首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hemocytes are the cells responsible for the immune response in marine mollusks. The role of NO in processes related to the activation of the hemocytes has turned out evident over the late years. In the case of the mussel Mytilus galloprovincialis Lmk., hemocyte NO basal production varies throughout the year, showing a maximum in summer and a minimum in winter. IL-2 reverts the low winter NO basal production through a process mediated by cAMP-dependent protein kinase and by an apparent side effect of protein kinase C. The seasonal variation of NO production in the presence of the PKC inhibitor bisindolylmaleimide (BSM) allows suggesting a model in which PKC would modulate the activity of the enzymes responsible for nitric oxide production.  相似文献   

2.
Background information. Nitric oxide (NO) is an important molecule in innate immune responses. In molluscs NO is produced by mobile defence cells called haemocytes; however, the molecular mechanisms that regulate NO production in these cells is poorly understood. The present study focused on the role of cell signalling pathways in NO production by primary haemocytes from the snail Lymnaea stagnalis. Results. When haemocytes were challenged with PMA (10 μM) or the β‐1,3‐glucan laminarin (10 mg/ml), an 8‐fold and 4‐fold increase in NO production were observed after 60 min respectively. Moreover, the NOS (NO synthase) inhibitors L‐NAME (NG‐nitro‐L‐arginine methyl ester) and L‐NMMA (NG‐monomethyl‐L‐arginine) were found to block laminarin‐ and PMA‐induced NO synthesis. Treatment of haemocytes with PMA or laminarin also increased the phosphorylation (activation) status of PKC (protein kinase C). When haemocytes were preincubated with PKC inhibitors (calphostin C or GF109203X) or inhibitors of the ERK (extracellular‐signal‐regulated kinase) pathway (PD98059 or U0126) prior to challenge, significant reductions in PKC and ERK phosphorylation and NO production were observed following exposure to laminarin or PMA. The greatest effect on NO production was seen with GF109203X and U0126, with PMA‐induced NO production inhibited by 94% and 87% and laminarin‐induced NO production by 50% and 91% respectively. Conclusions. These data suggest that ERK and PKC comprise part of the signalling machinery that regulates NOS activation and subsequent production of NO in molluscan haemocytes. To our knowledge, this is the first report that shows a role for these signalling proteins in the generation of NO in invertebrate defence cells.  相似文献   

3.
The production of nitric oxide (NO) was measured in cultures of spleen cells stimulated by lipopolysaccharide (LPS), IL-2 or LPS + IL-2. We observed that NO synthesis is increased by IFN-gamma but inhibited by IFN-alpha/beta. This is not the case when IL-2 is present in the cultures, since interferons play a minor role in the regulation of the NO production. When IL-2 and LPS were associated in the cultures, the IFN-alpha/beta role seems more important than that of IFN-gamma. PGE(2) inhibits NO production in LPS supplemented cultures but has a slight effect in the presence of IL-2 and no effect with IL-2 + LPS. 3-isoButyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterases, induces a decrease of IFN production. In the presence of H-7, an inhibitor of protein kinase C (PKC), NO production is reduced when the cultures are supplemented by LPS or IL-2 but not when IL-2 and LPS are both added. H-7 also reduced IFN production. In the presence of N(G)-monomethyl-L-arginine (N-MMA), an inhibitor of NO synthesis, IFN production was increased, with no change in the cytotoxic activity. Hence, interferons regulate NO production by mouse spleen cells and, in return, NO modulates the generation of IFN.  相似文献   

4.
Following infection with Schistosoma mansoni larvae, haemocytes of resistant Biomphalaria glabrata snails execute a rapid defence during which they migrate towards and encapsulate the parasites. Such immediate and precise responses are thought to depend on signal transduction cascades though the signalling components involved remain largely unknown. It is proposed that mitogen-activated protein kinases may play a role in B. glabrata immune signalling, in particular p38 mitogen-activated protein kinases, which are known to be associated with stress and inflammatory signalling. Using degenerate PCR followed by Rapid Amplification of cDNA Ends a full-length p38 mitogen-activated protein kinase-like cDNA was cloned from both the B. glabrata embryonic (Bge) cell line (Bge-p38) and haemocytes (Bgh-p38). In addition, B. glabrata p38 mitogen-activated protein kinase activation was examined at the protein level in Western blot analyses using an antibody that specifically recognises activated/diphosphorylated p38 mitogen-activated protein kinase. Results showed that Bge cell p38 mitogen-activated protein kinase was activated/phosphorylated following 30 min incubation with anisomycin, an established p38 mitogen-activated protein kinase activator. Furthermore, p38 mitogen-activated protein kinase was also activated after only 5 min exposure to either the beta-glucan polymer laminarin or S. mansoni larval excretory-secretory products. In a comparative study, activated haemocyte p38 mitogen-activated protein kinase could also be detected using the anti-phosphorylated p38 antibody following cell treatment with anisomycin. However, in contrast with Bge cells, haemocyte p38 was not activated by either excretory-secretory products or laminarin treatments, suggesting fundamental differences in the role of p38 mitogen-activated protein kinase in signal transduction pathways between haemocytes and Bge cells.  相似文献   

5.
Insect overwintering is one of the most astonishing phases of the insect life cycle. Despite vast amounts of knowledge available about the physiological mechanisms of this phenomenon, the impact of stress factors on insect immune system functioning during the winter is still unknown. The aim of this study is to analyze how low temperatures influence the immune system of the beetle Nicrophorus vespilloides. The results show that the beetle's immune system is differently modulated by cold induced in laboratory settings than that which occurs in natural conditions. Among beetles cultured in conditions similar to summer, low temperatures, did not influence the number of circulating haemocytes, phenoloxidase activity, haemocytes morphology, and percentage ratio of haemocyte types. In these beetles, differences were noted only in the ability of haemocytes to perform phagocytosis. Individuals acclimated in natural conditions in autumn had a higher level of humoral response and a different percentage ratio of haemocyte types. During the winter period, the number of haemocytes in the beetles decreased, but the percentage ratio of phagocytic haemocytes increased. Furthermore, we noted an increase of phenoloxidase activity. Our study also showed mitotic divisions of haemocytes in haemolymph collected from burying beetles after cold exposure and from burying beetles collected from natural conditions during autumn and winter. Differences in response to low temperatures in laboratory conditions and the natural environment suggest that the simultaneous presence of other stress factors during winter such as desiccation and starvation have a significant influence on the activity of burying beetle's immune system.  相似文献   

6.
7.
确定广叶绣球菌β-D-葡聚糖对巨噬细胞RAW264.7的免疫调节作用受体,探索广叶绣球菌β-D-葡聚糖的免疫调节机制。采用MTT法测定不同浓度广叶绣球菌β-D-葡聚糖对巨噬细胞RAW264.7增殖活力的影响,筛选出促进巨噬细胞增殖能力最强的浓度。用筛选出的β-D-葡聚糖浓度作用巨噬细胞RAW264.7;TLR4抗体和TLR2抗体分别作用巨噬细胞RAW264.7 1h,再用含有β-D-葡聚糖的细胞培养液培养。收集细胞培养上清和细胞,检测细胞培养上清中NO、IL-6、TNF-α、IFN-β的生成量;提取细胞内总RNA,采用RT-PCR测定巨噬细胞TLR4 mRNA表达量;提取巨噬细胞总蛋白,采用蛋白免疫印迹western blot测定TLR4的蛋白表达。广叶绣球菌β-D-葡聚糖能够促进巨噬细胞RAW264.7增殖,增加NO、IL-6、TNF-α、IFN-β的生成量,提高TLR4 mRNA表达和蛋白表达,差异极显著(P<0.01)。TLR4抗体作用细胞后,NO、IL-6、TNF-α、IFN-β的生成量明显下降,差异极显著(P<0.01)。TLR2抗体作用细胞后,NO、IL-6、TNF-α、IFN-β的生成量下降,但差异不显著。广叶绣球菌β-D-葡聚糖可以通过细胞表面受体TLR4激活信号转导通路,增强下游细胞因子的释放,从而调节巨噬细胞RAW264.7的免疫功能。TLR2可能不是广叶绣球菌β-D-葡聚糖的免疫受体。  相似文献   

8.
Molluscs are intermediate hosts for helminth parasites such as Schistosoma spp. that possess an immunogenic surface coat of high carbohydrate content, with fucose as the predominant saccharide. More than a decade ago, it was postulated that such components could block receptors on snail haemocytes thus preventing recognition of intra-molluscan schistosome stages. Although more recent studies have shown that carbohydrates can suppress processes such as phagocytosis by haemocytes, interference of the haemocyte cell signalling pathways that regulate immunity by saccharides has not yet been investigated. We have recently reported the presence of extracellular-signal regulated kinase and protein kinase C in Lymnaea stagnalis haemocytes. Here we show that extracellular-signal regulated kinase and protein kinase C activities are down-regulated when haemocytes are exposed to albumin-linked fucose and galactose in the absence of haemolymph. Moreover, we demonstrate that phagocytosis is reduced under these conditions. Interestingly, in the presence of haemolymph, only protein kinase C activity is down-regulated and only galactose suppresses phagocytosis, implying a role for serum factors in the preservation of haemocyte function following exposure. We therefore propose that the establishment of a compatible relationship between a schistosome and its snail host is at least in part due to down-regulation of cell signalling events in haemocytes.  相似文献   

9.
Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.  相似文献   

10.
Extracellular ATP (eATP) is a novel signalling agent, and nitric oxide (NO) is a well-established signal molecule with diverse functions in plant growth and development. This study characterizes NO production induced by exogenous ATP and examines its relationship with other important signalling agents, Ca(2+) and H(2)O(2) in Salvia miltiorrhiza hairy root culture. Exogenous ATP was applied at 10-500 microM to the hairy root cultures and stimulated NO production was detectable within 30 min. The NO level increased with ATP dose from 10-100 microM but decreased from 100-200 muM or higher. The ATP-induced NO production was mimicked by a non-hydrolysable ATP analogue ATPgammaS, but only weakly by ADP, AMP or adenosine. The ATP-induced NO production was blocked by Ca(2+) antagonists, but not affected by a protein kinase inhibitor. ATP also induced H(2)O(2) production, which was dependent on both Ca(2+) and protein kinases, and also on NO biosynthesis. On the other hand, ATP induced a rapid increase in the intracellular Ca(2+) level, which was dependent on NO but not H(2)O(2). The results suggest that NO is implicated in ATP-induced responses and signal transduction in plant cells, and ATP signalling is closely related to Ca(2+) and ROS signalling.  相似文献   

11.
Interleukin-1 induces release of NO and PGE(2) and production of matrix degrading enzymes in chondrocytes. In osteoarthritis (OA), IL-1 continually, or episodically, acts on chondrocytes in a paracrine and autocrine manner. Human chondrocytes in chondron pellet culture were treated chronically (up to 14 days) with IL-1beta. Chondrons from OA articular cartilage were cultured for 3 weeks before treatment with IL-1beta (0.05-10 ng/ml) for an additional 2 weeks. Spontaneous release of NO and IL-1beta declined over the pretreatment period. In response to IL-1beta (0.1 ng/ml), NO and PGE(2) release was maximal on Day 2 or 3 and then declined to near basal level by Day 14. Synthesis was recovered by addition of 1 ng/ml IL-1beta on Day 11. Expression of inducible nitric oxide synthase (iNOS), detected by immunofluorescence, was elevated on Day 2 and declined through Day 14, which coordinated with the pattern of NO release. On the other hand, IL-1beta-induced MMP-13 synthesis was elevated on Day 3, declined on Day 5, and then increased again through Day 14. IL-1beta increased glucose consumption and lactate production throughout the treatment. IL-1beta stimulated proteoglycan degradation in the early days and inhibited proteoglycan synthesis through Day 14. Chondron pellet cultures from non-OA cartilage released the same amount of NO but produced less PGE(2) and MMP-13 in response to IL-1beta than OA cultures. Like the OA, IL-1beta-induced NO and PGE(2) release decreased over time. In conclusion, with prolonged exposure to IL-1beta, human chondrocytes develop selective tolerance involving NO and PGE(2) release but not MMP-13 production, metabolic activity, or matrix metabolism.  相似文献   

12.
As other marine and land mollusks, mussels have special cells in charge of the immune function called hemocytes. The activation of these cells leads to a series of events that end up in phagocytosis and in secretion of digestive enzymes that eliminate the pathogen. The production of nitric oxide is among the early activation processes. Contrary to what happens in cells of vertebrates and of other species of mollusks, in hemocytes of Mytilus galloprovincialis, LPS did not induce secretion of NO to the medium. However, human IL-2 provoked an important increase in NO production. The maximal synthesis of NO was detected after the hemocytes were incubated with the cytokine for 24h. In both stimulated and non-stimulated cells, Western blotting showed the presence of a protein of 130kDa, recognized by anti-mouse iNOS. Therefore, the higher production of NO can only be explained as a direct action of some effector upon the nitric oxide synthetase. NO production decreased by the action of H-89, a powerful inhibitor of the cAMP-dependent protein kinase (PKA). This suggests the involvement of PKA in the pathway of NO synthesis.  相似文献   

13.
Guo L  Zhang Z  Green K  Stanton RC 《Biochemistry》2002,41(50):14726-14733
In rat pancreatic islets and insulin-producing cell lines, IL-1beta induces expression of inducible nitric oxide synthase and NO production leading to impairment of glucose-stimulated insulin release and decreased cell survival. NADPH is an obligatory cosubstrate for iNOS synthesis of NO. We hypothesized that IL-1beta stimulates an increase in activity of NADPH-producing enzyme(s) prior to NO production and that this increase is necessary for NO production. Using rat insulin-secreting RINm5F cells, we found that (1) IL-1beta caused a biphasic change in the NADPH level (increased by 6 h and decreased after prolonged incubation in the presence of 2 ng/mL IL-1beta); (2) IL-1beta stimulated increased activity of glucose-6-phosphate dehydrogenase (G6PD) in a time- and dose-dependent manner, and G6PD expression was increased by about 80% after exposure to 2 ng/mL IL-1beta for 18 h: (3) IL-1beta-stimulated NO production was positively correlated with increased G6PD activity; (4) IL-1beta did not cause any significant change in enzyme activity of another NADPH-producing enzyme, malic enzyme; (5) IL-1beta-induced NO production was significantly reduced either by inhibiting G6PD activity using an inhibitor of G6PD (dehydroepiandrosterone) or by inhibiting G6PD expression using an antisense oligonucleotide to G6PD mRNA; and (6) IL-1beta stimulated a decrease in the cAMP level. 8-Bromo-cAMP caused decreased G6PD activity, and the protein kinase A inhibitor H89 led to a increase in G6PD activity in RINm5F cells. In conclusion, our data show that IL-1beta stimulated G6PD activity and expression level, providing NADPH that is required by iNOS for NO production in RINm5F cells. Also, inhibition of the cAMP-dependent PKA signal pathway is involved in an IL-1beta-stimulated increase in G6PD activity.  相似文献   

14.
Expression of inducible nitric oxide synthase (iNOS) and the resultant increased nitric oxide (NO) production are associated with septic shock, atherosclerosis, and cytokine-induced vascular injury. Estrogen is known to impact vascular injury and vascular tone, in part through regulation of NO production. In the current study, we examined the effect of physiological concentrations of estradiol on interleukin-1beta (IL-1beta)-induced NO production in rat aortic endothelial cells (RAECs). 17Beta-estradiol significantly decreased IL-1beta-induced iNOS protein levels and reduced NO production in RAECs. High glucose (25 mM) elevated the increase in IL-1beta-induced iNOS protein and NO production. Nevertheless, estradiol still inhibited IL-1beta-induced iNOS and NO production even in the presence of high glucose. These data suggest that estradiol may exert its beneficial effects in part by inhibiting induction of endothelial iNOS, a possible mechanism for the protective effect of estradiol against diabetes-associated cardiovascular complications.  相似文献   

15.
The cells in charge of the innate immune response in the marine mussel Mytilus galloprovincialis Lmk. are the haemocytes. These cells respond in different ways to agents such as lipopolysaccharide (LPS), interleukin-2 (IL-2), platelet-derived growth factor (PDGF) and corticotropin releasing factor (CRF). After stimulation of the haemocytes, the expression of molecules reactive with monoclonal antibodies raised to the alpha chain of the IL-2 receptor, present in their membrane, differed depending on the agent used. The same happened with regard to the levels of dopamine, adrenaline and noradrenaline released to the medium by the haemocytes. It should also be noted that no catecholamine release was detected and the level of expression of IL-2Ralpha showed no significant variation in cultured cells that had not been treated with inducers. These facts would indicate that most haemocytes were in the same starting condition at the moment that the stimulation was performed. Therefore, cultured haemocytes can be a highly reliable model in the study of the innate immune system.  相似文献   

16.
《MABS-AUSTIN》2013,5(5):539-549
While current therapeutic antibodies bind to IL-12 and IL-23 and inhibit their binding to IL-12Rβ1, we describe a novel antibody, termed 6F6, that binds to IL-12 and IL-23 and inhibits the interaction of IL-12 and IL-23 with their cognate signalling receptors IL-12Rβ2 and IL23R. This antibody does not affect the natural inhibition of the IL-12/23 pathway by the antagonists monomeric IL-12p40 and IL-12p80, which suggests that a dual antagonist system is possible. We have mapped the epitope of 6F6 to domain 3 of the p40 chain common to IL-12 and IL-23 and demonstrate that an antibody bound to this epitope is sufficient to inhibit engagement of the signalling receptors. Antibodies with this unique mechanism of inhibition are potent inhibitors of IL-12 induced IFN-γ production and IL-23 induced IL-17 production in vitro, and in an in vivo model of psoriasis, treatment with a humanized variant of this antibody, h6F6, reduced the inflammatory response, resulting in decreased epidermal hyperplasia. We believe that this new class of IL-12/23 neutralising antibodies has the potential to provide improved potency and efficacy as anti-inflammatory agents, particularly in diseases characterized by an overproduction of IL-12.  相似文献   

17.
Phagocytosis is important in the immune system of the prawn and is believed to be a defence parameter. Previous studies have demonstrated that CpG oligonucleotides enhance the activation of the prophenoloxidase activating system of the prawn through either the G-protein/protein kinase C (PKC) or the cAMP pathway. This study investigated the influence of CpG ODN on the respiratory burst used as the indicator of phagocytic activity and on the initiation of the signal pathway in haemocytes of Macrobrachium rosenbergii. When haemocytes were treated in vitro with 50 microg ml(-1) of ODN2006 for 15 min, the increase of nitroblue-tetrazolium (NBT) reduction suggested that the respiratory burst of haemocytes can be enhanced by ODN2006 stimulation. In an attempt to determine which signal transduction pathway is involved in the enhancement effect, haemocytes were separately treated with activators or inhibitors of specific signalling components. The results showed that the NBT reduction of haemocytes increased after treatment with sodium fluoride (a G-protein activator) and decreased after treatment with GDP-beta-S (a G-protein inhibitor). When ODN2006-stimulated haemocytes were treated with GDP-beta-S, the inductive effect was significantly reduced. In haemocytes treated with 8-bromo-cAMP (a PKA activator), the NBT reduction was not significantly different from the control. The addition of phosphodiesterase-inhibiting caffeine, which inhibits the degradation of cAMP, decreased the NBT reduction of ODN2006-stimulated haemocytes; however, the addition of phenol-12-myristate-13-acetate (PMA) significantly increased the NBT reduction. When PMA-stimulated haemocytes were treated with chelerythrine (a PKC inhibitor), the induced NBT reduction was significantly reduced. Furthermore, the study of ODN2006-stimulated haemocytes treated with chelerythrine showed that the enhancement effect of ODN2006 on the NBT reduction was significantly decreased. All results suggest that the enhancement of the respiratory burst of prawn haemocytes is induced by ODN2006 via a PKC-activating signalling pathway, but negatively regulated via the cAMP pathway.  相似文献   

18.
19.
The relationship between nitric oxide (NO) and salicylic acid (SA) was investigated in Arabidopsis thaliana. Here it is shown that SA is able to induce NO synthesis in a dose-dependent manner in Arabidopsis. NO production was detected by confocal microscopic analysis and spectrofluorometric assay in plant roots and cultured cells. To identify the metabolic pathways involved in SA-induced NO synthesis, genetic and pharmacological approaches were adopted. The analysis of the nia1,nia2 mutant showed that nitrate reductase activity was not required for SA-induced NO production. Experiments performed in the presence of a nitric oxide synthase (NOS) inhibitor suggested the involvement of NOS-like enzyme activity in this metabolic pathway. Moreover, the production of NO by SA treatment of Atnos1 mutant plants was strongly reduced compared with wild-type plants. Components of the SA signalling pathway giving rise to NO production were identified, and both calcium and casein kinase 2 (CK2) were demonstrated to be involved. Taken together, these results suggest that SA induces NO production at least in part through the activity of a NOS-like enzyme and that calcium and CK2 activity are essential components of the signalling cascade.  相似文献   

20.
Intracellular phenoloxidase (PO) activity in haemocyte lysate supernatant (HLS) of giant freshwater prawn (Macrobrachium rosenbergii) was shown to be enhanced by CpG oligodeoxynucleotide (ODN) 2006, but not by so-ODN13. When haemocytes were treated in vitro with 50 microg/ml of ODN2006 for 30 min, the increases in both intra- and extracellular stimulated PO activity (POS) and extracellular total PO activity (POT) and the reduction of POT suggest that the PO activity of haemocytes is enhanced by ODN2006 stimulation, but new prophenoloxidase (proPO) is not synthesised. In an attempt to determine which signal transduction pathway is involved in the activation of the proPO system, haemocytes were separately treated with activators or inhibitors of specific signalling components. The results show that there was an increase in both intra- and extracellular POT of haemocytes treated with sodium fluoride (a G-protein activator); the addition of phosphokinase A (PKA)-activating 8-bromo-cAMP to haemocytes only increased intracellular POT, and the addition of either phorbol-12-myristate-13-acetate (PMA; a phosphokinase C (PKC) activator) or caffeine (a phosphodiesterase inhibitor) only increased extracellular POT. When PMA-stimulated haemocytes were treated with chelerythrine (a PKC inhibitor), the induced extracellular POT was significantly reduced. Furthermore, the study of ODN2006-stimulated haemocytes treated with chelerythrine or palmitoyl-DL-carnitine (a PKC inhibitor) showed that the enhancement effects of ODN2006 on the intra- and extracellular POS and extracellular POT were significantly decreased. ODN-stimulated haemocytes treated with genistein (an inhibitor of protein tyrosine kinase) showed a further increase in extracellular POT, but the other PO activities remained the same as those of the ODN-stimulated group. These results suggest that the activation of the proPO system of prawn haemocytes, including degranulation and PO activity, is induced by ODN2006 via a PKC-activating signalling pathway, but negatively regulated via the tyrosine kinase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号