首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Post-translational modifications are used by cells to link additional information to proteins. Most modifications are subtle and concern small moieties such as a phosphate group or a lipid. In contrast, protein ubiquitylation entails the covalent attachment of a full-length protein such as ubiquitin. The protein ubiquitylation machinery is remarkably complex, comprising more than 15 Ubls (ubiquitin-like proteins) and several hundreds of ubiquitin-conjugating enzymes. Ubiquitin is best known for its role as a tag that induces protein destruction either by the proteasome or through targeting to lysosomes. However, addition of one or more Ubls also affects vesicular traffic, protein-protein interactions and signal transduction. It is by now well established that ubiquitylation is a component of most, if not all, cellular signalling pathways. Owing to its abundance in controlling cellular functions, ubiquitylation is also of key relevance to human pathologies, including cancer and inflammation. In the present review, we focus on its role in the control of cell adhesion, polarity and directional migration. It will become clear that protein modification by Ubls occurs at every level from the receptors at the plasma membrane down to cytoskeletal components such as actin, with differential consequences for the pathway's final output. Since ubiquitylation is fast as well as reversible, it represents a bona fide signalling event, which is used to fine-tune a cell's responses to receptor agonists.  相似文献   

2.
Modification of proteins with ubiquitin (Ub) and Ub-like modifiers (Ubls) plays a fundamental role in cell biology. As a consequence, proteomics-based efforts were developed to characterize proteins that are modified by Ub or Ubls. A more focused functional proteomics strategy relies on active-site probes based on the Ub/Ubl scaffold, which specifically targets Ub/Ubl-processing enzymes. Activity-based profiling with such tools led to the identification of novel gene products with Ub/Ubl-processing activity and uncovered novel control mechanisms regulating their activity. This review discusses recent advances in chemistry-based functional proteomics applications, and how this information can provide a framework for drug development against Ub/Ubl-processing enzymes.  相似文献   

3.
Modification of proteins with ubiquitin (Ub) and Ub-like modifiers (Ubls) plays a fundamental role in cell biology. As a consequence, proteomics-based efforts were developed to characterize proteins that are modified by Ub or Ubls. A more focused functional proteomics strategy relies on active-site probes based on the Ub/Ubl scaffold, which specifically targets Ub/Ubl-processing enzymes. Activity-based profiling with such tools led to the identification of novel gene products with Ub/Ubl-processing activity and uncovered novel control mechanisms regulating their activity. This review discusses recent advances in chemistry-based functional proteomics applications, and how this information can provide a framework for drug development against Ub/Ubl-processing enzymes.  相似文献   

4.
Protein dynamics is regulated by an elaborate interplay between different post-translational modifications. Ubiquitin and ubiquitin-like proteins (Ubls) are small proteins that are covalently conjugated to target proteins with important functional consequences. One such modifier is SUMO, which mainly modifies nuclear proteins. SUMO contains a unique N-terminal arm not present in ubiquitin and other Ubls, which functions in the formation of SUMO polymers. Here, we unambiguously show that serine 2 of the endogenous SUMO-1 N-terminal protrusion is phosphorylated in vivo using very high mass accuracy mass spectrometry at both the MS and the MS/MS level and complementary fragmentation techniques. Strikingly, we detected the same phosphorylation in yeast, Drosophila and human cells, suggesting an evolutionary conserved function for this modification. The nearly identical human SUMO-2 and SUMO-3 isoforms differ in serine 2; thus, only SUMO-3 could be phosphorylated at this position. Our finding that SUMO can be modified may point to an additional level of complexity through modifying a protein-modifier.  相似文献   

5.
Ha BH  Kim EE 《BMB reports》2008,41(6):435-443
Post-translational modifiers can alter the function of proteins in many different ways. The conjugation of ubiquitin (Ub) and ubiqutin-like modifiers (Ubls) to proteins has been shown to be especially crucial in regulating a variety of cellular processes including the cell cycle, growth control, quality control, localization and many more. It is a highly dynamic process and involves a number of enzymes called E1, E2 and E3. Ub and Ubls are removed from the target proteins by deubiquitinating enzymes (DUBs) or Ubl-specific proteases (ULPs), thereby deconjugation can act as an additional level of control over the ubiquitin-conjugation system. In addition, DUBs and ULPs are responsible for activating Ub and Ubls from their inactive corresponding precursor forms. Here we review recent progress in molecular details of these deconjugating enzymes of Ubls.  相似文献   

6.
The ubiquitin protein belongs to the β-grasp fold family, characterized by four or five β-sheets with a single α-helical middle region. Ubiquitin-like proteins (Ubls) are structural homologues with low sequence identity to ubiquitin and are widespread among both eukaryotes and prokaryotes. We previously demonstrated by bioinformatics that P400, a polypeptide from the haloalkaliphilic archaeon Natrialba magadii, has structural homology with both ubiquitin and Ubls. This work examines the secondary structure of P400 by Fourier transform infrared spectroscopy (FTIR). After expression in Escherichia coli, recombinant P400 (rP400) was separated by PAGE and eluted pure from zinc-imidazole reversely stained gels. The requirement of high salt concentration of this polypeptide to be folded was corroborated by intrinsic fluorescence spectrum. Our results show that fluorescence spectra of rP400 in 1.5 M KCl buffer shifts and decreases after thermal denaturation as well as after chemical treatment. rP400 was lyophilized and rehydrated in buffer containing 1.5 M KCl before both immunochemical and FTIR tests were performed. It was found that rP400 reacts with anti-ubiquitin antibody after rehydration in the presence of high salt concentrations. On the other hand, like ubiquitin and Ubls, the amide I′ band for rP400 shows 10% more of its sequence to be involved in β-sheet structures than in α-helix. These findings suggest that P400 is a structural homologue of the ubiquitin family proteins.  相似文献   

7.
Attachment of ubiquitin (Ub) or ubiquitin-like (Ubl) modifiers is a reversible post-translational modification that regulates the fate and function of proteins. In particular, proteolytic enzymes with Ub/Ubl processing activity appear to be more widespread than originally anticipated. It is therefore not surprising that bacterial and viral pathogens have exploited many ways to interfere with Ub/Ubl conjugation, but also de-conjugation. On one hand, pathogens were shown to manipulate host encoded enzymes. On the other hand, pathogen derived sequences of proteases specific for Ub/Ubls are emerging as a common feature shared by many viruses, bacteria and protozoa, and we are at an early stage of understanding how these proteases contribute to the pathogenesis of infection. Whereas some of these proteases share a common origin with mammalian cell encoded hydrolases with specific properties towards Ub/Ubls, most of them have ancient intrinsic functions, such as processing pathogen protein components, and may have acquired the specificity for Ub/Ubls by interacting with mammalian hosts and their immune system throughout evolution. Since many of these proteases are clearly distinct from their mammalian counterparts, they represent attractive targets for drug design against infectious diseases.  相似文献   

8.
Protein post-translational modifications (PTMs) are central to the host innate immune regulations. Dynamically, PTMs fine-tune the spatial and temporary responses of immune- and non-immune-cells, in accordance with extracellular and intracellular stresses. Ubiquitin and ubiquitin-like proteins (Ubls) are emerging as the important multi-functional signals, controlling the activation, stability, affinity and location of many signaling proteins. Recent investigations, at the molecular-cellular-animal models, have shed new light on the versatility of the ubiquitin, SUMO and ISG15, for shaping the strength and duration of the innate immune responses. This review summarizes our current knowledge on the functions and regulatory mechanisms of the ubiquitin and Ubls in the innate immunity, the first line of host defense against microbial infection.  相似文献   

9.
Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families.  相似文献   

10.
袁浩  朱军 《生命科学》2010,(11):1161-1166
SUMO(small ubiquitin-related modifier)是一类重要的类泛素蛋白,在生物进化过程中高度保守,其三维结构及生化修饰过程与泛素类似,但该两类蛋白质修饰的生物学意义却不尽相同。SUMO化修饰作为一种重要的蛋白质翻译后修饰,广泛参与细胞活动的各个方面,且SUMO化修饰异常与许多人类重大疾病密切相关。  相似文献   

11.
Protein-protein interactions regulate Ubl conjugation   总被引:1,自引:0,他引:1  
The ubiquitin-like proteins (Ubls) can be covalently linked to target proteins to provide a critical signal in diverse cellular processes. Members of the Ubl family include ubiquitin itself and a growing number of homologs such as SUMO, Nedd8, ISG15 and Atg8. The enzymatic mechanism of Ubl conjugation involves an E1, E2, E3 cascade of enzymes that is well conserved between the Ubls. In the past two years, novel structural details of Ubl conjugation were uncovered through analysis of protein-protein complexes. This has given insight in activation of E1, the role of the target lysine in E2-dependent catalysis, the role of noncovalent Ubl binding in Ubl chain formation and the importance of dimerization of Ring-type E3 ligases.  相似文献   

12.
Recent studies point to a diverse assemblage of prokaryotic cognates of the eukaryotic ubiquitin (Ub) system. These systems span an entire spectrum, ranging from those catalyzing cofactor and amino acid biosynthesis, with only adenylating E1-like enzymes and ubiquitin-like proteins (Ubls), to those that are closer to eukaryotic systems by virtue of possessing E2 enzymes. Until recently E3 enzymes were unknown in such prokaryotic systems. Using contextual information from comparative genomics, we uncover a diverse group of RING finger E3s in prokaryotes that are likely to function with E1s, E2s, JAB domain peptidases and Ubls. These E1s, E2s and RING fingers suggest that features hitherto believed to be unique to eukaryotic versions of these proteins emerged progressively in such prokaryotic systems. These include the specific configuration of residues associated with oxyanion-hole formation in E2s and the C-terminal UFD in the E1 enzyme, which presents the E2 to its active site. Our study suggests for the first time that YukD-like Ubls might be conjugated by some of these systems in a manner similar to eukaryotic Ubls. We also show that prokaryotic RING fingers possess considerable functional diversity and that not all of them are involved in Ub-related functions. In eukaryotes, other than RING fingers, a number of distinct binuclear (chelating two Zn atoms) and mononuclear (chelating one zinc atom) treble clef domains are involved in Ub-related functions. Through detailed structural analysis we delineated the higher order relationships and interaction modes of binuclear treble clef domains. This indicated that the FYVE domain acquired the binuclear state independently of the other binuclear forms and that different treble clef domains have convergently acquired Ub-related functions independently of the RING finger. Among these, we uncover evidence for notable prokaryotic radiations of the ZF-UBP, B-box, AN1 and LIM clades of treble clef domains and present contextual evidence to support their role in functions unrelated to the Ub-system in prokaryotes. In particular, we show that bacterial ZF-UBP domains are part of a novel cyclic nucleotide-dependent redox signaling system, whereas prokaryotic B-box, AN1 and LIM domains have related functions as partners of diverse membrane-associated peptidases in processing proteins. This information, in conjunction with structural analysis, suggests that these treble clef domains might have been independently recruited to the eukaryotic Ub-system due to an ancient conserved mode of interaction with peptides.  相似文献   

13.
The addition of ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers to proteins serves to modulate function and is a key step in protein degradation, epigenetic modification and intracellular localization. Deubiquitinating enzymes and Ubl-specific proteases, the proteins responsible for the removal of Ub and Ubls, act as an additional level of control over the ubiquitin-proteasome system. Their conservation and widespread occurrence in eukaryotes, prokaryotes and viruses shows that these proteases constitute an essential class of enzymes. Here, we discuss how chemical tools, including activity-based probes and suicide inhibitors, have enabled (i) discovery of deubiquitinating enzymes, (ii) their functional profiling, crystallographic characterization and mechanistic classification and (iii) development of molecules for therapeutic purposes.  相似文献   

14.
The ubiquitin-like (Ubl) system has been shown to be ubiquitous in all three kingdoms of life following the very recent characterization of ubiquitin-like small archaeal modifier proteins (SAMP1 and 2) from Haloferax volcanii. The ubiquitin (Ub) and Ubl molecules in eukaryotes have been studied extensively and their cellular functions are well established. Biochemical and structural data pertaining to prokaryotic Ubl protein (Pup) continue to be reported. In contrast to eukaryotes and prokaryotes, no structural information on the archaeal Ubl molecule is available. Here we determined the crystal structure of SAMP1 at 1.55 Å resolution and generated a model of SAMP2. These were then compared with other Ubl molecules from eukaryotes as well as prokaryotes. The structure of SAMP1 shows a β-grasp fold of Ub, suggesting that the archaeal Ubl molecule is more closely related to eukaryotic Ub and Ubls than to its prokaryotic counterpart. The current structure identifies the location of critical elements such a single lysine residue (Lys4), C-terminal di-glycine motif, hydrophobic patches near leucine 60, and uniquely inserted α-helical segments (α1 and α3) in SAMP1. Based on the structure of SAMP1, several Ub-like features of SAMPs such as poly-SAMPylation and non-covalent interactions have been proposed, which should provide the basis for further investigations concerning the molecular function of archaeal Ubls and the large super-family of β-grasp fold proteins in the archaeal kingdom.  相似文献   

15.
A SIM-ultaneous role for SUMO and ubiquitin   总被引:3,自引:0,他引:3  
Ubiquitin and ubiquitin-like proteins (Ubls) share a beta-GRASP fold and have key roles in cellular growth and suppression of genome instability. Despite their common fold, SUMO and ubiquitin are classically portrayed as distinct, and they can have antagonistic roles. Recently, a new family of proteins, the small ubiquitin-related modifier (SUMO)-targeted ubiquitin ligases (STUbLs), which directly connect sumoylation and ubiquitylation, has been discovered. Uniquely, STUbLs use SUMO-interaction motifs (SIMs) to recognize their sumoylated targets. STUbLs are global regulators of protein sumoylation levels, and cells lacking STUbLs display genomic instability and hypersensitivity to genotoxic stress. The human STUbL, RNF4, is implicated in several diseases including cancer, highlighting the importance of characterizing the cellular functions of STUbLs.  相似文献   

16.
Many proteins involved in autophagy have been identified in the yeast Saccharomyces cerevisiae. For example, Atg3 and Atg10 are two E2 enzymes that facilitate the conjugation of the ubiquitin-like proteins (Ubls) Atg8 and Atg12, respectively. Here, we describe the identification and characterization of the predicted Atg10 homolog (SpAtg10) of the evolutionarily distant Schizosaccharomyces pombe. Unexpectedly, SpAtg10 is not essential for autophagy. Instead, we find that SpAtg10 is essential for normal cell cycle progression, and for responses to various stress conditions that perturb the cell cycle, independently of Atg12 conjugation. Taken together, our data indicate that autophagic Ubl conjugation pathways differ between eukaryotes and, furthermore, that enzymes such as Atg10 may have additional functions in controlling key cellular processes such as cell cycle progression. Atg10-related proteins are found from yeast to humans, and, thus, this study has implications for understanding the functions of this protein family in Ubl conjugation in eukaryotes.  相似文献   

17.
Protein modification by ubiquitin (Ub) and Ub‐like molecules (Ubls) is a diverse biological process that regulates the activity of the target proteins. Systematic studies of Ubls in trypanosomatids like Leishmania, the causative organism of potentially fatal visceral leishmaniasis, would yield a better understanding of the disease pathogenesis and identify novel therapeutic targets. The present study is the first to characterize Leishmania donovani‐specific Ub‐related modifier‐1 (LdUrm1) and the associated conjugation pathway. Based on homology modeling, LdUrm1 was found to possess a β‐grasp fold and a C‐terminal di‐glycine motif unique to Ub/Ubls, essential for its conjugation to the target proteins. We identified LdUba4 as the E1 enzyme for LdUrm1 and demonstrated its energy‐dependent enzymatic activity. LdUrm1 was immunolocalized anteriorly near the flagellar reservoir, while LdUba4 was cytoplasmic, both in promastigotes and axenic amastigotes. Expression of nonconjugatable LdUrm1 in L. donovani resulted in depleted parasite growth suggesting its role in the pathogenesis. By mass spectrometry, we identified Rab5, a known mediator of early endosome regulated hemoglobin endocytosis in Leishmania, as a target of LdUrm1. Our data suggest that LdUrm1 conjugation pathway may have a role in early endosome‐mediated heme uptake in Leishmania that may be explored as a drug target.  相似文献   

18.
The ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa) is strongly induced by type I interferons and displays antiviral activity. As other ubiquitin-like proteins (Ubls), ISG15 is post-translationally conjugated to substrate proteins by an isopeptide bond between the C-terminal glycine of ISG15 and the side chains of lysine residues in the substrates (ISGylation). ISG15 consists of two ubiquitin-like domains that are separated by a hinge region. In many orthologs, this region contains a single highly reactive cysteine residue. Several hundred potential substrates for ISGylation have been identified but only a few of them have been rigorously verified. In order to investigate the modification of several ISG15 substrates, we have purified ISG15 conjugates from cell extracts by metal-chelate affinity purification and immunoprecipitations. We found that the levels of proteins modified by human ISG15 can be decreased by the addition of reducing agents. With the help of thiol blocking reagents, a mutational analysis and miRNA mediated knock-down of ISG15 expression, we revealed that this modification occurs in living cells via a disulphide bridge between the substrates and Cys78 in the hinge region of ISG15. While the ISG15 activating enzyme UBE1L is conjugated by ISG15 in the classical way, we show that the ubiquitin conjugating enzyme Ubc13 can either be classically conjugated by ISG15 or can form a disulphide bridge with ISG15 at the active site cysteine 87. The latter modification would interfere with its function as ubiquitin conjugating enzyme. However, we found no evidence for an ISG15 modification of the dynamin-like GTPases MxA and hGBP1. These findings indicate that the analysis of potential substrates for ISG15 conjugation must be performed with great care to distinguish between the two types of modification since many assays such as immunoprecipitation or metal-chelate affinity purification are performed with little or no reducing agent present.  相似文献   

19.
Atg8 and its mammalian homolog LC3, ubiquitin-like proteins (Ubls) required for autophagosome formation, are remarkably unique in that their conjugation target is the lipid phosphatidylethanolamine (PE). Although PE was identified as the sole lipid conjugated with Atg8/LC3 in vivo, phosphatidylserine (PS) can be also a good substrate for its conjugation reaction in vitro. This posed a simple, intriguing question: What confers substrate specificity to lipidation of Atg8/LC3 in vivo? Our recent in vitro studies propose that intracellular milieus such as cytosolic pH and acidic phospholipids in membranes significantly contribute to selective production of the Atg8-PE conjugate.  相似文献   

20.
Ubiquitin (Ub) and the ubiquitin‐like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half‐life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis‐database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine‐rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin‐related modifier (SUMO) chain (SUMO‐2 K42, SUMO‐3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号