首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Levy  P Weisman-Shomer  M Fry 《Biochemistry》1989,28(18):7262-7267
Distamycin A, a polypeptide antibiotic, binds to dA.dT-rich regions in the minor groove of B-DNA. By virtue of its nonintercalating binding, distamycin acts as a potent inhibitor of the synthesis of DNA both in vivo and in vitro. Here we report that distamycin paradoxically stimulates Escherichia coli DNA polymerase I (pol I), its large (Klenow) fragment, and bacteriophage T4 DNA polymerase to copy oligo(dA).poly(dT) in vitro. It is found that distamycin increases the maximum velocity (Vmax) of the extension of the oligo(dA) primer by pol I without affecting the Michaelis constant (Km) of the primer. Gel electrophoresis of the extended primer indicates that the antibiotic specifically increases the rate of addition of the first three dAMP residues. Lastly, in the presence of both distamycin and the oligo(dT)-binding protein factor D, which increases the processivity of pol I, a synergistic stimulation of polymerization is attained. Taken together, these results suggest that distamycin stimulates synthesis by increasing the rate of initiation of oligo(dA) extension. The stimulatory effect of distamycin is inversely related to the stability of the primer-template complex. Thus, maximum stimulation is exerted at elevated temperatures and with shorter oligo(dA) primers. That distamycin increases the thermal stability of [32P](dA)9.poly(dT) is directly demonstrated by electrophoretic separation of the hybrid from dissociated [32P](dA)9 primer. It is proposed that by binding to the short primer-template duplex, distamycin stabilizes the oligo(dA).poly(dT) complex and, therefore, increases the rate of productive initiations of synthesis at the primer terminus.  相似文献   

2.
The resonances of the imino protons and all of the non-exchangeable protons (except for H5'/H5') of d(CGCAAAAAAGCG)d(CGCTTTTTTGCG) have been assigned by means of one- and two-dimensional NMR spectroscopies. Qualitative analyses showed that the overall structure is of the B-form, but local conformational deviations exist. The NOEs between the imino protons of thymines and H2 of adenines suggest that the A-T base pairs are propeller-twisted to almost the same degree as in crystals. A remarkable chemical shift of H1' was observed for the residue located just before the oligo(dA)oligo(dT) tract, suggesting the presence of conformational discontinuity at the junctions between the oligo(dA)oligo(dT) tract and the other portions. Analyses of cross peaks in NOESY spectra between H2 of adenines and H1' of the 3'-neighbouring residues on the complementary strand revealed that the minor groove of the oligo(dA)oligo(dT) tract is narrow and compressed gradually, from 5' to 3', along the tract.  相似文献   

3.
Scaffold-associated regions (SARs) are A + T-rich sequences defined by their specific interaction with the nuclear scaffold. These sequences also direct highly specific binding to purified histone H1, and are characterized by the presence of oligo(dA).oligo(dT) tracts, which are a target for the drug distamyin, an antibiotic with a wide range of biological activities. The interaction of distamycin with SAR sequences results in the complete suppression of binding to either scaffolds or histone H1, suggesting that (dA.dT)n tracts play a direct role in mediating these specific interactions and that histone H1 and nuclear scaffold proteins may recognize a characteristic minor groove width or conformation. The effect of distamycin on these specific DNA-protein interactions in vitro suggests that binding of SARs to the nuclear scaffold and SAR-dependent nucleation of H1 assembly might be important targets of the drug in vivo.  相似文献   

4.
The conformations of double-stranded d(GGAAATTTCC) x 2, d(GGTTTAAACC) x 2, d(CGCAAAAAAGCG)d(CGCTTTTTTGCG) and d(GCATTTTGAAACG)d(CGTTTCAAAATGC) have been studied by NMR spectroscopy. Analyses of cross peaks in NOESY spectra between the H2 of an adenine and the H1' of a deoxyribose in the 3'-neighbouring residue on the complementary strand revealed that the minor groove of the oligo(dA) tract is compressed gradually from 5' to 3' in each duplex. In view of this gradual compression of the minor groove along the oligo(dA) tract, it can be understood clearly why d(GGAAATTTCC)n x 2 and d(GAAAATTTTC)n x 2 are bent, and d(GGTTTAAACC)n x 2 and d(GTTTTAAAAC)n x 2 are not bent. The relative extents of bending of a series of d(AjN10-j)nd(N10-jTj)n sequences can also be understood systematically. Additionally, it was found that the TA step disturbed the compression of the minor groove of the oligo(dA) tract to some extent.  相似文献   

5.
Monte Carlo simulations [(N, V, T)-ensemble] were performed for the hydration shell of poly(dA-dT).poly(dA-dT) in canonical B form and for the hydration shell of poly(dA).poly(dT) in canonical B conformation and in a conformation with narrow minor groove, highly inclined bases, but with a nearly zero-inclined base pair plane (B' conformation). We introduced helical periodic boundary conditions with a rather small unit cell and a limited number of water molecules to reduce the dimensionality of the configuration space. The coordinates of local maxima of water density and the properties of one- and two-membered water bridges between polar groups of the DNA were obtained. The AT-alternating duplex hydration mirrors the dyad symmetry of polar group distribution. At the dApdT step, a water bridge between the two carbonyl oxygens O2 of thymines is formed as in the central base-pair step of Dickerson's dodecamer. In the major groove, 5-membered water chains along the tetranucleotide pattern d(TATA).d(TATA) are observed. The hydration geometry of poly(dA).poly(dT) in canonical B conformation is distinguished by autonomous primary hydration of the base-pair edges in both grooves. When this polymer adopts a conformation with highly inclined bases and narrow minor groove, the water density distribution in the minor groove is in excellent agreement with Dickerson's spine model. One local maximum per base pair of the first layer is located near the dyad axis between adjacent base pairs, and one local maximum per base pair in the second shell lies near the dyad axis of the base pair itself. The water bridge between the two strands formed within the first layer was observed with high probability. But the water molecules of the second layer do not have a statistically favored orientation necessary for bridging first layer waters. In the major groove, the hydration geometry of the (A.T) base-pair edge resembles the main features of the AT-pair hydration derived from other sequences for the canonical B form. The preference of the B' conformation for oligo(dA).oligo(dT) tracts may express the tendency to common hydration of base-pair edges of successive base pairs in the grooves of B-type DNA. The mean potential energy of hydration of canonical B-DNA was estimated to be -60 to -80 kJ/mole nucleotides in dependence on the (G.C) contents. Because of the small system size, this estimation is preliminary.  相似文献   

6.
A DNA binding protein that recognizes oligo(dA).oligo(dT) tracts.   总被引:28,自引:4,他引:24       下载免费PDF全文
  相似文献   

7.
The results of the search for low-energy conformations of poly(dA).poly(dT) and of the poly(dA).poly(dT) "complex" with the spine of hydration similar to that found by Dickerson and co-workers (Kopka, M.L., Fratini, A.V., Drew, H.R. and Dickerson, R.E. (1983) J. Mol. Biol. 163, 129-146) in the minor groove of the CGCGAATTCGCG crystals are described. It is shown that the existence of such a spine in the minor groove of poly(dA).poly(dT) is energetically favourable. Moreover, the spine of hydration makes the polynucleotide conformation similar to the poly(dA).poly(dT) structure in fibers and to the conformation of the central part of CGCGAATTCGCG in crystals; it also acquires features characteristic of the structure of poly(dA).poly(dT) and DNA oligo(dA)-tracts in solution. It is shown that the existence of the TpA step in conformations characteristic of the poly(dA).poly(dT) complex with the spine of hydration is energetically unfavourable (in contrast to the ApT step) and therefore this step should result in destabilization of the spine of hydration in the DNA minor groove. Thus, it appears that the spine of hydration as described by Dickerson and co-workers is unlikely to exist in the poly d(A-T).poly d(A-T) structure. The data obtained permit us to interpret a large body of experimental facts concerning the unusual structure and properties of poly(dA).poly(dT) and oligo(dA)-tracts in DNA both in fibers and in solution. The results provide evidence of the existence of the minor groove spine of hydration both in fibers and in solution on A/T tracts of DNA which do not contain the TpA step. The spine plays an active role in the formation of the anomalous conformation of these tracts.  相似文献   

8.
We have analyzed the role of single-stranded DNA (ssDNA) in the modulation of the ATPase activity of Mcm467 helicase of the yeast Saccharomyces cerevisiae. The ATPase activity of the Mcm467 complex is modulated in a sequence-specific manner and that the ssDNA sequences derived from the origin of DNA replication of S. cerevisiae autonomously replicating sequence 1 (ARS1) are the most effective stimulators. Synthetic oligonucleotides, such as oligo(dA) and oligo(dT), also stimulated the ATPase activity of the Mcm467 complex, where oligo(dT) was more effective than oligo(dA). However, the preference of a thymidine stretch appeared unimportant, because with yeast ARS1 derived sequences, the A-rich strand was as effective in stimulating the ATPase activity, as was the T-rich strand. Both of these strands were more effective stimulators than either oligo(dA)( )()or oligo(dT). The DNA helicase activity of Mcm467 complex is also significantly stimulated by the ARS1-derived sequences. These results indicate that the ssDNA sequences containing A and B1 motifs of ARS1, activate the Mcm467 complex and stimulate its ATPase and DNA helicase activities. Our results also indicate that the yeast replication protein A stimulated the ATPase activity of the Mcm467 complex.  相似文献   

9.
Purified DNA polymerase beta of calf thymus can utilize poly(rA).oligo(dT) as efficiently as poly(dA).oligo(dT) or activated DNA as a template primer. The poly(rA).oligo(dT)-dependent activity of DNA polymerase beta was found to differ markedly from the DNA-dependent activity of the same enzyme (with either activated calf thymus DNA or poly(dA).(dT)10) in the following respects. 1) Poly(rA)-dependent activity was strongly inhibited by natural DNA from various sources or synthetic deoxypolymer duplexes at very low concentrations (less than 0.5 microgram/ml) at which the DNA-dependent activity was affected to a much smaller extent, if at all. 2) Poly(rA)-dependent activity was inhibited by N-ethylmaleimide more strongly than DNA-dependent activity measured at 37 degrees C, while it was resistant to this reagent at 26 degrees C. 3) The curves of the activity versus substrate concentration were sigmoidal in the poly(rA)-dependent reaction but hyperbolic in the activated DNA-dependent reaction. A kinetic study suggested that the association of beta-enzyme protomers may be required to copy the poly(rA) strand.  相似文献   

10.
The conformations of double stranded d(GGAAATTTCC) x 2, d(GGTTTAAACC) x 2, d(CGCAAAAAAGCG).d(CGCTTTTTTGCG) and d(GCATTTTGAAACG).d(CGTTTCAAAATGC) have been studied by means of NMR spectroscopy. Analyses of cross peaks in NOESY spectra between H2 of an adenine and H1' of the deoxyribose in the 3'-neighbouring residue on the complementary strand revealed that the minor groove of the oligo(dA) tract is compressed gradually from 5' to 3' along the tract in four oligonucleotides. A new model is proposed as to DNA bending based on the evidence of gradual compression of the minor groove. This model can explain why d(GGAAATTTCC) n x 2 and d(GAAAATTTTC) n x 2 are bent, and d(GGTTTAAACC) n x 2 and d(GTTTTAAAAC) n x 2 are not bent. The bending of d(AjN10-j) n x 2 sequences can also be explained.  相似文献   

11.
The basic assumption of Dickerson and Kopka (J. Biomole. Str. Dyns. 2, 423, 1985) that the conformation of poly(dA).poly(dT) in solution is identical to the AT rich region of the single crystal structure of the Dickerson dodecamer is not supported by any experimental data. In poly(dA).poly(dT), NOE and Raman studies indicate that the dA and dT units are conformationally equivalent and display the (anti-S-type sugar)-conformation; incorporation of this nucleotide geometry into a double helix leads to a conventional regular B-helix in which the width of the minor groove is 8A. The derived structure is consistent with all available experimental data on poly(dA).poly(dT) obtained under solution conditions. In the crystal structure of the dodecamer, the dA and dT units have distinctly different conformations-dA residues adopt (anti, S-type sugar pucker), while dT residues belong to (low anti, N-type sugar pucker). These different conformations of the dA and dT units along with the large propeller twist can be accommodated in a double helix in which the minor groove is shrunk from 8A to less than 4A. In the conventional right handed B-form of poly(dA).poly(dT) with the 8A wide minor groove, netropsin has to bind asymmetrically along the dA strand to account for the NOE and chemical shift data and to generate a stereochemically sound structure (Sarma et al, J. Biomole. Str. Dyns. 2, 1085, 1985).  相似文献   

12.
13.
14.
The DNA binding behavior of a tricationic cyanine dye (DiSC3+(5)) was studied using the [Poly(dA-dT)]2, [Poly(dI-dC)]2 and Poly(dA) x Poly(dT) duplex sequences and the Poly(dA) x 2Poly(dT) triplex. Optical spectroscopy and viscometry results indicate that the dye binds to the triplex structure by intercalation, to the nonalternating Poly(dA) x Poly(dT) duplex through minor groove binding and to the alternating [Poly(dA-dT)]2 duplex by a combination of two binding modes: intercalation at low concentration and dimerization within the minor groove at higher concentration. Dimerization occurs at lower dye concentrations for the [Poly(dI-dC)]2 sequence, consistent with our previous investigations on an analogous monocationic cyanine dye. [Seifert, J.L., et al. (1999) J. Am. Chem. Soc. 121, 2987-2995] These studies illustrate the diversity of DNA binding modes that are available to a given ligand structure.  相似文献   

15.
Interaction between a cationic porphyrin and its ferric derivative with oligo(dA.dT)15 and oligo(dG.dC)15 was studied by UV–vis spectroscopy, resonance light scattering (RLS), and circular dichroism (CD) at different ionic strengths; molecular docking and molecular dynamics simulation were also used for completion. Followings are the observed changes in the spectral properties of meso-tetrakis (N-para-trimethyl-anilium) porphyrin (TMAP), as a free-base porphyrin with no axial ligand, and its Fe derivative (FeTMAP) upon interaction with oligo(dA.dT)15 and oligo(dG.dC)15: (1) the substantial red shift and hypochromicity at the Soret maximum in the UV–vis spectra; (2) the increased RLS intensity by increasing the ionic strength; and (3) an intense bisignate excitonic CD signal. All of them are the reasons for TMAP and FeTMAP binding to oligo(dA.dT)15 and oligo(dG.dC)15 with the outside binding mode, accompanied by the self-stacking of the ligands along the oligonucleotide helix. The CD results demonstrated a drastic change from excitonic in monomeric behavior at higher ionic strengths, which indicates the groove binding of the ligands with oligonucleotides. Molecular docking also confirmed the groove binding mode of the ligands and estimated the binding constants and energies of the interactions. Their interaction trend was further confirmed by molecular dynamics technique and structure parameters obtained from simulation. It showed that TMAP reduced the number of intermolecular hydrogen bonds and increased the solvent accessible surface area in the oligonucleotide. The self-aggregation of ligands at lower concentrations was also confirmed.  相似文献   

16.
Dimethyl suberimidate is a bifunctional reagent that is used for cross-linking the protein components of oligomeric macromolecules. In this report, dimethyl suberimidate is shown to specifically cross-link oligo(dT) of varying lengths to the DNA-binding subunits of a multimeric helicase-primase encoded by herpes simplex virus type 1. This result indicates that dimethyl suberimidate and other imidoester cross-linking reagents may be useful for characterizing the interaction of oligo(dT) with proteins that bind single-stranded DNA.  相似文献   

17.
Abstract

Recent observations that the heteronomous structural model for poly(dA)·poly(dT) is not found in solution and that in this DNA, the two strands are conformationally equivalent (J. Biomole. Str. Dyns. 2, 1057 (1985)), has added a new dimension to the structural dynamics of DNA-netropsin complex. Does the antibiotic somehow distinguish between the two strands and specifically interact with only one of the conformationally equivalent strands?

Model-building studies suggest that netropsin can either bind to the dA-strand in the minor groove such that H-bonds are formed between the imino protons N4-H, N6-H, N8-H of netropsin and N3 atoms of A or can bind to the dT-strand in the minor groove and form H-bonds between the imino-protons N4-H, N6-H, N8-H of netropsin and O2 atoms of T. If netropsin binds to the dA-strand, AH2 atoms of poly(dA)-poly(dT) would be in closer proximity to the imino protrons N4-H, N6-H, N8-H and pyrrole ring protons C5-H, Cll-H of netropsin than they would be, if netropsin binds to the dT-strand. In order to distinguish these possibilities experiments were conducted which involved NOE energy transfer between netropsin and DNA protons in the drug-DNA complex. Difference NOE spectra of netropsin·poly(dA)-poly(dT) complex in which AH2 was irradiated indicate that dominant NOEs were observed at the imino and pyrrole ring protons of netropsin. When the netropsin pyrrole ring protons were irradiated, the magnetization transfer was at AH2 of DNA. These observations suggest that netropsin binds to the dA-strand of poly(dA)-poly(dT) even though dA/dT strands are conformationally equivalent.  相似文献   

18.
Recent observations that the heteronomous structural model for poly(dA).poly(dT) is not found in solution and that in this DNA, the two strands are conformationally equivalent (J. Biomole. Str. Dyns. 2, 1057 (1985], has added a new dimension to the structural dynamics of DNA-netropsin complex. Does the antibiotic somehow distinguish between the two strands and specifically interact with only one of the conformationally equivalent strands? Model-building studies suggest that netropsin can either bind to the dA-strand in the minor groove such that H-bonds are formed between the imino protons N4-H, N6-H, N8-H of netropsin and N3 atoms of A or can bind to the dT-strand in the minor groove and form H-bonds between the imino-protons N4-H, N6-H, N8-H of netropsin and O2 atoms of T. If netropsin binds to the dA-strand, AH2 atoms of poly(dA).poly(dT) would be in closer proximity to the imino protons N4-H, N6-H, N8-H and pyrrole ring protons C5-H, C11-H of netropsin than they would be, if netropsin binds to the dT-strand. In order to distinguish these possibilities experiments were conducted which involved NOE energy transfer between netropsin and DNA protons in the drug-DNA complex. Difference NOE spectra of netropsin-poly(dA).poly(dT) complex in which AH2 was irradiated indicate that dominant NOEs were observed at the imino and pyrrole ring protons of netropsin. When the netropsin pyrrole ring protons were irradiated, the magnetization transfer was at AH2 of DNA. These observations suggest that netropsin binds to the dA-strand of poly(dA).poly(dT) even though dA/dT strands are conformationally equivalent.  相似文献   

19.
Histone H1 preferentially binds and aggregates scaffold-associated regions (SARs) via the numerous homopolymeric oligo(dA).oligo(dT) tracts present within these sequences. Here we show that the mammalian somatic subtypes H1a,b,c,d,e and H1° and the male germline-specific subtype H1t, all preferentially bind to the Drosophila histone SAR. Experiments with the isolated domains show that whilst the C-terminal domain maintains strong and preferential binding, the N-terminal and globular domains show weak binding and poor specificity for the SAR. The preferential binding of SAR by the H1 molecule thus appears to be determined by its highly basic C-terminal domain. Salmine, a typical fish protamine, which could have its evolutionary origin in histone H1, also shows preferential binding to the SAR. The interaction of distamycin, a minor groove binder with high affinity for homopolymeric oligo(dA).oligo(dT) tracts, abolishes preferential binding of the C-terminal domain of histone H1 and protamine to the SAR, suggesting the involvement of the DNA minor groove in the interaction.  相似文献   

20.
Nuclear magnetic resonance (NMR) has been used to monitor the conformation and dynamics of the d(C1-G2-A3-T4-T5-A6-T6-A5-A4-T3-C2-G1) self-complementary dodecanucleotide duplex (henceforth called Pribnow 12-mer), which contains a TATAAT Pribnow box and a central core of eight dA X dT base pairs. The exchangeable imino and nonexchangeable base protons have been assigned from one-dimensional intra and inter base pair nuclear Overhauser effect (NOE) measurements. Premelting conformational changes are observed at all the dA X dT base pairs in the central octanucleotide core in the Pribnow 12-mer duplex with the duplex to strand transition occurring at 55 degrees C in 0.1 M phosphate solution. The magnitude of the NOE measurements between minor groove H-2 protons of adjacent adenosines demonstrates that the base pairs are propeller twisted with the same handedness as observed in the crystalline state. The thymidine imino proton hydrogen exchange at the dA X dT base pairs has been measured from saturation recovery measurements as a function of temperature. The exchange rates and activation barriers show small variations among the four different dA X dT base pairs in the Pribnow 12-mer duplex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号