首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Six stations were established in Xiamen Western Sea (24°29’ N, 118°04’ E) on summer and autumn cruises in July and October 2001 to investigate the level of polyaromatic hydrocarbons (PAHs) and PAHs-degrading bacteria in surface water and sediments. PAHs in the surface water were mainly dominated by low molecular weight PAH compounds (2–3 rings PAH) in July and by high molecular weight PAH compounds (4–6 rings PAH) in October. PAHs in sediments were mainly dominated by high molecular weight PAH compounds (4–6). The percentage of 4–6 rings PAH to total PAHs ranged from 80.4 to 94.9% in July and 78.3 to 88.7% in October. No correlation was found between Fluoranthene-degrading bacteria numbers and Fluoranthene concentration among different stations in the surface water on the two cruises, and the same situation occurred between Pyrene-degrading bacteria numbers and pyrene concentration. But the numbers of fluorene- and phenanthrenedegrading bacteria were positively related to the fluorene and phenanthrene concentrations respectively. In the sediments, a significant positive relationship was found between PAH-degrading bacteria and PAHs concentration, except at station 6 on the two cruises.  相似文献   

2.
Liu JJ  Wang XC  Fan B 《Bioresource technology》2011,102(9):5305-5311
The occurrence of polycyclic aromatic hydrocarbons (PAHs) in a domestic wastewater treatment plant (WWTP) was investigated in a 1 year period. In order to understand how PAHs were removed at different stages of the treatment process, adsorption experiments were conducted using quartz sand, kaolinite, and natural clay as inorganic adsorbents and activated sludge as organic adsorbent for adsorbing naphthalene, phenanthrene, and pyrene. As a result, the adsorption of PAHs by the inorganic adsorbents well followed the Langmuir isotherm while that by the activated sludge well followed the Freundlich isotherm. By bridging equilibrium partitioning coefficient with the parameters of adsorption isotherm, a set of mathematical models were developed. Under an assumption that in the primary settler PAHs removal was by adsorption onto inorganic particles and in the biological treatment unit it was by adsorption onto activated sludge, the model calculation results fairly reflected the practical condition in the WWTP.  相似文献   

3.
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both.  相似文献   

4.
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both.  相似文献   

5.
The present study was undertaken to investigate the removal of 16 polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by the US Environmental Protection Agency (USEPA-PAHs) that are found in coal-contaminated soil during simulated in-vessel composting. Contaminated soil (S) was mixed with green waste (W) in the ratios of 3:1, 1:1, and 1:3 under neutral and acidic soil conditions in laboratory-scale composting reactors. The highest removal efficiency of total 16 USEPA-PAHs (71.88%) was observed in S:W ratio of 1:1 and neutral soil treatment with the removal rate constant of 0.0106 day?1. Results found that the S:W ratio significantly influenced the removal of PAHs during composting but not the initial soil pH. The results of this research suggest that composting is a feasible and appropriate technology to remediate soil contaminated by coal-native PAH.  相似文献   

6.
The objectives of this study were to isolate and evaluate microorganisms with the ability to degrade high molecular weight polycyclic aromatic hydrocarbons (PAHs) in the presence of synthetic surfactants. Stenotrophomonas maltophilia VUN 10,010, isolated from PAH-contaminated soil, utilized pyrene as a sole carbon and energy source and also degraded other high molecular weight PAHs containing up to seven benzene rings. Various synthetic surfactants were tested for their ability to improve the PAH degradation rate of strain VUN 10,010. Anionic and cationic surfactants were highly toxic to this strain, and the Tween series was used as a growth substrate. Five nonionic surfactants (Brij 35, Igepal CA-630, Triton X-100, Tergitol NP-10, and Tyloxapol) were not utilized by, and were less toxic to, strain VUN 10,010. MSR and log Km values were determined for fluoranthene, pyrene, and benzo[a]pyrene in the presence of these nonionic surfactants and their apparent solubility was increased by a minimum of 250-fold in the presence of 10 g L-1 of all surfactants. The rate of pyrene degradation by strain VUN 10,010 was enhanced by the addition of four of the nonionic surfactants (5-10 g L-1); however, 5 g L-1 Igepal CA-630 inhibited pyrene degradation and microbial growth. The specific growth rate of VUN 10,010 on pyrene was increased by 67% in the presence of 10 g L-1 Brij 35 or Tergitol NP-10. The addition of Brij 35 and Tergitol NP-10 to media containing a single high molecular weight PAH (four and five benzene rings) as the sole carbon source increased the maximum specific PAH degradation rate and decreased the lag period normally seen for PAH degradation. The addition of Tergitol NP-10 to VUN 10,010 cultures which contained a PAH mixture (three to seven benzene rings) substantially improved the overall degradation rate of each PAH and increased the specific growth rate of VUN 10,010 by 30%. Evaluation of the use of VUN 10,010 for degrading high molecular weight PAHs in leachates from surfactant-flushed, weathered, PAH-contaminated sites is warranted. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

7.
The effect of arbuscular mycorrhizal fungi (AMF) on the reduction of soil polycyclic aromatic hydrocarbon (PAH), nutrient uptake, and growth of leek (Allium porrum L. cv. Musselburgh) plants was studied under greenhouse conditions. This experiment was a 3 × 2 × 2 × 4 factorial design including three mycorrhizal treatments (non-AMF, Glomus intraradices, and G. versiforme strains), two microorganism statuses (with and without soil bacteria), two PAH chemicals (anthracene and phenanthrene), and four PAH concentrations (three concentrations added and one control). Leek growth was reduced significantly in soils spiked with anthracene or phenanthrene. Inoculation with either Glomus intraradices or G. versiforme not only increased N and P uptake and plant growth, but also enhanced PAH disappearance in soil. After 12 weeks of potcultures, the anthracene and phenanthrene concentrations in soils were decreased as compared to their initial level, 9%–31% versus 43%–88%, respectively. Reductions in concentration were larger for phenanthrene than anthracene. The addition of a soil microorganism (SM) extract in potcultures accelerated the disappearance of PAHs. The decrease of PAHs in soil was mainly attributed to the enhanced nutrient uptake by AMF, leading to improved plant growth, which, in turn, may stimulate soil microbial activity. This study shows the interrelationships between AMF, plants, other SMs, and PAH disappearance in soil. The phytoremediation of soil contaminated with PAHs can be accelerated through inoculation with AMF and other SMs.  相似文献   

8.
Biodegradation of a mixture of PAHs was assessed in forest soil microcosms performed either without or with bioaugmentation using individual fungi and bacterial and a fungal consortia. Respiratory activity, metabolic intermediates and extent of PAH degradation were determined. In all microcosms the low molecular weight PAH’s naphthalene, phenanthrene and anthracene, showed a rapid initial rate of removal. However, bioaugmentation did not significantly affect the biodegradation efficiency for these compounds. Significantly slower degradation rates were demonstrated for the high molecular weight PAH’s pyrene, benz[a]anthracene and benz[a]pyrene. Bioaugmentation did not improve the rate or extent of PAH degradation, except in the case of Aspergillus sp. Respiratory activity was determined by CO2 evolution and correlated roughly with the rate and timing of PAH removal. This indicated that the PAHs were being used as an energy source. The native microbiota responded rapidly to the addition of the PAHs and demonstrated the ability to degrade all of the PAHs added to the soil, indicating their ability to remediate PAH-contaminated soils.  相似文献   

9.
Biodegradation studies of polyaromatic hydrocarbons in aqueous media   总被引:2,自引:1,他引:1  
Sixteen bacterial strains isolated from an activated sludge and Mycobacterium ssp. PYR-1 were tested for their ability to degrade polyaromatic hydrocarbons (PAHs). The bacterial strains Pasteurella ssp. (B-2) and Mycobacterium ssp. PYR-1 (AM) showed a high biodegradation potential of three- and four-ring PAHs. Bacterial strain AM was able to degrade up to 80% of three and four-ring PAHs (phenanthrene, fluoranthene and pyrene) within the first month of incubation, while the bacterial strain B-2 achieved the same biodegradation in 2 months. The metabolic pathway of PAH degradation was studied using fluoranthene and the bacterial strain AM. Ninety per cent of fluoranthene was biodegraded within the first 9 d of incubation when applied as a single substrate. Retention factor values from thin-layer chromatography studies, gas chromatography with mass selective detection and tandem mass spectrometry identified 9-fluorenone-1-carboxylic acid as one of the stable metabolic products and from this a fluoranthene biodegradation pathway is proposed.  相似文献   

10.
Peanut oil amendment (0.1%-0.2% (v/v)) increased the biodegradation of various polycyclic aromatic hydrocarbons (PAHs) by 15%-80% with a mixed bacterial culture and a pure culture of Comamonas testosteroni in aqueous media and in PAH-contaminated weathered soil slurry systems. The stimulatory effect on biodegradation was more pronounced with the high molecular weight PAHs (e.g., >3 rings). The presence of peanut oil also accelerated the biodegradation of PAHs sorbed onto activated carbon, indicating its potential application in the bioregeneration of activated carbon.  相似文献   

11.
Over the past 30 years, research on the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) has resulted in the isolation of numerous genera of bacteria, fungi and algae capable of degrading low molecular weight PAHs (compounds containing three or less fused benzene rings). High molecular weight PAHs (compounds containing four or more fused benzene rings) are generally recalcitrant to microbial attack, although some fungi and algae are capable of transforming these compounds. Until recently, only a few genera of bacteria have been isolated with the ability to utilise four-ring PAHs as sole carbon and energy sources while cometabolism of five-ring compounds has been reported. The focuss of this review is on the high molecular weight PAH benzo[a]pyrene (BaP). There is concern about the presence of BaP in the environment because of its carcinogenicity, teratogenicity and toxicity. BaP has been observed to accumulate in marine organisms and plants which could indirectly cause human exposure through food consumption. This review provides an outline of the occurrence of BaP in the environment and the ability of bacteria, fungi and algae to degrade the compound, including pathways for BaP degradation by these organisms. In addition, approaches for improving microbial degradation of BaP are discussed.  相似文献   

12.
Biological treatment methods are effective at destroying polycyclic aromatic hydrocarbons (PAHs), and some of the highest rates of PAH degradation have been achieved using two-phase-partitioning bioreactors (TPPBs). TPPBs consist of a cell-containing aqueous phase and a biocompatible and immiscible organic phase that partitions toxic and/or recalcitrant substrates to the cells based on their metabolic demand and on maintaining the thermodynamic equilibrium of the system. In this study, the degradation of a 5-component mixture of high and low molecular weight PAHs by a defined microbial consortium of Sphingomonas aromaticivorans B0695 and Sphingomonas paucimobilis EPA505 in a TPPB was examined. The extremely low aqueous solubilities of the high molecular weight (HMW) PAHs significantly reduce their bioavailability to cells, not only in the environment, but in TPPBs as well. That is, in the two-phase system, the originally selected solvent, dodecane, was found to sequester the HMW PAHs from the cells in the aqueous phase due to the inherent high solubility of the hydrophobic compounds in this solvent. To circumvent this limitation, the initial PAH concentrations in dodecane were increased to sufficient levels in the aqueous phase to support degradation: LMW PAHs (naphthalene, phenanthrene) and fluoranthene were degraded completely in 8 h, while the HMW PAHs, pyrene and benzo[a]pyrene, were degraded by 64% and 11%, at rates of 42.9 mg l−1 d−1 and 7.5 mg l−1 d−1, respectively. Silicone oil has superior PAH partitioning abilities compared to dodecane for the HMW PAHs, and was used to improve the extent of degradation for the PAH mixture. Although silicone oil increased the bioavailability of the HMW PAHs and greater extents of biodegradation were observed, the rates of degradation were lower than that obtained in the TPPB employing dodecane.  相似文献   

13.
Toxicity of anthracene, fluoranthene, fluorene, phenanthrene, and the mixtures of these polycyclic aromatic hydrocarbons (PAHs) to three economic crops in Thailand was compared. Seeds of sweet corn, waxy corn, and rice were planted in soils contaminated with each PAH alone, binary mixtures, and total four PAH mixture. Rice seedlings were most sensitive to PAHs. Germination of sweet corn, waxy corn, and rice seeds was delayed by single PAH and their mixtures, especially at their high concentrations. More than 20 mg/kg of anthracene and 2 mg/kg of phenanthrene significantly retarded the seed germination rate in waxy corn. Root and shoot elongation were more sensitive to toxic PAHs than other growth indices. Fluorene was more toxic to all the tested plants than other PAHs. (Anthracene + fluoranthene) was most toxic to plants when compared with other PAH mixtures. There was synergistic combine effect of PAHs on corn root length, but there were antagonistic combine effects on fresh weights of both plants and rice root length. PAH mixtures did not affect dry weights of all plants.  相似文献   

14.
AIMS: To investigate the effects of co-composting poultry manure with soil contaminated with different concentrations of polycyclic aromatic hydrocarbons (PAHs), on the degradation of selected PAHs in a static-pile compost system. METHODS: Mispah form (Food & Agricultural Organisation, FAO : lithosol) soil contaminated with PAHs was co-composted with poultry manure for 19 months. The soil was mixed with wood chips in a ratio of 1:1 to improve aeration and then mixed with poultry manure in a ratio of 4:1. A data logger measured temperature monthly. Residual concentrations of selected PAHs in the compost were determined monthly by gas chromatography/flame ionisation detection (GC/FID). Moisture, pH, ash content and C:N ratios were also monitored monthly. Microbial activity was measured by measuring CO(2) evolution. CONCLUSIONS: The results obtained in this experiment have shown that co-composting poultry manure with PAH-contaminated soil is capable of removing large concentrations of high molecular weight PAH from contaminated soil to levels below 1 mg kg(-1) in 19 months. SIGNIFICANCE AND IMPACT OF THE STUDY: The paper adds to the body of knowledge necessary for the development of a cost effective technology for the remediation of soil contaminated with high molecular weight PAHs by providing information on the behaviour of selected PAHs and factors such as nutrient ratio, temperature and pH during composting.  相似文献   

15.
Shipping operations produce oily wastes that must be managed properly to avoid environmental pollution. The aim of this study was to characterize microorganisms occurring in ship bilge wastes placed in open lagoons and, particularly, to assess their potential to degrade polycyclic aromatic hydrocarbons (PAHs). A first-order kinetic was suitable for describing hydrocarbon biodegradation after 17 days of treatment. The calculated rate constants were 0.0668 and 0.0513 day–1 with a corresponding half-life of 10.3 and 13.5 days for the aliphatic and aromatic hydrocarbon fractions, respectively. At day 17, PAH removal percentages were: acenaphtylene 100, fluorene 95.2, phenanthrene 93.6, anthracene 70.3, and pyrene 71.5. Methyl phenanthrene removals were lower than that of their parent compound (3-methyl phenanthrene 83.6, 2-methyl phenanthrene 80.8, 1-methyl phenanthrene 77.3, 9-methyl phenanthrene 75.1, and 2,7-dimethyl phenanthrene 76.6). Neither pure cultures nor the microbial community from these wastes showed extracellular biosurfactant production suggesting that the addition of an exogenously produced biosurfactant may be important in enhancing hydrocarbon bioavailability and biodegradation. DNA analysis of bilge waste samples revealed a ubiquitous distribution of the nahAc genotype in the dump pools. Although almost all of the isolates grew on naphthalene as sole carbon source, only some of them yielded nahAc amplification under the experimental conditions used. The variety of PAHs in bilge wastes could support bacteria with multiple degradation pathways and a diversity of catabolic genes divergent from the classical nah-like type.  相似文献   

16.
Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 microg/kg dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[a]pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 microg PAH/kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.  相似文献   

17.
The aim of the research was to verify if a Sphingobium chlorophenolicum strain C3R was effective in the degradation of phenanthrene (Ph) in agricultural soil co-contaminated by metals and mixtures of PAHs. The presence of PAHs in mixtures produced interactive effects which could either increase or decrease the utilization rate of Ph by C3R and by the native bacterial microflora. Bioaugmentation significantly improved the biodegradation rate of Ph in the presence of both cadmium and arsenic and PAH mixtures. The augmented C3R strain persisted in inoculated microcosms as monitored by the DGGE analysis and outcompeted some indigenous bacteria. The potential role of the soil bacteria in PAH degradation could be envisaged. The results indicate the applicability of S. chlorophenolicum C3R toward in situ bioremediation of sites contaminated with phenanthrene alone or co-contaminated with low molecular weight PAHs and with cadmium and arsenate.  相似文献   

18.
The degree of contamination with polycyclic aromatic hydrocarbons (PAHs) in soil samples in winter was determined. The contents of PAHs in samples were analyzed with HPLC. The PAHs contents of soil samples in winter around three different oily sludges from high to low represented the Third Wenming Plant of the oily sludge (3W), the Third Mazhai plant of the oily sludge (3M), and the Fourth Wener Plant of the oily sludge (4W), respectively. PAHs with 2–4 rings were major pollutants in oily sludge. Based on Nemero index P, the classification evaluation showed that soils around oily sludge were heavily polluted in winter. The health risk assessment and ecological risk assessment in soil in winter around oily sludge in Zhongyuan Oil Field was also analyzed.  相似文献   

19.
Anthracene, phenanthrene, and pyrene are polycyclic aromatic hydrocarbon (PAHs) that display both mutagenic and carcinogenic properties. They are recalcitrant to microbial degradation in soil and water due to their complex molecular structure and low solubility in water. This study presents the characterization of an efficient PAH (anthracene, phenanthrene, and pyrene)-degrading microbial consortium, isolated from a petrochemical sludge landfarming site. Soil samples collected at the landfarming area were used as inoculum in Warburg flasks containing soil spiked with 250 mg kg-1 of anthracene. The soil sample with the highest production of CO2-C in 176 days was used in liquid mineral medium for further enrichment of anthracene degraders. The microbial consortium degraded 48%, 67%, and 22% of the anthracene, phenanthrene, and pyrene in the mineral medium, respectively, after 30 days of incubation. Six bacteria, identified by 16S rRNA sequencing as Mycobacterium fortuitum, Bacillus cereus, Microbacterium sp., Gordonia polyisoprenivorans, two Microbacteriaceae bacteria, and a fungus identified as Fusarium oxysporum were isolated from the enrichment culture. The consortium and its monoculture isolates utilized a variety of hydrocarbons including PAHs (pyrene, anthracene, phenanthrene, and naftalene), monoaromatics hydrocarbons (benzene, ethylbenzene, toluene, and xylene), aliphatic hydrocarbons (1-decene, 1-octene, and hexane), hydrocarbon mixtures (gasoline and diesel oil), intermediary metabolites of PAHs degradation (catechol, gentisic acid, salicylic acid, and dihydroxybenzoic acid) and ethanol for growth. Biosurfactant production by the isolates was assessed by an emulsification index and reduction of the surface tension in the mineral medium. Significant emulsification was observed with the isolates, indicating production of high-molecular-weigh surfactants. The high PAH degradation rates, the wide spectrum of hydrocarbons utilization, and emulsification capacities of the microbial consortium and its member microbes indicate that they can be used for biotreatment and bioaugumentation of soils contaminated with PAHs.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are of global environmental concern because they cause many health problems including cancer and inflammation of tissue in humans. Plants are important in removing PAHs from the atmosphere; yet, information on the physiology, cell and molecular biology, and biochemistry of PAH stress responses in plants is lacking. The PAH stress response was studied in Arabidopsis (Arabidopsis thaliana) exposed to the three-ring aromatic compound, phenanthrene. Morphological symptoms of PAH stress were growth reduction of the root and shoot, deformed trichomes, reduced root hairs, chlorosis, late flowering, and the appearance of white spots, which later developed into necrotic lesions. At the tissue and cellular levels, plants experienced oxidative stress. This was indicated by localized H2O2 production and cell death, which were detected using 3, 3'-diaminobenzidine and trypan blue staining, respectively. Gas chromatography-mass spectrometry and fluorescence spectrometry analyses showed that phenanthrene is internalized by the plant. Gene expression of the cell wall-loosening protein expansin was repressed, whereas gene expression of the pathogenesis related protein PR1 was induced in response to PAH exposure. These findings show that (i) Arabidopsis takes up phenanthrene, suggesting possible degradation in plants, (ii) a PAH response in plants and animals may share similar stress mechanisms, since in animal cells detoxification of PAHs also results in oxidative stress, and (iii) plant specific defence mechanisms contribute to PAH stress response in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号