首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of 398 simple sequence repeat markers (SSRs) have been developed and characterised for use with genetic studies of Brassica species. Small-insert (250–900 bp) genomic libraries from Brassica rapa, B. nigra, B. oleracea and B. napus, highly enriched for dinucleotide and trinucleotide SSR motifs, were constructed. Screening the clones with a mixture of oligonucleotide repeat probes revealed positive hybridisation to between 75% and 90% of the clones. Of these, 1,230 were sequenced. Primer pairs were designed for 398 SSR clones, and of these, 270 (67.8%) amplified a PCR product of the expected size in their focal and/or closely related species. A further screen of 138 primers pairs that produced a PCR product in B. napus germplasm found that 86 (62.3%) revealed length polymorphisms within at least one line of a test array representing the four Brassica species. The results of this screen were used to identify 56 SSRs and were combined with 41 SSRs that had previously shown polymorphism between the parents of a B. napus mapping population. These 97 SSR markers were mapped relative to a framework of RFLP markers and detected 136 loci over all 19 linkage groups of the oilseed rape genome.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by O. Savolainen  相似文献   

2.
The application of simple sequence repeat (SSR) genotyping for the characterization of genetic variation in crop plants has been hindered by ready access to useful primer pairs and potentially limited conservation of the repeat sequences among related species. In this phase of work, we report on the identification and characterization of SSRs that are conserved in Brassica napus L. (rapeseed) and its putative progenitors, B. oleracea L. (cabbage, and related vegetable types) and B. rapa (vegetable and oil types). Approximately 140 clones from a size-fractionated genomic library of B. napus were sequenced, and primer pairs were designed for 21 dinucleotide SSRs. Seventeen primer pairs amplified products in the three species and, among these, 13 detected variation between and within species. Unlike findings on SSR information content in human, no relationship could be established between the number of tandem repeats within the target sequence and heterozygosity. All primer pairs have been designed to work under identical amplification conditions; therefore, single-reaction, multiplex polymerase chain reaction (PCR) with these SSRs is possible. Once moderate numbers of primer pairs are accessible to the user community, SSR genotyping may provide a useful method for the characterization, conservation, and utilization of agricultural crop diversity.  相似文献   

3.
Microsatellite or simple sequence repeat (SSR) markers are routinely used for tagging genes and assessing genetic diversity. In spite of their importance, there are limited numbers of SSR markers available for Brassica crops. A total of 627 new SSR markers (designated BnGMS) were developed based on publicly available genome survey sequences and used to survey polymorphisms among six B. napus cultivars that serve as parents for established populations. Among these SSR markers, 591 (94.3%) successfully amplified at least one fragment and 434 (73.4%) detected polymorphism among the six B. napus cultivars. No correlation was observed between SSR motifs, repeat number or repeat length with polymorphism levels. A linkage map was constructed using 163 newly developed BnGMS marker loci and anchored with 164 public SSRs in a doubled haploid population. These new markers are evenly distributed over all linkage groups (LGs). Given that the majority of these SSRs are derived from bacterial artificial chromosome (BAC) end sequences, they will be useful in the assignment of their cognate BACs to LGs and facilitate the integration of physical maps with genetic maps for genome sequencing in B. napus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Simple sequence repeats (SSRs), also known as microsatellites, are highly variable DNA sequences that can be used as markers for the genetic analysis of plants. Three approaches were followed for the development of PCR primers for the amplification of DNA fragments containing SSRs from sorghum [Sorghum bicolor (L.) Moench]: a search for sorghum SSRs in public DNA databases; the use of SSR-specific primers developed in the Poaceae species maize (Zea mays L.) and seashore paspalum grass (Paspalum vaginatum Swartz); and the screening of sorghum genomic libraries by hybridization with SSR oligonucleotides. A total of 49 sorghum SSR-specific PCR primer pairs (two designed from GenBank SSR-containing sequences and 47 from the sequences of genomic clones) were screened on a panel of 17 sorghum and one maize accession. Ten primer pairs from paspalum and 90 from maize were also screened for polymorphism in sorghum. Length polymorphisms among amplification products were detected with 15 of these primer pairs, yielding diversity values ranging from 0.2 to 0.8 with an average diversity of 0.56. These primer pairs are now available for use as markers in crop improvement and conservation efforts.  相似文献   

5.
Highly informative molecular markers, such as simple sequence repeats (SSRs), can greatly accelerate breeding programs. The aim of this study was to develop and characterise a comprehensive set of SSR markers for white clover (Trifolium repens L.), which can be used to tag genes and quantitative trait loci controlling traits of agronomic interest. Sequence analysis of 1123 clones from genomic libraries enriched for (CA) n repeats yielded 793 clones containing SSR loci. The majority of SSRs consisted of perfect dinucleotide repeats, only 7% being trinucleotide repeats. After exclusion of redundant sequences and SSR loci with less than 25 bp of flanking sequence, 397 potentially useful SSRs remained. Primer pairs were designed for 117 SSR loci and PCR products in the expected size range were amplified from 101 loci. These markers were highly polymorphic, 88% detecting polymorphism across seven white clover genotypes with an average allele number of 4.8. Four primer pairs were tested in an F2 population revealing Mendelian segregation. Successful cross-species amplification was achieved in at least one out of eight legume species for 46 of 54 primer pairs. The rate of successful amplification was significantly higher for Trifolium species when compared to species of other genera. The markers developed in this study not only provide valuable tools for molecular breeding of white clover but may also have applications in related taxa. Received: 3 April 2000 / Accepted: 12 May 2000  相似文献   

6.
The availability of whole genome shotgun sequences (WGSs) in Brassica oleracea provides an unprecedented opportunity for development of microsatellite or simple sequence repeat (SSR) markers for genome analysis and genetic improvement in Brassica species. In this study, a total of 56,465 non-redundant SSRs were identified from the WGSs in B. oleracea, with dinucleotide repeats being the most abundant, followed by tri-, tetra- and pentanucleotide repeats. From these, 1,398 new SSR markers (designated as BoGMS) with repeat length ≥25 bp were developed and used to survey polymorphisms with a panel of six rapeseed varieties, which is the largest number of SSR markers developed for the C genome in a single study. Of these SSR markers, 752 (69.5%) showed polymorphism among the six varieties. Of these, 266 markers that showed clear scorable polymorphisms between B. napus varieties No. 2127 and ZY821 were integrated into an existing B. napus genetic linkage map. These new markers are preferentially distributed on the linkage groups in the C genome, and significantly increased the number of SSR markers in the C genome. These SSR markers will be very useful for gene mapping and marker-assisted selection of important agronomic traits in Brassica species.  相似文献   

7.
Microsatellites (i.e., simple sequence repeats [SSRs]) are highly variable genetic markers that are widely used at an intraspecific level in population genetic studies. Here we employed an enrichment strategy for microsatellite isolation by using microsatellite oligoprobes and magnetic capture of the fragments (Fischer and Bachmann, 1998) inProsopis chilensis (Mol.) Stuntz (Fabaceae). We analyzed the obtained level of enrichment by sequencing 120 enriched genomic fragments. A total of 521 SSR motives were detected. According to specific search criteria (SSR motifs ≥3 repeat units and ≥6 bp length), 95.8% of the clones contained SSR motifs. Of these, 7.8% showed homology to chloroplast sequences and 92.2% to nuclear sequences. When regarding only nuclear SSRs with 5 or more repeat units and a minimum length of 10 bp, the level of enrichment was 30.8%. A FASTA search against the European Molecular Biology Laboratory (EMBL) database univocally revealed 4 clones in transcribed regions, 102 clones in genomic regions with unknown function, and 9 clones in chloroplast regions. Among the loci with longer repeat units (≥10 bp, ≥5 repeat units), 3 were in transcribed regions and 65 were in other genomic regions. We discuss the applicability of these markers for population genetic studies.  相似文献   

8.
No information is available on the transferability and amplification quality of microsatellite (SSR) markers of the public domain inBrassica carinata A. Braun. The objective of the presented research was to study the amplification of a set of 73 SSRs fromB. nigra (L.) Koch andB. napus L. inB. carinata, and to compare the results with those obtained in the amplification of the same markers in otherBrassica species of the U triangle. This set of SSRs fromB. nigra (B genome) andB. napus (AC genome) allows the identification of the 3 basic genomes of theBrassica species tested. 94.3% of the SSR markers fromB. nigra and 97.4% of those fromB. napus amplified SSR-specific products inB. carinata. Very high-quality amplification with a strong signal and easy scoring inB. carinata was recorded for 52.8% of the specific loci fromB. nigra SSRs and 59.3% of the specific loci fromB. napus SSRs, compared to 66.7% inB. nigra and 62.8% inB. napus. Genome specificity and amplification quality ofB. nigra andB. napus SSR markers in the 6 species under study is reported. High-quality transferable SSR markers provide an efficient and cost-effective platform to advance in molecular research inB. carinata.  相似文献   

9.
Rapeseed (Brassica napus) is the second most important oil crop in the world after soybean. The repertoire of simple sequence repeat (SSR) markers for rapeseed is limited and warrants a search for a larger number of polymorphic SSRs for germplasm characterization and breeding applications. In this study, a total of 5,310 SSR-containing unigenes were identified from a set of 46,038 B. napus unigenes with an average density of one SSR every 5.75?kb. A set of 1,000 expressed sequence tag (EST)-SSR markers with repeat length ??18?bp were developed and tested for their ability to detect polymorphism among a panel of six rapeseed varieties. Of these SSR markers, 776 markers detected clear amplification products, and 511 displayed polymorphisms among the six varieties. Of these polymorphic markers, 195 EST-SSR markers, corresponding to 233 loci, were integrated into an existing B. napus linkage map. These EST-SSRs were randomly distributed on the 19 linkage groups of B. napus. Of the mapped loci, 166 showed significant homology to Arabidopsis genes. Based on the homology, 44 conserved syntenic blocks were identified between B. napus and Arabidopsis genomes. Most of the syntenic blocks were consistent with the duplication and rearrangement events identified previously. In addition, we also identified three previously unreported blocks in B. napus. A subset of 40 SSRs was used to assess genetic diversity in a collection of 192 rapeseed accessions. The polymorphism information content of these markers ranged from 0.0357 to 0.6753 with an average value of 0.3373. These results indicated that the EST-SSR markers developed in this study are useful for genetic mapping, molecular marker-assisted selection and comparative genomics.  相似文献   

10.
11.
The availability of expressed sequence data derived from gene discovery programs enables mining for simple sequence repeats (SSR), providing useful genetic markers for crop improvement. These markers are inexpensive, require minimal labour to produce and can frequently be associated with functionally annotated genes. This study presents the development and characterization of 24 expressed sequence tags (EST)‐SSR markers from Brassica napus and their cross‐amplification across Brassica species. The markers show reliable amplification, genome specificity and considerable polymorphism, demonstrating the utility of EST‐SSRs for genetic analysis of wild Brassica populations and commercial Brassica germplasm.  相似文献   

12.
A collaborative Brassica rapa genome sequencing project is currently in progress to aid the identification of agronomically important traits in Brassica species. As an initial stage, the ends of over 110 000 bacterial artificial chromosome clones were sequenced and mined for simple sequence repeats (SSRs). We present the characterization of 40 of these SSRs and their application in Brassica napus. The markers were screened against six Brassica species and Arabidopsis, and demonstrated reliable amplification, genome specificity, cross‐amplification and significant polymorphism. These SSRs will be useful for genetic analysis of Brassica germplasm.  相似文献   

13.
14.
15.
Simple sequence repeats (SSRs) exist in both eukaryotic and prokaryotic genomes and are the most popular genetic markers, but the SSRs of mosquito genomes are still not well understood. In this study, we identified and analyzed the SSRs in 23 mosquito species using Drosophila melanogaster as reference at the whole-genome level. The results show that SSR numbers (33 076-560 175/genome) and genome sizes (574.57-1342.21 Mb) are significantly positively correlated (R~= 0.8992, P < 0.01), but the correlation in individual species varies in these mosquito species. In six types of SSR, mono- to trinucleotide SSRs are dominant with cumulative percentages of 95.14%-99.00% and densities of 195.65/Mb-787.51/Mb, whereas tetra- to hexanucleotide SSRs are rare with 1.12%-4.22% and 3.76/Mb-40.23/Mb. The (A/T)n,(AC/GT)n and (AGC/GCT)n are the most frequent motifs in mononucleotide, dinucleotide and trinucleotide SSRs, respectively, and the motif frequencies of tetra- to hexanucleotide SSRs appear to be species-specific. The 10-20 bp length of SSRs are dominant with the number of 11() 561 ± 93 482 and the frequency of 87.25%± 5.73% on average, and the number and frequency decline with the increase oflength. Most SSRs(83.34%± 7.72%) are located in intergenic regions, followed by intron regions (11.59%± 5.59%), exon regions (3.74%± 1.95%), and untranslated regions (1.32%± 1.39%). The mono-, di- and trinucleotide SSRs are the main SSRs in both gene regions (98.55%± 0.85%) and exon regions (99.27%± 0.52%). An average of 42.52% of total genes contains SSRs, and the preference for SSR occurrenee in different gene subcategories are species-specific. The study provides useful insights into the SSR diversity, characteristics and distribution in 23 mosquito species of genomes.  相似文献   

16.
The frequency, type and distribution of simple sequence repeats (SSRs) in Porphyra haitanensis genomes was investigated using expressed sequence tag (EST) data deposited in public databases. A total of 3,489 non-redundant P. haitanensis ESTs were screened for SSRs using SSRhunter software. From those, 224 SSRs in 210 ESTs were identified; trinucleotides were the most common type of SSR (64.29%), followed by dinucleotides (33.48%). Tetranucleotides, pentanucleotides, and hexanucleotides were not common. Among all identified motif types, CGG/CCG had the highest frequency (33.9%), followed by TC/AG (24.6%). From these EST-SSRs, 37 SSR primer-pairs were designed and tested using common SSR reaction conditions with 15 P. haitanensis DNAs as templates. The results showed that 28 SSR primer-pairs gave good amplification patterns. These were used to conduct SSR analyses of genetic variations of the 15 germplasm strains of P. haitanensis. A total of 224 alleles were detected, with the number of alleles ranging from 4 to 15. The effective number of alleles, expected heterozygosity, and polymorphism information content of the 15 germplasm strains of P. haitanensis were 2.81, 0.64, and 0.57, respectively. All of these parameters indicate that the 15 germplasm strains of P. haitanensis harbor rich genetic variation.  相似文献   

17.
Single nucleotide polymorphism (SNP) markers are increasingly being used in crop breeding programs, slowly replacing simple sequence repeats (SSR) and other markers. SNPs provide many benefits over SSRs, including ease of analysis and unambiguous results across various platforms. We have identified and mapped SNP markers in the tropical tree crop Theobroma cacao, and here we compare SNPs to SSRs for the purpose of determining off-types in clonal collections. Clones are used as parents in breeding programs and the presence of mislabeled clones (off-types) can lead to the propagation of undesired traits and limit genetic gain from selection. Screening was performed on 186 trees representing 19 Theobroma cacao clones from the Institute of Agricultural Research for Development (IRAD) breeding program in Cameroon. Our objectives were to determine the correct clone genotypes and off-types using both SSR and SNP markers. SSR markers that amplify 11 highly polymorphic loci from six linkage groups and 13 SNP markers that amplify eight loci from seven linkage groups were used to genotype the 186 trees and the results from the two different marker types were compared. The SNP assay identified 98% of the off-types found via SSR screening. SNP markers spread across multiple linkage groups may serve as a more cost-effective and reliable method for off-type identification, especially in cacao-producing countries where the equipment necessary for SSR analysis may not be available.  相似文献   

18.
The Limnanthaceae (Order Brassicales) is a family of 18 taxa of Limnanthes (meadowfoam) native to California, Oregon, and British Columbia. Cultivated meadowfoam (L. alba Benth.), a recently domesticated plant, has been the focus of research and development as an industrial oilseed for three decades. The goal of the present research was to develop several hundred simple sequence repeat (SSR) markers for genetic mapping, molecular breeding, and genomics research in wild and cultivated meadowfoam taxa. We developed 389 SSR markers for cultivated meadowfoam by isolating and sequencing 1,596 clones from L. alba genomic DNA libraries enriched for AG n or AC n repeats, identifying one or more unique SSRs in 696 clone sequences, and designing and testing primers for 624 unique SSRs. The SSR markers were screened for cross- taxa utility and polymorphisms among ten of 17 taxa in the Limnanthaceae; 373 of these markers were polymorphic and 106 amplified loci from every taxon. Cross-taxa amplification percentages ranged from 37.3% in L. douglasii ssp. rosea (145/389) to 85.6% in L. montana (333/389). The SSR markers amplified 4,160 unique bands from 14 genotypes sampled from ten taxa (10.7 unique bands per SSR marker), of which 972 were genotype-specific. Mean and maximum haplotype heterozygosities were 0.71 and 0.90, respectively, among six L. alba genotypes and 0.63 and 0.93, respectively, among 14 genotypes (ten taxa). The SSR markers supply a critical mass of high-throughput DNA markers for biological and agricultural research across the Limnanthaceae and open the way to the development of a genetic linkage map for meadowfoam (x = 5).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by O. Savolainen  相似文献   

19.
Brassica napus (AACC) is a recent allotetraploid species evolved through hybridization between two diploids, B. rapa (AA) and B. oleracea (CC). Due to extensive genome duplication and homoeology within and between the A and C genomes of B. napus, most SSR markers display multiple fragments or loci, which limit their application in genetics and breeding studies of this economically important crop. In this study, we collected 3,890 SSR markers from previous studies and also developed 5,968 SSR markers from genomic sequences of B. rapa, B. oleracea and B. napus. Of these, 2,701 markers that produced single amplicons were putative single-locus markers in the B. napus genome. Finally, a set of 230 high-quality single-locus SSR markers were established and assigned to the 19 linkage groups of B. napus using a segregating population with 154 DH individuals. A subset of 78 selected single-locus SSR markers was proved to be highly stable and could successfully discriminate each of the 45 inbred lines and hybrids. In addition, most of the 230 SSR markers showed the single-locus nature in at least one of the Brassica species of the U’s triangle besides B. napus. These results indicated that this set of single-locus SSR markers has a wide range of coverage with excellent stability and would be useful for gene tagging, sequence scaffold assignment, comparative mapping, diversity analysis, variety identification and association mapping in Brassica species.  相似文献   

20.
Simple sequence repeats (SSRs) are preferred molecular markers because of their abundance, robustness, high reproducibility, high efficiency in detecting variation and suitability for high‐throughput analysis. In this study, an attempt was made to mine and analyse the SSRs from the genomes of two seed‐borne fungal pathogens, viz Ustilago maydis, which causes common smut of maize, and Tilletia horrida, the cause of rice kernel smut. After elimination of redundant sequences, 2,703 SSR loci of U. maydis were identified. Of the remaining SSRS, 44.5% accounted for di‐nucleotide repeats followed by 29.8% and 2.7% tri‐ and tetranucleotide repeats, respectively. Similarly, 2,638 SSR loci were identified in T. horrida, of which 20.2% were di‐nucleotide, 50.4% tri‐ and 20.5% tetra‐nucleotide repeats. A set of 65 SSRs designed from each fungus were validated, which yielded 23 polymorphic SSRs from Ustilago and 21 from Tilletia. These polymorphic SSR loci were also successfully cross‐amplified with the Ustilago segetum tritici and Tilletia indica. Principal coordinate analysis of SSR data clustered isolates according to their respective species. These newly developed and validated microsatellite markers may have immediate applications for detection of genetic variability and in population studies of bunt and smut of wheat and other related host plants. Moreover, this is first comprehensive report on molecular markers suitable for variability studies in wheat seed‐borne pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号