共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The B1-antivitamin activity of oxythiamine disulphide nicotinate has been determined in experiments on albino mice and it is shown that in the liver this derivative exerts the equal action while in the blood and heart--a more profound and prolonged inhibitory action on the transketolase activity in comparison with oxythiamine disulphide. Like the initial compound oxythiamine disulphide nicotinate does not penetrate through hemato-encephalic barrier and does not inhibit the brain transketolase. 相似文献
3.
4.
By intraperitoneal injection of 1-aminoproline, death after severe convulsion was observed in rats (LD50 of 1-amino-L-proline, 26 mg per kg of body weight for young male rats fed a normal diet). The vitamin B-6-deficient rats were more sensitive to this hydrazino acid than the normal rats. The toxic effect was completely prevented by the administration of pyridoxine. 1-Amino-D-proline was less toxic than the L-isomer. By the 1-aminoproline treatment, the most remarkable changes in the free amino acid levels were the striking increases in the concentrations of alpha-aminoadipic acid, citrulline and cystathionine in all the tissues tested, except in brain. Some unidentified ninhydrin-positive substances appeared. These results indicate that 1-aminoproline greatly disturbed the amino acid pattern, i.e. the amino acid metabolism in rats. 相似文献
5.
Kei Sasaoka Tadashi Ogawa Keiko Moritoki Masumi Kimoto 《Biochimica et Biophysica Acta (BBA)/General Subjects》1976,428(2):396-402
By intraperitoneal injection of 1-aminoproline, death after severe convulsion was observed in rats (LD50 of 1-amino-l-proline, 26 mg per kg of body weight for young male rats fed a normal diet). The vitamin B-6-deficient rats were more sensitive to this hydrazino acid than the normal rats. The toxic effect was completely prevented by the administration of pyridoxine. 1-Amino-d-proline was less toxic than the l-isomer. By the 1-aminoproline treatment, the most remarkable changes in the free amino acid levels were the striking increases in the concentrations of α-aminodipic acid, citrulline and cystathionine in all the tissues tested, except in brain. Some unidentified ninhydrin-positive substances appeared. These results indicate that 1-aminoproline greatly disturbed the amino acid pattern, i.e. the amino acid metabolism in rats. 相似文献
6.
Haworth NL Feng LL Wouters MA 《Journal of bioinformatics and computational biology》2006,4(1):155-168
Redox-active disulfides are capable of being oxidized and reduced under physiological conditions. The enzymatic role of redox-active disulfides in thiol-disulfide reductases is well-known, but redox-active disulfides are also present in non-enzymatic protein structures where they may act as switches of protein function. Here, we examine disulfides linking adjacent beta-strands (cross-strand disulfides), which have been reported to be redox-active. Our previous work has established that these cross-strand disulfides have high torsional energies, a quantity likely to be related to the ease with which the disulfide is reduced. We examine the relationship between conformations of disulfides and their location in protein secondary structures. By identifying the overlap between cross-strand disulfides and various conformations, we wish to address whether the high torsional energy of a cross-strand disulfide is sufficient to confer redox activity or whether other factors, such as the presence of the cross-strand disulfide in a strained beta-sheet, are required. 相似文献
7.
The reactions of hemerythrin from Phascolopsis gouldii with the specific sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoate), 2,2'-dithiodipyridine, and 4,4'-dithiodipyridine were studied at 25 degrees C. Spectrophotometric measurements showed that 1 mol of disulfide reacted per protein subunit consistent with a single cysteine at residue 50. Reaction leads to dissociation of the octameric structure of the native protein to monomers. The first-order rate constants at 25 degrees C and pH 9.0 for reactions of methemerythrin [(1.5 +/- 0.3) X 10(-3) s-1] and metazidohemerythrin [(4.0 +/- 0.3) X 10(-3) s-1] are independent of both the concentration and the nature of the disulfide. The reactions of methemerythrin are strongly inhibited by ClO4-ion, which however has no effect on the rates of those of metazidohemerythrin. The first-order kinetic behavior is ascribed to a conformational change involving the protein controlling the reaction, and this slow change appears to dominate a number of the reactions of hemerythrin. 相似文献
8.
We have identified the disulfide cross-links in bull protamine by titrating intact bull sperm with dithiothreitol (DTT) and following the modification of each cysteine residue with tritiated iodoacetate. The derivatization of each cysteine was monitored by a combination of HPLC, peptide mapping, and protein sequencing. Analyses of total free sulfhydryls show that all seven of the bull protamine cysteines are cross-linked as disulfides in mature sperm. The first disulfide is reduced at a DTT:protamine cysteine (DTT:Cys) ratio of 0.3 and the last at a ratio of 2.0. Intra- and intermolecular disulfides were identified by correlating the reduction of specific disulfides with the dissociation of protamine from DNA in partially reduced sperm and sperm treated with N,N'-ethylenedimaleimide, a bifunctional disulfide cross-linking agent. Three intermolecular and two intramolecular disulfides were identified. The results of these experiments demonstrate that the amino- and carboxy-terminal ends of the bull protamine molecule are folded inward toward the center of the molecule and are locked in place, each by a single intramolecular disulfide bridge. Three intermolecular disulfides cross-link neighboring protamine molecules around the DNA helix in such a manner that the protamines cannot be dissociated from DNA without first reducing the interprotamine disulfides. 相似文献
9.
Background
Disulfide bond formation is a key posttranslational modification, with implications for structure, function and stability of numerous proteins. While disulfide bond formation is a necessary and essential process for many proteins, it is deleterious and disruptive for others. Cells go to great lengths to regulate thiol-disulfide bond homeostasis, typically with several, apparently redundant, systems working in parallel. Dissecting the extent of oxidation and reduction of disulfides is an ongoing challenge due, in part, to the facility of thiol/disulfide exchange reactions.Scope of review
In the present account, we briefly survey the toolbox available to the experimentalist for the chemical determination of thiols and disulfides. We have chosen to focus on the key chemical aspects of current methodology, together with identifying potential difficulties inherent in their experimental implementation.Major conclusions
While many reagents have been described for the measurement and manipulation of the redox status of thiols and disulfides, a number of these methods remain underutilized. The ability to effectively quantify changes in redox conditions in living cells presents a continuing challenge.General significance
Many unresolved questions in the metabolic interconversion of thiols and disulfides remain. For example, while pool sizes of redox pairs and their intracellular distribution are being uncovered, very little is known about the flux in thiol-disulfide exchange pathways. New tools are needed to address this important aspect of cellular metabolism. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. 相似文献10.
The aim of this study is to investigate the contribution of each disulfide bond in the folding and function of leiurotoxin I, a short scorpion toxin that blocks small conductance K(+) channels. The structure of leiurotoxin I contains a motif conserved in all scorpion toxins, formed by a helix and a double-stranded beta-sheet and stabilized by three disulfide bridges. We synthesized three analogues, each presenting two alpha-aminobutyric acid (Abu) moieties replacing two bridged cysteine residues: LeTx1 ([Abu 3,21] Leiurotoxin I), LeTx2 ([Abu 8,26] Leiurotoxin I), and LeTx3 ([Abu 12,28] Leiurotoxin I). All three analogues fold into a major product containing two native disulfide bonds, while LeTx3 forms an additional isomer, containing non-native disulfides. In denaturing conditions, analogues LeTx2 and LeTx3 yield non-native isomers, while LeTx1 only forms the isomer with native disulfides. All isomers with native disulfides contain nativelike alpha-helical conformations and bind to synaptosomal membranes with affinities within a log of that shown by the native toxin. By contrast, the non-native LeTx3A analogue exhibits a disordered conformation and a decreased biological potency. Our results indicate that the "CxxxC, CxC" cysteine spacing, conserved in all scorpion toxins and preserved in LeTx1, may play an active role in folding, and that only two native disulfide bonds in leiurotoxin I are sufficient to preserve a nativelike and active conformation. Thus, in the scorpion toxin scaffold, modifications of conserved and interior cysteine residues may permit modulation of function, without significantly affecting folding efficiency and structure. 相似文献
11.
The electrophoretic mobility of radioiodinated follitropin (FSH) alpha and beta subunits as well as the alpha beta dimer changed markedly depending on the concentration of reducing agents such as dithiothreitol. The changes were more dramatic in the beta subunit than in the alpha subunit. 125I-FSH, complexed to the receptor on porcine granulosa cells or in Triton X-100 extracts, was cross-linked with a cleavable (nondisulfide) homobifunctional reagent, solubilized in sodium dodecyl sulfate without reducing agents, and electrophoresed. The cross-linked sample revealed three bands of high molecular mass, in addition to the hormone subunit and dimer bands. The band of lightest mass, 110 kDa, was the major band and the other two of 76 and 62 kDa were barely noticeable. Upon reduction with dithiothreitol, the 110-kDa band decreased while the 76- and 62-kDa bands increased, indicating the existence of disulfides between components of the 110-kDa complex. Formation of the disulfide-linked complexes requires 125I-FSH, specifically bound to the hormone receptor and cross-linking, and can be prevented with an excess of native FSH but not human choriogonadotropin. Complex formation was independent of blocking free sulfhydryl groups with N-ethylmaleimide. When the cross-linked complexes were reduced in the gel matrix and analyzed on fresh gels, the 76- and 62-kDa complexes were generated from the 110-kDa band, indicating the loss of two components. The lost components were estimated to be at 14 and 34 kDa. The rate of formation and cleavage of the cross-linked complexes indicated a sequential and incremental addition of 22-, 14-, and 34-kDa components to the FSH alpha beta dimer. The results of reduction of the cross-linked complexes demonstrate the existence of disulfide linkage between the three components. 相似文献
12.
13.
Oligomeric cyclic disulfides, obtained by mild oxidation of the fully protected dipeptide L -cysteinyl-L -cysteine, have been isolated by gel and thin-layer chromatography. Polymeric material was recycled by a thiol–disulfide exchange-reaction performed at basic pH. Spectroscopic investigations of the monomer and the two dimers indicate that conformers characterized by dihedral angles about the S? S bond close to ±90° are preferred. Moreover, chiroptical and 1H-nmr data for these compounds suggest higher mobility for the two dimers. The antiparallel dimeric disulfide can be considered a model compound for the hinge region formed at the subunit interface of the bovine seminal ribonuclease, a dimeric enzyme showing a complex kinetic behavior. 相似文献
14.
Our concept of how disulfides form in proteins entering the secretory pathway has changed dramatically in recent years. The discovery of endoplasmic reticulum (ER) oxidoreductin 1 (ERO1) was followed by the demonstration that this enzyme couples oxygen reduction to de novo formation of disulfides. However, mammals deficient in ERO1 survive and form disulfides, which suggests the presence of alternative pathways. It has recently been shown that peroxiredoxin 4 is involved in peroxide removal and disulfide formation. Other less well-characterized pathways involving quiescin sulfhydryl oxidase, ER-localized protein disulfide isomerase peroxidases and vitamin K epoxide reductase might all contribute to disulfide formation. Here we discuss these various pathways for disulfide formation in the mammalian ER and highlight the central role played by glutathione in regulating this process. 相似文献
15.
Raul N. Ondarza 《Bioscience reports》1989,9(5):593-604
More than a dozen enzymes have been found to be activated or inhibitedin vitro by disulfide-exchange between the protein and small-molecule disulfides. Accordingly, thiol/disulfide ratio changesin vivo may be of great importance in the regulation of cellular metabolism. An awareness of this regulatory mechanism in both host cells and parasites, coupled with information on the presence or absence of key enzymes, may lead to rational drug design against certain diseases involving thiol intermediates, including trypanosomiasis.Abbreviations GSSG
glutathione disulfide
- CoASSG
mixed disulfide of coenzyme A and glutathione
- CoASSCoA
coenzyme A disulfide
- PrSSG
protein mixed disulfide
- Cystamine
2,2-dithiobioethanamine [ aminoethyl] disulfide
- GSSO2G
Glutathione thiosulfonate
- PFK
Phosphofructokinase
- FBPase
Fructose 1,6-bisphosphatase 相似文献
16.
The Quiescin-sulfhydryl oxidase (QSOX) family of flavoenzymes catalyzes the direct and facile insertion of disulfide bonds into unfolded reduced proteins with concomitant reduction of oxygen to hydrogen peroxide. This review discusses the chemical mechanism of these enzymes and the involvement of thioredoxin and flavin-binding domains in catalysis. The variability of CxxC motifs in the QSOX family is highlighted and attention is drawn to the steric factors that may promote efficient thiol/disulfide exchange during oxidative protein folding. The varied cellular location of these multi-domain sulfhydryl oxidases is reviewed and potential intracellular and extracellular roles are summarized. Finally, this review identifies important unresolved questions concerning this ancient family of sulfhydryl oxidases. 相似文献
17.
When mammalian protamine is dissolved in aqueous buffers at neutral or alkaline pH, both ends of the protein fold inward toward the center of the molecule and form disulfide crosslinks that stabilize several different structures. In the absence of reducing agents, these folded forms of protamine may be visualized and quantitated by gel electrophoresis. Using this technique, we have examined the formation of bull protamine disulfides in solution and describe a variety of factors that affect this process. At pH 8, disulfide-stabilized folded forms of protamine appear within minutes after solubilization of the fully reduced protein. Five different monomers are detected by electrophoresis. Each of these monomers is stabilized by at least one disulfide crosslink and migrates with a distinct mobility, ahead of the fully reduced and extended protein. Under certain conditions, dimers of these folded structures crosslinked by interprotamine disulfides are also formed. The appearance of these disulfide-crosslinked forms of protamine is effected by air oxidation, accelerated at alkaline pH, inhibited upon lowering the pH below pH 7 and eliminated by modifying the protein's cysteine residues. Similar intramolecular disulfides are also produced after the protamine molecule binds to DNA. These results suggest that only those cysteines located within the amino- and carboxyterminal ends of the protein appear to participate in forming intramolecular disulfides in vitro. 相似文献
18.
Chakraborty K Thakurela S Prajapati RS Indu S Ali PS Ramakrishnan C Varadarajan R 《Biochemistry》2005,44(44):14638-14646
Disulfides cross-link residues in a protein that are separated in primary sequence and stabilize the protein through entropic destabilization of the unfolded state. While the removal of naturally occurring disulfides leads to protein destabilization, introduction of engineered disulfides does not always lead to significant stabilization of a protein. We have analyzed naturally occurring disulfides that span adjacent antiparallel strands of beta sheets (cross-strand disulfides). Cross-strand disulfides have recently been implicated as redox-based conformational switches in proteins such as gp120 and CD4. The propensity of these disulfides to act as conformational switches was postulated on the basis of the hypothesis that this class of disulfide is conformationally strained. In the present analysis, there was no evidence to suggest that cross-strand disulfides are more strained compared to other disulfides as assessed by their torsional energy. It was also observed that these disulfides occur solely at non-hydrogen-bonded (NHB) registered pairs of adjacent antiparallel strands and not at hydrogen-bonded (HB) positions as suggested previously. One of the half-cystines involved in cross-strand disulfide formation often occurs at an edge strand. Experimental confirmation of the stabilizing effects of such disulfides was carried out in Escherichia coli thioredoxin. Four pairs of cross-strand cysteines were introduced, two at HB and two at NHB pairs. Disulfides were formed in all four cases. However, as predicted from our analysis, disulfides at NHB positions resulted in an increase in melting temperature of 7-10 degrees C, while at HB positions there was a corresponding decrease of -7 degrees C. The reduced state of all proteins had similar stability. 相似文献
19.
20.
Jordan G. Sheppard Keely R. Frazier Pushkar Saralkar Mohammad F. Hossain Werner J. Geldenhuys Timothy E. Long 《Bioorganic & medicinal chemistry letters》2018,28(8):1298-1302
Sixteen disulfides derived from disulfiram (Antabuse?) were evaluated as antibacterial agents. Derivatives with hydrocarbon chains of seven and eight carbons in length exhibited antibacterial activity against Gram-positive Staphylococcus, Streptococcus, Enterococcus, Bacillus, and Listeria spp. A comparison of the cytotoxicity and microsomal stability with disulfiram further revealed that the eight carbon chain analog was of lower toxicity to human hepatocytes and has a longer metabolic half-life. In the final analysis, this investigation concluded that the S-octylthio derivative is a more effective growth inhibitor of Gram-positive bacteria than disulfiram and exhibits more favorable cytotoxic and metabolic parameters over disulfiram. 相似文献