首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
This study is undertaken in order to evaluate specific hypotheses of relationship among extant and extinct sloths (Mammalia, Xenarthra, Tardigrada). Questions of particular interest include the relationship among the three traditional family groupings of extinct ground sloths and the monophyletic or diphyletic origin of the two genera of extant tree sloths. A computer‐based cladistic investigation of the phylogenetic relationships among 33 sloth genera is performed based upon 286 osteological characteristics of the skull, lower jaw, dentition and hyoid arch. Characters are polarized via comparisons with the following successive outgroups, all members of the supraordinal grouping Edentata: the Vermilingua, or anteaters; the Cingulata, or armadillos and glyptodonts; the Palaeanodonta; and the Pholidota, or pangolins. The results of the analysis strongly corroborate the diphyly of living tree sloths, with the three‐toed sloth Bradypus positioned as the sister‐taxon to all other sloths, and the two‐toed sloth Choloepus allied with extinct members of the family Megalonychidae. These results imply that the split between the two extant sloth genera is ancient, dating back perhaps as much as 40 Myr, and that the similarities between the two taxa, including their suspensory locomotor habits, present one of the most dramatic examples of convergent evolution known among mammals. The monophyly of the three traditional ground sloth families Megatheriidae, Megalonychidae and Mylodontidae is confirmed in the present study, and the late Miocene–Pleistocene nothrotheres are shown to form a clade. It is suggested that this latter clade merits recognition as a distinct family‐level grouping, the family Nothrotheriidae. The monophyly of the Megatherioidea, a clade including members of the families Megatheriidae, Megalonychidae and Nothrotheriidae, is also supported. Within Megatherioidea, the families Nothrotheriidae and Megatheriidae form a monophyletic group called the Megatheria. The relationships within the families Megatheriidae and Mylodontidae are fully and consistently resolved, although the hypothesized scheme of relationships among the late Miocene to Pleistocene members of the mylodontid subfamily Mylodontinae differ strongly from any proposed by previous authors. Within the family Megalonychidae, Choloepus is allied to a monophyletic grouping of West Indian sloths, although the relationships within this clade are not fully resolved. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 140 , 255–305.  相似文献   

3.
4.
Scalopini is one of the two fully fossorial mole tribes in the family Talpidae, with remarkable adaptations to subterranean lifestyles. Most living Scalopini species are distributed in North America while a sole species occurs in China. On the other hand, scalopine fossils are found in both Eurasia and North America from upper Oligocene strata onwards, implying a complex biogeographical history. The systematic relationships of both extant and fossil Scalopini across North America and Eurasia are revised by conducting phylogenetic analyses using a comprehensive morphological character matrix together with 2D geometric–morphometric analyses of the humeral shape, with a specific emphasis on Mioscalops, a genus commonly found in North America and formerly known as Scalopoides. Our phylogenetic analyses support the monophyly of the tribe Scalopini as well as a proposed two‐subtribe‐division scenario of Scalopini (i.e. Scalopina and Parascalopina), although Proscapanus could not be assigned to either subgenus. Our geometric–morphometric analyses indicate that the European Mioscalops from southern Germany should be allocated to Leptoscaptor, which in turn implies that Mioscalops may be endemic to North America and never arrived in Europe. Examination of biogeographical patterns does not unambiguously determine the geographical origin of Scalopini. Nevertheless, it does support multiple transcontinental colonization events across Asia, Europe and North America. Scapanulus oweni, distributed in central China, is the only remaining representative of one of those out‐of‐North‐America migrations, whereas scalopine moles are common in North America nowadays with up to five species.  相似文献   

5.
Analysis of a morphological dataset containing 152 parsimony‐informative characters yielded the first phylogenetic reconstruction spanning the South American characiform family Anostomidae. The reconstruction included 46 ingroup species representing all anostomid genera and subgenera. Outgroup comparisons included members of the sister group to the Anostomidae (the Chilodontidae) as well as members of the families Curimatidae, Characidae, Citharinidae, Distichodontidae, Hemiodontidae, Parodontidae and Prochilodontidae. The results supported a clade containing Anostomus, Gnathodolus, Pseudanos, Sartor and Synaptolaemus (the subfamily Anostominae sensu Winterbottom) albeit with a somewhat different set of relationships among the species within these genera. Anostomus as previously recognized was found to be paraphyletic and is split herein into two monophyletic components, a restricted Anostomus and the new genus Petulanos gen. nov. , described herein. Laemolyta appeared as sister to the clade containing Anostomus, Gnathodolus, Petulanos, Pseudanos, Sartor and Synaptolaemus. Rhytiodus and Schizodon together formed a well‐supported clade that was, in turn, sister to the clade containing Anostomus, Gnathodolus, Laemolyta, Petulanos, Pseudanos, Sartor and Synaptolaemus. Anostomoides was sister to the clade formed by these nine genera. Leporinus as currently defined was not found to be monophyletic, although certain clades within that genus were supported, including the species with subterminal mouths in the former subgenus Hypomasticus which we recognize herein as a genus. Abramites nested in Leporinus, and Leporellus was found to be the most basal anostomid genus. The presence of cis‐ and trans‐Andean species in Abramites, Leporellus, Leporinus and Schizodon, all relatively basal genera, suggests that much of the diversification of anostomid species pre‐dates the uplift of the Andean Cordilleras circa 11.8 million years ago. Several important morphological shifts in anostomid evolution are illustrated and discussed, including instances of convergence and reversal. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 70–210.  相似文献   

6.
The Maldanidae annelid worms are reviewed and the phylogenetic relationships of their subgroups provided, based on Hennigian principles and maximum parsimony. Characters were coded as binary and multistate (transformation series). We used 33 terminal taxa (species), and 50 characters. Characters were treated as unordered and of equal weight, and analysis was run in TNT. Three equally most-parsimonious trees were obtained with heuristic searches, with lengths of 64 steps; CI = 0.95, and RI = 0.98. The monophyly of Maldanidae was supported with 100% of bootstrap and jackknife values. As a result of our analysis, Arenicolidae remains the sister-group of Maldanidae, and both should be referred to Maldanomorpha. Maldanidae was supported by the following synapomorphies: dorsal prostomium; prostomium keel-shaped and fused to peristomium; torus globose behind median chaetigers; median chaetigers greatly elongated; number of pre-anal segments reduced. The subfamily Bogueinae was not monophyletic; Boguea and Boguella were included within Rhodininae. Clymenura, previously included in the Clymenurinae, was included within Euclymeninae. The taxa Notoproctinae, Maldaninae, Nicomachinae and Euclymeninae were grouped in the Maldanoplaca, a new taxon. Eight further new clades have been found, but were not named.  相似文献   

7.
Generic boundaries among the genera Cheilosporum, Haliptilon, and Jania—currently referred to the tribe Janieae (Corallinaceae, Corallinales, Rhodophyta)—were reassessed. Phylogenetic relationships among 42 corallinoidean taxa were determined based on 26 anatomical characters and nuclear SSU rDNA sequence data for 11 species (with two duplicate plants) referred to the tribe Corallineae and 15 species referred to the tribe Janieae (two species of Cheilosporum, seven of Haliptilon, and six of Jania, with five duplicate plants). Results from our approach were consistent with the hypothesis that the tribe Janieae is monophyletic. Our data indicate, however, that Jania and Haliptilon as currently delimited are not monophyletic, and that Cheilosporum should not be recognized as an independent genus within the Janieae. Our data resolved two well‐supported biogeographic clades for the included Janieae, an Indian‐Pacific clade and a temperate North Atlantic clade. Among anatomical characters, reproductive structures reflected the evolution of the Janieae. Based on our results, three genera, Cheilosporum, Haliptilon, and Jania, should be merged into a single genus, with Jania having nomenclatural priority. We therefore propose new combinations where necessary of some species previously included in Cheilosporum and Haliptilon.  相似文献   

8.
The small size and apparent external morphological similarity of the minute salamanders of the genus Thorius have long hindered evolutionary studies of the group. We estimate gene and species trees within the genus using mitochondrial and nuclear DNA from nearly all named and many candidate species and find three main clades. We use this phylogenetic hypothesis to examine patterns of morphological evolution and species coexistence across central and southern Mexico and to test alternative hypotheses of lineage divergence with and without ecomorphological divergence. Sympatric species differ in body size more than expected after accounting for phylogenetic relationship, and morphological traits show no significant phylogenetic signal. Sympatric species tend to differ in a combination of body size, presence or absence of maxillary teeth, and relative limb or tail length, even when they are close relatives. Sister species of Thorius tend to occupy climatically similar environments, which suggests that divergence across climatic gradients does not drive species formation in the genus. Rather than being an example of cryptic species formation, Thorius more closely resembles an adaptive radiation, with ecomorphological divergence that is bounded by organism‐level constraints. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 622–643.  相似文献   

9.
Recent phylogenies of Procyonidae based on molecular data differ significantly from previous morphology‐based phylogenies in all generic sister taxon relationships. I have compiled the most comprehensive dataset of craniodental morphology that incorporates previous morphological characters, and with the aid of high‐resolution X‐ray computed tomography, new characters. This expanded craniodental analysis is based on 78 characters and yields new phylogenetic results regarding the ingroup relationships of Procyonidae. These results include Bassariscus astutus as the least derived member of Procyonidae and Ailurus fulgens nested well within the clade. Additionally, there are some similarities to previous morphological analyses of Procyonidae. Although the characters used to unite and diagnose Procyonidae vary depending on the phylogenetic analysis and have ambiguous taxonomic distribution amongst both Procyonidae and Musteloidea, there is significant morphological support for clades within Procyonidae. In addition to the strength of the morphological support within the clade, the disparate topographical regions of the skull from which the characters are derived may indicate that these synapomorphies are indeed the result of homology rather than adaptive convergence, as suggested by analyses based on molecular data. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 669–713.  相似文献   

10.
格沙头期的窃果猴类(carpolestid)孟氏苏崩猴(Subengius mengi)属于亚洲已知最早的近兔猴形类(plesiadapiform)。苏崩猴的新标本澄清了该类群的牙齿解剖结构。孟氏苏崩猴的齿列比以前认为的要原始得多,下齿列的齿式2.1.3.3,p4低冠,具有3个主尖,但不似Elphidotarsius的相应主尖那样完全并生,P3的舌侧缘更窄,结构更简单,m1不具有高度扩展的下前尖和下后尖。苏崩猴P3的独特结构以及对Elphidotarsius sp.,cf.E.florencae的P3解剖特征的重新研究表明,过去对窃果猴科P3的某些齿尖的同源性的解释是错误的。在详细的特征分析基础上,重新建立了窃果猴类及其近亲的系统发育关系。崩班期(Bumbanian)的同时猴(Chronolestes simul)被重新认定是窃果猴科最基部的成员。孟氏苏崩猴以及崩班期的另一个种旭日多脊食果猴(Carpocristes oriens)也是窃果猴类相对靠基部的成员,但这些亚洲窃果猴类之间似乎都没有特殊的相互关系。虽然北美和亚洲的窃果猴类均延续到古新世-始新世界线附近,但它们在两个大陆之间的扩散似乎仅限于古新世的较早期。  相似文献   

11.
Phylogenetic relationships among genera of African colubrids were evaluated using estimates of divergence among serum albumins compared by microcomplement fixation. Representatives of about half of the extant genera of African colubrids, as well as the Elapidae, Atractaspis and the Madagascan colubrid Leioheterodon, were analysed. The tree of best fit to the data has an unresolved basal polychotomy comprising at least five lineages of colubrids, as well as Elapidae and Atractaspis; thus, colubrids were not demonstrably monophyletic with these data. Two cosmopolitan clades, colubrines and natricines, are represented in Africa by series of closely related genera, but divergence among other genera is relatively great. Rate tests show that this is apparently not due to higher rates of albumin evolution in these, relative to other colubrids. Among the other associations supported by the immunological data are: (1) Psammophis-(Rhamphiophis-Dipsina)-Malpolon-Psammophylax; (2) Amblyodipsas-Macrelaps; (3) (Lycodonomorphus-Lamprophis)-Mehelya; and (4) Colubrinae-Natricinae. Grayia is questionably associated with the colubrine-natricine lineage. Prosymna and Lycodon are clearly members of the colubrine clade, and Amplorhinus possibly associates with Leioheterodon. Gonionotophis, Duherria, Lycophidion and Pseudaspis show no strong association with any other genera, and represent other basal or near-basal clades within the colubrid/elapid radiation. The immunological data do not support a clade comprising the Elapidae, Atractaspis and some ‘aparallactines’ relative to Viperidae and other colubrids. The basal colubrid-elapid-Atractaspis divergence occurred more than 30 Myr ago, and the fossil record of colubrids in Africa greatly underestimates both the age and clade diversity of this group. In contrast to the pattern of radiation in the neotropics, where most colubrids belong to one of three major clades, in Africa only the colubrine lineage comprises a substantial portion of the extant generic diversity; most other genera stem from relatively ancient cladogenetic events and have few living representatives.  相似文献   

12.
13.
Phylogenetic analysis of the tribe Bovini (Mammalia: Artiodactyla)   总被引:2,自引:0,他引:2  
A matrix of 57 (mainly cranial) characters and 32 taxa of fossil and Recent Bovini (buffaloes, bison and cattle) has been analysed using the parsimony program HENNIG86. Among the best established results are the exclusion of Parabos , polyphyly of Leptobos , monophyly of the Bos sensu lato + buffaloes group (a clade including all Recent Bovini), probable monophyly of the Bubalina and Syncerina, and the close relationship between bison and yak. Some other interesting questions raised include the apparent absence of a close link between Pliocene African bovines (except "Leptobos" syrticus ) and later African buffaloes, and the possible monophyly of Pelorovis oldowayensis+Bos sensu lato .  相似文献   

14.
The ciliate Sorogena stoianovitchae, which can form a multicellular fruiting body, has been classified based upon its ultrastructure and morphology: the oral and somatic infraciliature of S. stoianovitchae most closely resemble those of members of the order Cyrtolophosidida in the class Colpodea. We characterized the small subunit ribosomal DNA (SSU rDNA) gene sequence from S. stoianovitchae and compared this sequence with those from representatives of all ciliate classes. These analyses placed S. stoianovitchae as either sister to members of the class Nassophorea or Colpodea. In an in-group analysis, including all SSU rDNA sequences from members of the classes Nassophorea and Colpodea and representatives of appropriate outgroups, S. stoianovitchae was always sister to Platyophrya vorax (class Colpodea, order Cyrtolophosidida). However, our analyses failed to support the monophyly of the class Colpodea. Instead, our data suggest that there are essentially three unresolved clades: (1) the class Nassophorea; (2) Bresslaua vorax, Colpoda inflata, Pseudoplatyophrya nana, and Bursaria truncatella (class Colpodea); and (3) P. vorax and S. stoianovitchae (class Colpodea).  相似文献   

15.
Multilocus electrophoretic methods and microcomplement fixation comparisons of serum albumin are used to assess phylogenetic relationships among species of uropeltid snakes, to infer aspects of their population biology and biogeography, and to evaluate their relationships to other primitive snakes (Henophidia). There is very good agreement between phylogenetic inferences derived from the electrophoretic data and those derived from the albumin immunological data. Protein variation detected by electrophoresis is relatively high among 17 operational taxonomic units (OTUs) examined. The mean number of alleles per locus (5.1 across all OTUs), levels of polymorphism (25% of loci), and heterozygosity (4–6%), are typical of, or greater than, values reported for other snakes. Species of uropeltids are genetically highly differentiated, as measured by genetic distances (lowest interspecific Nei's unbiased genetic distances, 0.22-0.27 among several Sri Lankan species; 2.3 between Teretrurus of India and other uropeltines). The phylogenetic tree most consistent with both the immunological and electrophoretic data shows uropeltines from Sri Lanka to be monophyletic, but the Indian species are paraphyletic with respect to those from Sri Lanka. Rhinophis travancoricus of India is inferred to be the sister taxon to the Sri Lankan radiation. As the genera are presently understood, neither Rhinophis nor Uropeltis appears to be monophyletic. A biogeographic scenario derived from the phylogenetic hypothesis suggests an early diversification of uropeltids in India, followed by a single invasion into the lowlands of Sri Lanka. Subsequent evolution on Sri Lanka resulted in occupation of montane biotopes. Cylindrophis is the sister group to uropeltines and is considered a member of the Uropeltidae. The immunological data indicate no phylogenetic association between uropeltids and other ‘anilioid’ taxa, specifically Anilius, Loxocemus or Xenopeltis, although we cannot rule out a very remote relationship. We specifically reject the hypothesis that uropeltines and scolecophidians form a clade relative to henophidians. High levels of genetic variation and a trend toward negative FIS values for polymorphic loci in three populations suggest generally large effective population sizes and outbreeding in these species. The niche-width variation hypothesis for allozyme loci is not supported by the uropeltid data. In comparison to other vertebrates, the relationship between Nei's genetic distance and albumin immunological distance in uropeltids suggests either conservative albumin evolution or strong differentiation at electrophoretic loci.  相似文献   

16.
The clade Talpidae consists of specialized fossorial forms, shrew‐like moles and semi‐aquatic desmans. As with all higher jawed vertebrates, different functional, phylogenetic and developmental constraints act on different parts of dentary influencing its shape. In order to determine whether morphological variation in the dentary was unified or dispersed into an integrated complex of structural–functional components, a morphometric analysis of the mole dentary was undertaken. The dentary was subdivided into component parts – horizonal ramus; coronoid, condylar, angular processes of the ascending ramus – and outline‐based geometric morphometric methods used to quantify, compare and contrast modes of shape variation within the clade. These were successful in revealing subtle differences and aspects of shape important in distinguishing between mole genera. Closer examination of shape variation within the two fully fossorial mole clades (Talpini and Scalopini) revealed several similarities in ascending ramus shapes between genera from each clade. For example, the broad, truncated appearance of the coronoid process in the talpine genera Talpa and Parascalops was shared with the scalopine genus Scapanus. Also, the more slender, hook‐shaped coronoid process of Euroscaptor and Parascaptor (Talpini) closely resembles that of Scalopus (Scalopini). Interestingly, subspecies (one from each clade) more closely resembled genera other than their own in coronoid process shape. Important distinctions in horizontal ramus shape were found to exist between the two clades, such as the extent of curvature of the ventral margin and relative depth of the horizontal ramus. Results show shape variation in this region is correlated with dental formulae and the relative sizes of the teeth. The taxonomically important dentition differences characteristic of mammals are also reflected in the horizontal ramus results. Moreover, these results suggest size may be affecting shape and the extent of variation in, for example, the coronoid and condylar processes between the semi‐aquatic moles Desmana and Galemys. It is likely that the effects of morphological integration seen at this level of analysis – covariation between shapes of dentary components – may exist because interacting traits are evolving together. Horizontal ramus and coronoid process shape, for example, are similar across Scapanus and Parascalops, but both these shapes have diverged in Scalopus. © 2008 Trustees of the Natural History Museum (London). Journal compilation © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 153 , 187–211.  相似文献   

17.
18.
Iphisa elegans Gray, 1851 is a ground‐dwelling lizard widespread over Amazonia that displays a broadly conserved external morphology over its range. This wide geographical distribution and conservation of body form contrasts with the expected poor dispersal ability of the species, the tumultuous past of Amazonia, and the previously documented prevalence of cryptic species in widespread terrestrial organisms in this region. Here we investigate this homogeneity by examining hemipenial morphology and conducting phylogenetic analyses of mitochondrial (CYTB) and nuclear (C‐MOS) DNA sequence data from 49 individuals sampled across Amazonia. We detected remarkable variation in hemipenial morphology within this species, with multiple cases of sympatric occurrence of distinct hemipenial morphotypes. Phylogenetic analyses revealed highly divergent lineages corroborating the patterns suggested by the hemipenial morphotypes, including co‐occurrence of different lineages. The degrees of genetic and morphological distinctness, as well as instances of sympatry among mtDNA lineages/morphotypes without nuDNA allele sharing, suggest that I. elegans is a complex of cryptic species. An extensive and integrative taxonomic revision of the I. elegans complex throughout its wide geographical range is needed. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 361–376.  相似文献   

19.
Owing to the reinterpretation of its morphological synapomorphies, the taxonomic composition of the Ectateus generic group had been ambiguous. The present study scrutinized all existing taxonomic concepts of the group based on a cladistic analysis of the adult morphology of all of the Afrotropical platynotoid Platynotina genera. The phylogenetic relationships were reconstructed using parsimony and Bayesian inference. The results show that all previous taxonomic concepts of the Ectateus generic group concerned paraphyletic entities. The cladistic analysis revealed the following synapomorphies for the taxon: (1) presence of basal indentations of the pronotal disc, (2) ratio of prothorax width to its maximal height > 6.0, and (3) ratio of maximal height of the prothorax to total height < 0.3. Moreover, phylogenetic studies revealed the existence of the Upembarus generic group, a sister‐taxon group to the Ectateus generic group, within the Afrotropical platynotoid Platynotina. Autapomorphic and synapomorphic character mapping show that several taxonomic and nomenclatural changes are needed to consider the particular generic‐level entities traditionally assigned to Afrotropical platynotoid Platynotina as monophyletic lineages. The following taxonomic and nomenclatural adjustments are made in this paper: P teroselinus gen. nov. is erected to accommodate a single species that was previously assigned to Zidalus: Pteroselinus insularis comb. nov. Additionally, the following synonymies are proposed: Anchophthalmops (= Platykochius syn. nov. ), Angolositus (= Aberlencus syn. nov. , = Platymedvedevia syn. nov. ), Glyptopteryx (= Microselinus syn. nov. , = Quadrideres syn. nov. , = Synquadrideres syn. nov. ). In addition, Kochogaster is lowered in rank and is treated as one of the subgenera of Anchophthalmus. Moreover, Pseudoselinus is treated as a subgenus of Upembarus. An identification key to all Afrotropical platynotoid Platynotina genera and subgenera is presented. Zoogeographical analyses revealed the following dispersal barriers for the Ectateus generic group: (1) the Sahara (northern barrier); (2) the dry ecosystems of Botswana, Namibia, and South Africa (southern barrier); and (3) the Congolian rainforests (internal distributional gap). The ancestor of the taxon probably originated in East African ecoregions that predominantly contained wattletrees (acacias) and Commiphora Jacq. Moreover, past climate changes seem to have had a great impact on the observed generic distribution. © 2015 The Linnean Society of London  相似文献   

20.
Of the seven genera which we have recognised within the Archiloa genus complex sensu Karling (1966) the cosmopolitan genus Archilina is the most primitive and is characterised only by plesiomorphic characters, and has to be considered paraphyletic. All other species of the Archiloa genus complex are hypothesized to be derived from Archilina-like ancestors through different evolutionary lineages. One lineage led to the genera Archiloa, Inaloa, Archilopsis and Monocelopsis, taxa found in the Atlantic and the Mediterranean. These genera are monophyletic and their relationships are analyzed. The genera Mesoda (Brazil) and Tajikina (Northern Pacific) can be considered as two other separate lineages. Similarly, within what we now consider as the genus Archilina different lineages can be recognized in different regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号