3A ablation is not detected in double mutant oocytes, confirming that GPR3 functions upstream of PDE3A in the regulation of oocyte cAMP. Metabolic coupling between oocytes and granulosa cells was not affected in follicles from the single or double mutant mice, suggesting that diffusion of cAMP is not prevented. Finally, simultaneous ablation of GPR12, an additional receptor expressed in the oocyte, does not modify the Gpr3/ phenotype. Taken together, these findings demonstrate that Gpr3 is epistatic to Pde3a and that fertility as well as meiotic arrest in the PDE3A-deficient oocyte is dependent on the activity of GPR3. These findings also suggest that cAMP diffusion through gap junctions or the activity of additional receptors is not sufficient by itself to maintain the meiotic arrest in the mouse oocyte.  相似文献   

19.
A model system for increased meiotic nondisjunction in older oocytes   总被引:2,自引:0,他引:2  
For at least 5% of all clinically recognized human pregnancies, meiotic segregation errors give rise to zygotes with the wrong number of chromosomes. Although most aneuploid fetuses perish in utero, trisomy in liveborns is the leading cause of mental retardation. A large percentage of human trisomies originate from segregation errors during female meiosis I; such errors increase in frequency with maternal age. Despite the clinical importance of age-dependent nondisjunction in humans, the underlying mechanisms remain largely unexplained. Efforts to recapitulate age-dependent nondisjunction in a mammalian experimental system have so far been unsuccessful. Here we provide evidence that Drosophila is an excellent model organism for investigating how oocyte aging contributes to meiotic nondisjunction. As in human oocytes, nonexchange homologs and bivalents with a single distal crossover in Drosophila oocytes are most susceptible to spontaneous nondisjunction during meiosis I. We show that in a sensitized genetic background in which sister chromatid cohesion is compromised, nonrecombinant X chromosomes become vulnerable to meiotic nondisjunction as Drosophila oocytes age. Our data indicate that the backup pathway that normally ensures proper segregation of achiasmate chromosomes deteriorates as Drosophila oocytes age and provide an intriguing paradigm for certain classes of age-dependent meiotic nondisjunction in humans.  相似文献   

20.
Oocytes undergo extremely asymmetric divisions in terms of size. Coordinating spindle assembly and positioning in the absence of canonical centrosomes appears to be a challenge for oocytes, which divide with an elevated rate of errors in chromosome segregation. Here we highlight recent work on the characteristics of oocyte meiotic divisions, giving special emphasis on MTOCs clustering, generation of aneuploidy, and cortex softening, properties shared by cancer cells. While the loss of canonical centrosomes in oocytes might favor the asymmetry in size of meiotic divisions by reducing the distance between spindle poles and the cortex, we propose that this acentrosomal pathway might also render meiotic spindles less robust and, so, be responsible for the high error rate of female meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号