首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modified nucleotides are increasingly being utilized in all categories of therapeutic oligonucleotides to increase nuclease-resistance, target affinity and specificity. The extent to which these substitutions are tolerated varies with the different modes of action exploited by various modalities, but fully modified oligonucleotides have now been discovered for most types of therapeutic oligonucleotide. Fully phosphorothioate-substituted antisense oligonucleotides have been used for several years. The first fully modified siRNA was reported in 2006 with a 2'-O-methyl sense strand and a phosphorothioate antisense strand. The first fully modified aptamer (2'-O-methyl) was reported in 2005. It is expected that future candidate therapeutic oligonucleotides will have even more drug-like characteristics as a result of the inclusion of modified nucleotides.  相似文献   

2.
Due to the instability of DNA oligonucleotides in biological solutions, antisense or antigene therapies aimed at modulation of specific gene expression will most likely require the use of oligonucleotides with modified backbones. Here, we examine the use of a surface plasmon resonance biosensor (BIAcore) to compare triplex-directed binding of modified oligonucleotides targeted to a region of the murine c-myc promoter. We describe optimization of experimental conditions to minimize nonspecific interactions between the oligonucleotides and the sensor chip surface, and the limitations imposed by certain backbones and sequence types. The abilities of pyrimidine oligonucleotides with various modified backbones to form specific triple helices with an immobilized hairpin duplex were readily determined using the biosensor. Modification of the third-strand oligonucleotide with RNA or 2(')-O-methyl RNA was found to enhance triplex formation, whereas phosphorothioate or phosphotriester substitutions abrogated it. A comparison of these results to DNase I footprinting experiments using the same oligonucleotides showed complete agreement between the two sets of data.  相似文献   

3.
Different phenylalkyl backbone modified antisense oligonucleotides complementary to the Hepatitis C virus (HCV) RNA nucleotides 326-342 were synthesized. The lipohilic character of modified oligonucleotides was determined from RP-HPLC retention times. The inhibitory effect of these antisense oligonucleotides on HCV gene expression was analyzed in an in vitro test system.  相似文献   

4.
Abstract

Different modified PNA-DNA dimer-analogous synthons (I and II) were synthesized as phosphoramidites. These dimer units were assembled by a 5′-modified deoxythymidine and a modified PNA monomer. These synthons were used in the routine coupling procedure for oligonucleotides. Therefore no PNA coupling chemistry is necessary to synthesize PNA-DNA chimeric oligonucleotides. Various deoxyoligonucleotides were synthesized introducing the dimer blocks I and II at different positions in the sequences. Melting temperatures of the modified oligonucleotides with their complementary DNA analogues were determined.

Backbone modifications of oligonucleotides are required in the antisense strategy for protection against endonucleolytic cleavage in biological environment. Peptide nucleic acids (PNA fragments) are known to be nuclease resistant analogues, which show stable and discriminating hybridization. For this reason we prepared chimeric PNA-DNA oligomers by incorporation of two different modified PNA-DNA dimer blocks (Scheme A) into oligonucleotides. Melting temperatures of the modified oligonucleotides with their complementary DNA were determined.  相似文献   

5.
Novel serine derivative of thymine was prepared and incorporated into oligonucleotides. These modified oligonucleotides were studied for their binding affinity with complementary DNA/RNA.  相似文献   

6.
Abstract

Different phenylalkyl backbone modified antisense oligonucleotides complementary to the Hepatitis C virus (HCV) RNA nucleotides 326–342 were synthesized. The lipohilic character of modified oligonucleotides was determined from RP-HPLC retention times. The inhibitory effect of these antisense oligonucleotides on HCV gene expression was analyzed in an in vitro test system.  相似文献   

7.
In line with the paradigm, that antisense oligonucleotides should contain minimal structural modifications, in order to minimize the risk of toxicity and antigenicity, we describe here the preparation and the properties of oligonucleotides modified to contain, in addition to phosphodiester bonds, a small number of phosphoramidate internucleotide linkages substituted with aminoethoxyethyl groups in order to convey protection against exo- and endonucleases. Prolonged stability was, in fact, found in model experiments with respective enzymes, as well as in studies done in human blood serum. Regardless of number and position of phosphoramidate linkages, the modified oligonucleotides showed only a slight decrease of Tm in hybridization studies with complementary oligonucleotides.  相似文献   

8.
One novel strategy for the blockade of the androgen receptor could be the selective inhibition of androgen receptor by antisense oligonucleotides or small interfering RNA molecules. Here we describe the down regulation of the androgen receptor in cultured human SZ95 sebocytes with antisense oligonucleotides modified with phosphorothioates and 2'- O-methylribosyl residues. The ability of antisense oligonucleotides to cross the cellular membrane was enhanced by establishing a transient transfection system based on cationic lipid vesicles. Both antisense oligonucleotide types administered caused assumedly translational arrest. Dose-dependent inhibition of androgen receptor protein expression was observed after SZ95 sebocyte transfection with modified phosphorothioate oligonucleotides and modified 2'- O-methylribonucleotides which were directed against the translational start of the androgen receptor mRNA. The strongest transient inhibition of androgen receptor expression was detected after 14 hours with 1.0 muM antisense 2'- O-methylribonucleotides (88+/-1.3%, p<0.001). With longer recovery times than 24 hours, androgen receptor protein expression returned to the native control levels. Inhibition of the expression of androgen receptor by antisense oligonucleotides, reduced the enhanced proliferation of SZ95 sebocytes challenged by testosterone and 5alpha-dihydrotestosterone. This administration opens new therapeutic possibilities in androgen-associated skin diseases, since we could also show androgen inhibition with these antisense oligonucleotides in a reconstituted human epidermis model (Horm Metab Res 2007; 39:157-165).  相似文献   

9.
In line with the paradigm, that antisense oligonucleotides should contain minimal structural modifications, in order to minimize the risk of toxicity and antigenicity, we describe here the preparation and the properties of oligonucleotides modified to contain, in addition to phosphodiester bonds, a small number of phosphoramidate internucleotide linkages substituted with aminoethoxyethyl groups in order to convey protection against exo‐ and endonucleases. Prolonged stability was, in fact, found in model experiments with respective enzymes, as well as in studies done in human blood serum. Regardless of number and position of phosphoramidate linkages, the modified oligonucleotides showed only a slight decrease of Tm in hybridization studies with complementary oligonucleotides.  相似文献   

10.
Protected 2'-deoxy-2'-fluorouridine and 2'-deoxy-2'-fluorocytidine suitable for incorporation into oligonucleotides via the phosphoramidite approach have been prepared. Five modified and two unmodified oligonucleotides have been synthesized to investigate the regiospecific cleavage of a 5S RNA from Escherichia coli by RNase H. In order to show whether the modified oligonucleotides are able to hybridize with the RNA the physico-chemical properties (melting curves, CD spectra) of analogous DNA/oligodeoxyribonucleotide duplexes have been examined. The modified oligonucleotides are shown to form stable duplexes with a DNA-matrix which exist in an A-like form. Two of the modified probes containing four 2'-deoxy-2'-fluorocytidines or two 2'-deoxy-2'-fluorouridines direct the splitting by RNase H of only one phosphodiester bond of the RNA.  相似文献   

11.
A novel 2'-modification, 2'-O-[2-(methylthio)ethyl] or 2'-O-MTE, has been incorporated into oligonucleotides and evaluated for properties relevant to antisense activity. The results were compared with the previously characterized 2'-O-[2-(methoxy)ethyl] 2'-O-MOE modification. As expected, the 2'-O-MTE modified oligonucleotides exhibited improved binding to human serum albumin compared to the 2'-O-MOE modified oligonucleotides. The 2'-O-MTE oligonucleotides maintained high binding affinity to target RNA. Nuclease digestion of 2'-O-MTE oligonucleotides showed that they have limited resistance to exonuclease degradation. We analyzed the crystal structure of a decamer DNA duplex containing the 2'-O-MTE modifcation. Analysis of the crystal structure provides insight into the improved RNA binding affinity, protein binding affinity and limited resistance of 2'-O-MTE modified oligonucleotides to exonuclease degradation.  相似文献   

12.
Abstract

The synthesis and the enzymatic studies of modified oligonucleotides containing a PNA modified PNA-DNA dimer block and a new acyclic racemic serinol nucleoside is described. We show that both, the PNA-DNA dimer block1 and the modified PNA-spacer (acyclic serinol nucleoside)2 can be used as modified templates for the enzymatic generation of single stranded DNA. Degradation studies of the oligonucleotides containing the PNA-DNA dimer block with snake venom phosphodiesterase show that the modified oligonucleotides are stable towards exonucleolytic degradation.  相似文献   

13.
The ability of certain azole substituted oligodeoxy-ribonucleotides to promote antiparallel triple helix formation with duplex targets having CG or TA interruptions in the otherwise homopurine sequence was examined. 2'-Deoxyribonucleosides of the azoles, which include pyrazole, imidazole, 1,2,4-triazole and 1,2,3,4-tetrazole were synthesized using the stereo-specific sodium salt glycosylation procedure. These nucleosides were successfully incorporated using solid-support, phosphoramidite chemistry, into oligonucleotides designed to interact with the non-homopurine duplex targets. The interaction of these modified oligonucleotides with all four possible base pairs was evaluated and compared to similar data for a series of natural oligonucleotides. The oligonucleotides containing simple azoles enhanced the triplex forming ability considerably at non-homopurine targets. Binding of these modified oligonucleotides to duplex targets containing TA inversion sites was particularly noteworthy, and compare favorably to unmodified oligonucleotides for binding to duplex targets containing CG as well as TA base pairs. The selectivity exhibited by certain azoles is suggestive of base pair specific interactions. Thus, the azoles evaluated during this study show considerable promise for efforts to develop generalized triplex formation at non-homopurine duplex sequences.  相似文献   

14.
Atomic force microscopy (AFM) can be used to probe the mechanics of molecular recognition between surfaces. In the application known as "chemical force" microscopy (CFM), a chemically modified AFM tip probes a surface through chemical recognition. When modified with a biological ligand or receptor, the AFM tip can discriminate between its biological binding partner and other molecules on a heterogeneous substrate. The strength of the interaction between the modified tip and the substrate is governed by the molecular affinity. We have used CFM to probe the interactions between short segments of single-strand DNA (oligonucleotides). First, a latex microparticle was modified with the sequence 3'-CAGTTCTACGATGGCAAGTC and epoxied to a standard AFM cantilever. This DNA-modified probe was then used to scan substrates containing the complementary sequence 5'-GTCAAGATGCTACCGTTCAG. These substrates consisted of micron-scale, patterned arrays of one or more distinct oligonucleotides. A strong friction interaction was measured between the modified tip and both elements of surface-bound DNA. Complementary oligonucleotides exhibited a stronger friction than the noncomplementary sequences within the patterned array. The friction force correlated with the measured strength of adhesion (rupture force) for the tip- and array-bound oligonucleotides. This result is consistent with the formation of a greater number of hydrogen bonds for the complementary sequence, suggesting that the friction arises from a sequence-specific interaction (hybridization) of the tip and surface DNA.  相似文献   

15.
Abstract

Novel serine derivative of thymine was prepared and incorporated into oligonucleotides. These modified oligonucleotides were studied for their binding affinity with complementary DNA/RNA.  相似文献   

16.
Abstract

The title dimers were prepared to investigate conditions required for the synthesis of 3′-difluoromethylene modified oligonucleotides on solid support. As a result a new synthetic cycle was developed that enabled the solid phase synthesis of the modified oligonucleotides.  相似文献   

17.
Expanding research in the field of modified oligonucleotides demands suitable analytical tools for size and purity verification of known compounds and accurate structure elucidation of unknowns. There is a need for characterization of the types and sites of modifications in oligonucleotides and to identify and sequence selected candidates originating from synthesis. The potential of electrospray tandem mass spectrometry (ESI-MS/MS) for structural characterization and sequencing of oligonucleotides is demonstrated. The fundamental behavior of DNA, RNA, and selected modified oligonucleotides in gas-phase is shown. Since gas-phase dissociation does not demand specific structural prerequisites, the method bears a great potential for rapid and most accurate characterization of modified oligonucleotides, e.g. from combinatorial libraries.  相似文献   

18.
Native and modified synthetic oligonucleotides were purified by reversed-phase HPLC using volatile ion-pairing mobile phases. Purification of 10-90 nmol of oligonucleotides in a single injection was demonstrated using a 4.6 x 75-mm HPLC column packed with porous 2.5 microm C18 sorbent. Separation of target products from N-1 failure fragments was achieved for oligonucleotides in the 4- to 60-mer size range. We employed a combination of absorbance and mass spectrometry detection to identify by-products of oligonucleotide synthesis. This method was also employed for analysis and purification of fluorescently labeled oligonucleotides.  相似文献   

19.
Interaction of yeast tRNA(Phe) with oligodeoxyribonucleotides containing 5-methylcytosine, 2-aminoadenine, and 5-propynyl-2'-deoxyuridine was investigated. The modified oligonucleotides show increased binding capacity although the association rates are similar for the modified and natural oligonucleotides. The most pronounced increase in association constant (70 times) due to the incorporation of the strongly binding units was achieved in the case of oligonucleotide complementary to the sequence 65-76 of the tRNA(Phe).  相似文献   

20.
An achiral, acyclic nucleoside analogue has been incorporated once or twice in oligodeoxyribonucleotides by the phosphoramidite method, and conditions found which allow deprotection of the oligonucleotides containing a sensitive modified allylic unit. The binding affinity of the modified oligonucleotides towards complementary DNA and RNA was reduced compared to unmodified DNA (DeltaT(m) -2 to -6.5 degrees C). An oligonucleotide with two modifications at the 3'-end showed considerable resistance towards cleavage with a 3'-exonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号