首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A naturally occurring point mutation (R231H) within one of the major 3gamma-binding surface (switch II region) on the a subunit of Gs (alpha(s)) has previously been found to disrupt receptor-mediated activation of Gs. The disruption caused by mutating this conserved residue may be a general phenomenon for all a subunits. Homologous mutants of the alpha subunit of Gz [alpha(z); a negative regulator of adenylyl cyclase (AC)] and G16 (alpha16; a stimulator of phospholipase C) were constructed and examined for receptor-mediated regulation of their corresponding effectors. The mutant alphazR209H cannot be fully activated by the delta-opioid receptor, as indicated by the impairment of the inhibition of alpha(s)-stimulated AC and betagamma-mediated stimulation of AC type II (AC2). Similarly, the mutant alpha16R216H lost the ability to mediate receptor-induced activation of phospholipase C and AC2. The receptor coupling efficacy and promiscuity of alpha16R216H were eradicated. The mutation of the conserved arginine has no observable effect on the constitutive activities of the GTPase-deficient derivatives of both alpha(z) and alpha16. The alpha subunit of Gt1 (transducin; alphat1) attenuated betagamma-mediated stimulation of AC2 by sequestrating free betagamma subunits, but the mutant alphat1R204H showed reduced ability to scavenge betagamma-mediated AC2 activation. Presumably, mutation of the conserved arginine disrupted the subunit interactions in addition to the impairment of receptor interaction.  相似文献   

2.
The crystal structure of soluble functional fragments of adenylyl cyclase complexed with G alpha(s) and forskolin, shows three regions of G alpha(s) in direct contact with adenylyl cyclase. The functions of these three regions are not known. We tested synthetic peptides encoding these regions of G alpha(s) on the activities of full-length adenylyl cyclases 2 and 6. A peptide encoding the Switch II region (amino acids 222-247) stimulated both adenylyl cyclases 2- to 3-fold. Forskolin synergized the stimulation. Addition of peptides in the presence of activated G alpha(s) partially inhibited G alpha(s) stimulation. Corresponding Switch II region peptides from G alpha(q) and G alpha(i) did not stimulate adenylyl cyclase. A peptide encoding the Switch I region (amino acids 199-216) also stimulated AC2 and AC6. The stimulatory effects of the two peptides at saturating concentrations were non-additive. A peptide encoding the third contact region (amino acids 268-286) located in the alpha 3-beta 5 region, inhibits basal, forskolin, and G alpha(s)-stimulated enzymatic activities. Since this region in G alpha(s) interacts with both the central cytoplasmic loop and C-terminal tail of adenylyl cyclases this peptide may be involved in blocking interactions between these two domains. These functional data in conjunction with the available structural information suggest that G alpha(s) activation of adenylyl cyclase is a complex event where the alpha 3-beta 5 loop of G alpha(s) may bring together the central cytoplasmic loop and C-terminal tail of adenylyl cyclase thus allowing the Switch I and Switch II regions to function as signal transfer regions to activate adenylyl cyclase.  相似文献   

3.
A Ser to Asn mutation at position 54 of the alpha subunit of G(s) (designated N54-alpha(s)) was characterized after transient expression of it with various components of the receptor-adenylyl cyclase pathway in COS-1, COS-7, and HEK 293 cells. Previous studies of the N54-alpha(s) mutant revealed that it has a conditional dominant negative phenotype that prevents hormone-stimulated increases in cAMP without interfering with the regulation of basal cAMP levels (Cleator, J. H., Mehta, N. D., Kurtz, D. K., Hildebrandt, J. D. (1999) FEBS Lett. 243, 205-208). Experiments reported here were conducted to localize the mechanism of the dominant negative effect of the mutant. Competition studies conducted with activated alpha(s)* (Q212L) showed that the N54 mutant did not work down-stream by blocking the interaction of endogenous alpha(s) with adenylyl cyclase. The co-expression of wild type or N54-alpha(s) along with the thyroid-stimulating hormone (TSH) receptor and adenylyl cyclase isotypes differing with respect to betagamma stimulation (AC II or AC III) revealed that the phenotype of the mutant is not dependent upon the presence of adenylyl cyclase isoforms regulated by betagamma. These studies ruled out a downstream site of action of the mutant. To investigate an upstream site of action, N54-alpha(s) was co-expressed with either the TSH receptor that activates both alpha(s) and alpha(q) or with the alpha(1B)-adrenergic receptor that activates only alpha(q). N54-alpha(s) failed to inhibit alpha(1B)-adrenergic receptor stimulation of inositol 1,4,5-trisphosphate production but did inhibit TSH stimulation of inositol 1,4,5-trisphosphate. These results show that G(s) and G(q) compete for activation by the TSH receptor. They also indicate that the N54 protein has a dominant negative phenotype by blocking upstream receptor interactions with normal G proteins. This phenotype is different from that seen in analogous mutants of other G protein alpha subunits and suggests that either regulation or protein-protein interactions differ among G protein alpha subunits.  相似文献   

4.
Phorbol ester treatment enhanced the catalytic activity of type II adenylyl cyclase overexpressed in insect cells. In cells coexpressing type II adenylyl cyclase and protein kinase C-α, type II adenylyl cyclase catalytic activity was higher even in the absence of phorbol ester treatment; phorbol ester treatment further and markedly enhanced type II adenylyl cyclase catalytic activity. However, this enhancement, either by phorbol ester treatment or by coexpression of protein kinase C-α, was lost following membrane solubilization with detergents. This attenuation was unaffected by phosphatase inhibitor or salts. In contrast, membrane solubilization did not affect forskolin-stimulated type II adenylyl cyclase catalytic activity. Purified type II adenylyl cyclase was stimulated by forskolin and Gsα, but not by protein kinase C-α. Therefore, a specific mammalian protein kinase C isoenzyme can activate type II adenylyl cyclase, but the mechanism clearly differs from that underlying either Gsα- or forskolin-mediated stimulation. J. Cell. Biochem. 64:492–498. © 1997 Wiley-Liss, Inc.  相似文献   

5.
G proteins-coupled signaling pathways appear to play a role in the development of cardiac hypertrophy and its progression to heart failure. The present study aimed to investigate trimeric G proteins and adenylyl cyclase signaling in immature as well as in adult rat myocardium during this process caused by pressure overload. Pressure overload was induced in newborn (2-day-old) rats by abdominal aortic banding and myocardial preparations from left ventricular myocardium of immature (10-day-old) and adult (90-day-old) animals were analyzed for the relative content of different G protein subunits and adenylyl cyclase (AC) by immunoblotting with specific antibodies. A functional status of the AC signaling system was also evaluated. Normal maturation of rat heart was accompanied by increased expression of AC type V/VI and VII and of the long isoform (G(s)alphaL) of G(s)alpha protein. In parallel, the amounts of myocardial G(i)alpha/G(o)alpha proteins tended to decrease, and G(q)alpha/G(11)alpha and Gbeta did not change. Interestingly, whereas fluoride-stimulated AC activity increased in the course of maturation, activity of AC measured under other experimental conditions (stimulation by Mn2+, forskolin or isoproterenol) was lower in adult than in young rat myocardium. Pressure overload did not influence distribution of G proteins in immature myocardium, but considerably decreased the content of G(s)alphaL and increased G(o)alpha proteins in hearts of 90-day-old rats. These hearts exhibited worsened functional reserve as compared to age-matched controls and activity of AC was also markedly lower. A considerable reduction in Mn(2+)-stimulated AC activity together with similar decrease in AC activity determined under other stimulation conditions suggests that it is a function of AC catalytic subunit that is primarily impaired in this model of pressure overload.  相似文献   

6.
The effect of Gi/o protein-coupled receptors on adenylyl cyclase type 2 (AC2) has been studied in Sf9 insect cells. Stimulation of cells expressing AC2 with the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) led to a twofold stimulation of cAMP synthesis that could be blocked with the protein kinase C inhibitor GF109203X. Activation of a coexpressed alpha2A-adrenoceptor or muscarinic M4 receptor inhibited the stimulation by TPA almost completely in a pertussis toxin-sensitive manner. Activation of Gs proteins switched the response of the alpha2A-adrenoceptor to potentiation of prestimulated AC2 activity. The potentiation, but not the inhibition, could be blocked by a Gbetagamma scavenger. A novel methodological approach, whereby signalling through endogenous G proteins was ablated, was used to assess specific G protein species in the signal pathway. Expression of Go proteins (alphao1 + beta1gamma2) restored both the inhibition and the potentiation, whereas expression of Gi proteins (alphai1 + beta1gamma2) resulted in a potentiation of both the TPA- and the Gs-stimulated AC2 activity. The data presented supports the view of AC2 as a molecular switch and implicates this isoform as a target for Go protein-linked signalling.  相似文献   

7.
Platelet responses at sites of vascular injury are regulated by intracellular cAMP levels, which rise rapidly when prostacyclin (PGI(2)) is released from endothelial cells. Platelet agonists such as ADP and epinephrine suppress PGI(2)-stimulated cAMP formation by activating receptors coupled to G(i) family members, four of which are present in platelets. To address questions about the specificity of receptor:G protein coupling, the regulation of cAMP formation in vivo and the contribution of G(i)-mediated pathways that do not involve adenylyl cyclase, we studied platelets from mice that lacked the alpha subunits of one or more of the three most abundantly expressed G(i) family members and compared the results with platelets from mice that lacked the PGI(2) receptor, IP. As reported previously, loss of G(i2)alpha or G(z)alpha inhibited aggregation in response to ADP and epinephrine, respectively, producing defects that could not be reversed by adding an adenylyl cyclase inhibitor. Platelets that lacked both G(i2)alpha and G(z)alpha showed impaired responses to both agonists, but the impairment was no greater than in the individual knockouts. Loss of G(i3)alpha had no effect either alone or in combination with G(z)alpha. Loss of either G(z)alpha or G(i2)alpha impaired the ability of ADP and epinephrine to inhibit PGI(2)-stimulated adenylyl cyclase activity and caused a 40%-50% rise in basal cAMP levels, whereas loss of G(i3)alpha did not. Conversely, deletion of IP abolished responses to PGI(2) and caused cAMP levels to fall by 30%, effects that did not translate into enhanced responsiveness to agonists ex vivo. From these results we conclude that 1) cAMP levels in circulating platelets reflect ongoing signaling through G(i2), G(z), and IP, but not G(i3); 2) platelet epinephrine (alpha(2A)-adrenergic) and ADP (P2Y12) receptors display strong preferences among G(i) family members with little evidence of redundancy; and 3) these receptor preferences do not extend to G(i3). Finally, the failure of ADP and epinephrine to inhibit basal, as opposed to PGI(2)-stimulated, cAMP formation highlights the need during platelet activation for G(i) signaling pathways that involve effectors other than adenylyl cyclase.  相似文献   

8.
While classically viewed as a prototypic G(s) and adenylyl cyclase-coupled G protein-coupled receptor, recent studies have indicated that some aspects of beta(2)-adrenergic receptor (beta(2)-AR) signaling are inhibited by pertussis toxin, indicating that they are mediated by G(i)/G(o) proteins. These signals include activation of ERK MAPKs and Akt activation, as well as hypertrophic and anti-apoptotic pathways in cardiac myocytes. Studies in cultured cells have suggested the hypothesis that protein kinase A (PKA)-mediated phosphorylation of the beta(2)-AR regulates its coupling specificity with respect to G(s) and G(i). Using a Chinese hamster ovary cell system, we show that mutant beta(2)-ARs with Ala substituted for Ser at consensus PKA sites stimulate robust cyclic AMP accumulation (G(s)) but are unable to activate ERK (G(i)). In contrast, Ser --> Asp mutants are dramatically impaired in their ability to activate adenylyl cyclase but are significantly more active than wild type receptor in activating ERK. Activation of adenylyl cyclase by wild type and Ser --> Ala mutant receptors is not altered by pertussis toxin, whereas adenylyl cyclase stimulated through the Ser --> Asp mutant is enhanced. Activation of ERK by wild type and Ser --> Asp receptors is inhibited by pertussis toxin. To further rigorously test the hypothesis, we utilized a completely reconstituted system of purified recombinant wild type and PKA phosphorylation site mutant beta(2)-ARs and heterotrimeric G(s) and G(i). G protein coupling was measured by receptor-mediated stimulation of GTPgammaS binding to the G protein. PKA-mediated phosphorylation of the beta(2)-AR significantly decreased its ability to couple to G(s), while simultaneously dramatically increasing its ability to couple to G(i). These results are reproduced when a purified recombinant Ser --> Asp mutant beta(2)-AR is tested, whereas the Ser --> Ala receptor resembles the unphosphorylated wild type. These results provide strong experimental support for the idea that PKA-mediated phosphorylation of the beta(2)-adrenergic receptor switches its predominant coupling from G(s) to G(i).  相似文献   

9.
We have reported previously that tumour-promoting phorbol esters modulate both basal and vasoactive intestinal polypeptide (VIP)-stimulated adenylyl cyclase activity in GH3 (an established pituitary cell line). Here, we probe the receptor and cell specificity of this response. Experiments were performed in the presence of isobutylmethylxanthine. Unlike the response in GH3 cells, the tumour-promoting phorbol ester (tetradecanoyl phorbol acetate (TPA] did not affect either basal adenylyl cyclase activity nor VIP-stimulated activity in the rat osteosarcoma subclones UMR 106-01 and UMR 106-06. In addition, the cyclase responses to parathyroid hormone (PTH), and, in the case of UMR 106-06, to calcitonin were unaffected by tumour-promoting phorbol ester. However, prostaglandin E2-stimulated cyclase activity in both of these subclones was attenuated in a dose-dependent manner.  相似文献   

10.
In the present study, we investigated the involvement of betagamma subunits of G(q/11) in the muscarinic M(1) receptor-induced potentiation of corticotropin-releasing hormone (CRH)-stimulated adenylyl cyclase activity in membranes of rat frontal cortex. Tissue exposure to either one of two betagamma scavengers, the QEHA fragment type II adenylyl cyclase and the GDP-bound form of the alpha subunit of transducin, inhibited the muscarinic M(1) facilitatory effect. Moreover, like acetylcholine (ACh), exogenously added betagamma subunits of transducin potentiated the CRH-stimulated adenylyl cyclase activity, and this effect was not additive with that elicited by ACh. Western blot analysis indicated the expression in frontal cortex of both type II and type IV adenylyl cyclases, two isoforms stimulated by betagamma subunits in synergism with activated G(s). The M(1) receptor-induced enhancement of the adenylyl cyclase response to CRH was counteracted by the G(q/11) antagonist GpAnt-2A but not by GpAnt-2, a preferential G(i/o) antagonist. In addition, the muscarinic facilitatory effect was inhibited by membrane preincubation with antiserum directed against the C terminus of the alpha subunit of G(q/11), whereas the same treatment with antiserum against either G(i1/2) or G(o) was without effect. These data indicate that in membranes of rat frontal cortex, activation of muscarinic M(1) receptors potentiates CRH-stimulated adenylyl cyclase activity through betagamma subunits of G(q/11).  相似文献   

11.
The alpha subunit polypeptides of the G proteins Gs and Gi2 stimulate and inhibit adenylyl cyclase, respectively. The alpha s and alpha i2 subunits are 65% homologous in amino acid sequence but have highly conserved GDP/GTP binding domains. Previously, we mapped the functional adenylyl cyclase activation domain to a 122 amino acid region in the COOH-terminal moiety of the alpha s polypeptide (Osawa et al: Cell 63:697-706, 1990). The NH2-terminal half of the alpha s polypeptide encodes domains regulating beta gamma interactions and GDP dissociation. A series of chimeric cDNAs having different lengths of the NH2- or COOH-terminal coding sequence of alpha s substituted with the corresponding alpha i2 sequence were used to introduce multi-residue non-conserved mutations in different domains of the alpha s polypeptide. Mutation of either the amino- or carboxy-terminus results in an alpha s polypeptide which constitutively activates cAMP synthesis when expressed in Chinese hamster ovary cells. The activated alpha s polypeptides having mutations in either the NH2- or COOH-terminus demonstrate an enhanced rate of GTP gamma S activation of adenylyl cyclase. In membrane preparations from cells expressing the various alpha s mutants, COOH-terminal mutants, but not NH2-terminal alpha s mutants markedly enhance the maximal stimulation of adenylyl cyclase by GTP gamma S and fluoride ion. Neither mutation at the NH2- nor COOH-terminus had an effect on the GTPase activity of the alpha s polypeptides. Thus, mutation at NH2- and COOH-termini influence the rate of alpha s activation, but only the COOH-terminus appears to be involved in the regulation of the alpha s polypeptide activation domain that interacts with adenylyl cyclase.  相似文献   

12.
Ethanol can enhance G(salpha)-stimulated adenylyl cyclase (AC) activity. Of the nine isoforms of AC, type 7 (AC7) is the most sensitive to ethanol. The potentiation of AC7 by ethanol is dependent on protein kinase C (PKC). We designed studies to determine which PKC isotype(s) are involved in the potentiation of Galpha(s)-activated AC7 activity by ethanol and to investigate the direct phosphorylation of AC7 by PKC. AC7 was phosphorylated in vitro by the catalytic subunits of PKCs. The addition of ethanol to AC7-transfected HEK 293 cells increased the endogenous phosphorylation of AC7, as indicated by a decreased "back-phosphorylation" of AC7 by PKC in vitro. The potentiation of Galpha(s)-stimulated AC7 activity by either phorbol 12,13-dibutyrate or ethanol, in HEL cells endogenously expressing AC7, was not through the Ca(2+)-sensitive conventional PKCs. However, the potentiation of AC7 activity by ethanol or phorbol 12,13-dibutyrate was found to be reduced by the selective inhibitor of PKCdelta (rottlerin), a PKCdelta-specific inhibitory peptide (deltaV1-1), and the expression of the dominant negative form of PKCdelta. Immunoprecipitation data indicated that PKCdelta could bind and directly phosphorylate AC7. The results indicate that the potentiation of AC7 activity by ethanol involves phosphorylation of AC7 that is mediated by PKCdelta.  相似文献   

13.
The Ser/Thr-specific phosphatase PHLPP (pleckstrin homology domain leucine-rich repeat protein phosphatase) regulates the amplitude and duration of agonist-evoked Akt signaling by dephosphorylating the hydrophobic motif (Ser473) of Akt, therefore inactivating Akt. We recently reported that gene transfer of adenylyl cyclase type 6 (AC6) into neonatal rat cardiac myocytes was associated with increased Akt phosphorylation and activity. To determine the underlying mechanisms for AC6-associated increase in Akt activation, we determined how AC6 gene transfer regulated the activity of PHLPP2 (one of the three PHLPP family phosphatases) in neonatal rat cardiac myocytes. We found that increased Akt activity was associated with inhibition of PHLPP2 activity by AC6. AC6 was physically associated with PHLPP2, which prevents PHLPP2-mediated Akt dephosphorylation. However, isoproterenol or forskolin stimulation immediately activated PHLPP2, which resulted in markedly dephosphorylation of Akt at Ser473. Activation of PHLPP2 by isoproterenol and forskolin was cAMP-independent, but required an intact cytoplasmic domain of AC6. Mutation in the cytoplasmic domain of AC6 abolished agonist-induced PHLPP2 activation. This novel bidirectional regulation of Akt activity may contribute to the unexpected favorable effects of AC6 on the failing heart.  相似文献   

14.
G(s) is a heterotrimeric (alpha, beta, and gamma chains) G protein that couples heptahelical plasma membrane receptors to stimulation of adenylyl cyclase. Inactivation of one GNAS1 gene allele encoding the alpha chain of G(s) (G alpha(s)) causes pseudohypoparathyroidism type Ia. Affected subjects have resistance to parathyroid hormone (PTH) and other hormones that activate adenylyl cyclase plus somatic features termed Albright hereditary osteodystrophy. By contrast, subjects with pseudohypoparathyroidism type Ib have hormone resistance that is limited to PTH and lack Albright hereditary osteodystrophy. The molecular basis for pseudohypoparathyroidism type Ib is unknown. We analyzed the GNAS1 gene for mutations using polymerase chain reaction to amplify genomic DNA from three brothers with pseudohypoparathyroidism type Ib. We identified a novel heterozygous 3-base pair deletion causing loss of isoleucine 382 in the three affected boys and their clinically unaffected mother and maternal grandfather. This mutation was absent in other family members and 15 additional unrelated subjects with pseudohypoparathyroidism type Ib. To characterize the signaling properties of the mutant G alpha(s), we used site-directed mutagenesis to introduce the isoleucine 382 deletion into a wild type G alpha(s) cDNA, transfected HEK293 cells with either wild type or mutant G alpha(s) cDNA, plus cDNAs encoding heptahelical receptors for PTH, thyrotropic hormone, or luteinizing hormone, and we measured cAMP production in response to hormone stimulation. The mutant G alpha(s) protein was unable to interact with the receptor for PTH but showed normal coupling to the other coexpressed heptahelical receptors. These results provide evidence of selective uncoupling of the mutant G alpha(s) from PTH receptors and explain PTH-specific hormone resistance in these three brothers with pseudohypoparathyroidism type Ib. The absence of PTH resistance in the mother and maternal grandfather who carry the same mutation is consistent with current models of paternal imprinting of the GNAS1 gene.  相似文献   

15.
Heterotrimeric (alphabetagamma) G(s) mediates agonist-induced stimulation of adenylyl cyclase (AC). Cholera toxin (CTx) will ADP-ribosylate the alpha-subunit of G(s) (G(s)alpha). G(s)alpha-deficient cyc(-) membranes were "stripped" of Gbeta. When the stripped cyc(-) were incubated with G(s)alpha and/or Gbetagamma, each was incorporated into the membranes independently of the other. Both G(s)alpha and Gbetagamma had to be present in the membranes, and they had to be able to form a heterotrimer in order for CTx to ADP-ribosylate G(s)alpha, indicating that the membrane bound G(s) heterotrimer is a substrate for CTx, but the G(s)alpha subunit by itself is not. When G(s)alpha was completely and irreversibly activated with GTPgammaS and incorporated into stripped cyc(-), it was a poor substrate for CTx and a weak stimulator of AC unless Gbetagamma was also incorporated. Furthermore, the level of AC stimulation corresponded to the amount of G(s) heterotrimer that was formed in the membranes from GTPgammaS-activated G(s)alpha and Gbetagamma. These data suggest that AC is stimulated by an activated G(s) heterotrimer in cell membranes.  相似文献   

16.
Ca(2+)-sensitive adenylyl cyclases (ACs) depend on capacitative Ca(2+) entry (CCE) for their regulation. Residence of the endogenous Ca(2+)-inhibitable adenylyl cyclase of C6-2B glioma cells in cholesterol-enriched caveolae is essential for its regulation by CCE (Fagan, K. A., Smith, K. E., and Cooper, D. M. F. (2000) J. Biol. Chem. 275, 26530-26537). In the present study, we established that depletion of cellular cholesterol ablated the regulation by CCE of a Ca(2+)-stimulable adenylyl cyclase, AC8, heterologously expressed in HEK293 cells. We considered the possibility that a calmodulin-binding domain in the N terminus of AC8, which is not required for in vitro regulation by Ca(2+), might play a targeting role. Deletion and mutation of the N terminus did attenuate the enzyme's sensitivity to CCE without altering its in vitro responsiveness to Ca(2+)/calmodulin. Both N terminus-deleted AC8 and wild type AC8 were expressed at the plasma membrane, as shown by imaging analysis of green fluorescence protein-tagged constructs. However, not only wild type AC8 but also the CCE-insensitive mutants occurred in caveolar fractions of the plasma membranes, even though a Ca(2+)-insensitive adenylyl cyclase, AC7, was excluded from caveolae. Finally, the AC8 mutants were no more responsive to nonphysiological elevation of Ca(2+) than the wild type. We conclude that (i) not all adenylyl cyclases reside in caveolae, (ii) the calmodulin-binding domain in the N terminus of AC8 does not play a role in caveolar targeting, (iii) the N terminus does play a role in associating AC8 with factors that confer sensitivity to CCE, and (iv) residence of Ca(2+)-sensitive adenylyl cyclases in caveolae is essential but not sufficient for regulation by CCE.  相似文献   

17.
Results from previous studies suggested that chronic treatment of rats or C6 glioma cells with antidepressants augments the coupling between Gs and adenylyl cyclase. As these effects on C6 glioma cells are seen in the absence of presynaptic input, several antidepressant drugs may have a direct "postsynaptic" effect on their target cells. It was hypothesized that the target of antidepressant action was some membrane protein that may regulate coupling between G proteins and adenylyl cyclase. To test this, C6 glioma cells were treated with amitriptyline, desipramine, iprindole, or fluoxetine for 3 days. Chlorpromazine served as a control for these treatments. Membrane proteins were extracted sequentially with Triton X-100 and Triton X-114 from C6 glioma cells. Triton X-100 extracted more G(s alpha) in membranes prepared from antidepressant-treated C6 glioma cells than from control groups. In addition, cell fractionation studies revealed that the amount of G(s alpha) in caveolin-enriched domains was reduced after antidepressant treatment and that adenylyl cyclase comigrated with G(s alpha) in the gradients. These data suggest that some postsynaptic component that increases availability of Gs to activate effector molecules, such as adenylyl cyclase, might be a target of antidepressant treatment.  相似文献   

18.
We have previously reported that angiotensin II (ANG II) treatment of A10 vascular smooth muscle cells (VSMCs) increased inhibitory G proteins (G(i) protein) expression and associated adenylyl cyclase signaling which was attributed to the enhanced MAP kinase activity. Since ANG II has been shown to increase oxidative stress, we investigated the role of oxidative stress in ANG II-induced enhanced expression of G(i)alpha proteins and examined the effects of antioxidants on ANG II-induced enhanced expression of G(i)alpha proteins and associated adenylyl cyclase signaling in A10 VSMCs. ANG II treatment of A10 VSMCs enhanced the production of O(2)(-) and the expression of Nox4 and P47(phox), different subunits of NADPH oxidase, which were attenuated toward control levels by diphenyleneiodonium (DPI). In addition, ANG II augmented the expression of G(i)alpha-2 and G(i)alpha-3 proteins in a concentration- and time-dependent manner; the maximal increase in the expression of G(i)alpha was observed at 1 to 2 h and at 0.1-1.0 microM. The enhanced expression of G(i)alpha-2 and G(i)alpha-3 proteins was restored to control levels by antioxidants such as N-acetyl-L-cysteine, alpha-tocopherol, DPI, and apocynin. In addition, ANG II also enhanced the ERK1/2 phosphorylation that was restored to control levels by DPI. Furthermore, the inhibition of forskolin-stimulated adenylyl cyclase activity by low concentrations of 5'-O-(3-triotriphosphate) (receptor-independent G(i) functions) and ANG II-, des(Glu(18),Ser(19),Glu(20),Leu(21),Gly(22))atrial natriuretic peptide(4-23)-NH(2) (natriuretic peptide receptor-C agonist), and oxotremorine-mediated inhibitions of adenylyl cyclase (receptor-dependent functions) that were augmented in ANG II-treated VSMCs was also restored to control levels by antioxidant treatments. In addition, G(s)alpha-mediated diminished stimulation of adenylyl cyclase by stimulatory hormones in ANG II-treated cells was also restored to control levels by DPI. These results suggest that ANG II-induced enhanced levels of G(i)alpha proteins and associated functions in VSMCs may be attributed to the ANG II-induced enhanced oxidative stress, which exerts its effects through mitogen-activated protein kinase signaling pathway.  相似文献   

19.
alpha(2)-adrenergic receptors (alpha(2)AR) couple to multiple effectors including adenylyl cyclase and phospholipase C. We hypothesized that signaling selectivity to these effectors is dynamically directed by kinase-sensitive domains within the third intracellular loop of the receptor. Substitution of Ala for Ser232, which is in the N-terminal region of this loop in the alpha(2A)AR, resulted in a receptor that was markedly uncoupled ( approximately 82% impairment) from stimulation of inositol phosphate accumulation while the capacity to inhibit adenylyl cyclase remained relatively intact. In S232A alpha(2A)AR transfected cell membranes, agonist-promoted [(35)S]GTPgammaS binding was reduced by approximately 50%. Coexpression of modified G proteins rendered insensitive to pertussis toxin revealed that the S232A receptor was uncoupled from both G(i) and G(o). S232 is a potential PKC phosphorylation site, and whole cell phosphorylation studies showed that the mutant had depressed phosphorylation compared to wild type (1.3- vs 2.1-fold/basal). Consistent with S232 directing coupling to phospholipase C, PMA exposure resulted in approximately 67% desensitization of agonist-promoted inositol phosphate accumulation without significantly affecting inhibition of adenylyl cyclase. The dominant effect of mutation or phosphorylation at this site on inositol phosphate as compared to cAMP signaling was found to most likely be due to the low efficiency of signal transduction via phospholipase C vs adenylyl cyclase. Taken together, these results indicate that S232 acts as a selective, PKC-sensitive, modulator of effector coupling of the alpha(2A)AR to inositol phosphate stimulation. This represents one mechanism by which cells route stimuli directed to multifunctional receptors to selected effectors so as to attain finely targeted signaling.  相似文献   

20.
cAMP receptor 1 and G-protein alpha-subunit 2 null cell lines (car1- and g alpha 2-) were examined to assess the roles that these two proteins play in cAMP stimulated adenylyl cyclase activation in Dictyostelium. In intact wild-type cells, cAMP stimulation elicited a rapid activation of adenylyl cyclase that peaked in 1-2 min and subsided within 5 min; in g alpha 2- cells, this activation did not occur; in car1- cells an activation occurred but it rose and subsided more slowly. cAMP also induced a persistent activation of adenylyl cyclase in growth stage cells that contain only low levels of cAMP receptor 1 (cAR1). In lysates of untreated wild-type, car1-, or g alpha 2- cells, guanosine 5'-O-'(3-thiotriphosphate) (GTP gamma S) produced a similar 20-fold increase in adenylyl cyclase activity. Brief treatment of intact cells with cAMP reduced this activity by 75% in control and g alpha 2- cells but by only 8% in the car1- cells. These observations suggest several conclusions regarding the cAMP signal transduction system. 1) cAR1 and another cAMP receptor are linked to activation of adenylyl cyclase in intact cells. Both excitation signals require G alpha 2. 2) cAR1 is required for normal adaptation of adenylyl cyclase. The adaptation reaction caused by cAR1 is not mediated via G alpha 2. 3) Neither cAR1 nor G alpha 2 is required for GTP gamma S-stimulation of adenylyl cyclase in cell lysates. The adenylyl cyclase is directly coupled to an as yet unidentified G-protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号