首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is widely accepted that mutagenic DNA lesions fall into two categories: mispairing lesions hydrogen bond with an incorrect incoming base, generally do not stop replication, and possess high mutagenic efficiency without any requirement for induced functions; noninstructional lesions lack accessible template information, act as strong blocks to DNA replication (and are therefore toxic), and their mutagenic effects are SOS-dependent. Our recent results show that ethenocytosine (epsilon C), a noninstructional exocyclic DNA lesion induced by vinyl chloride, may have unusual mutagenic properties. To obtain more definitive experimental evidence for the observed effects, we have introduced a single epsilon C residue at a specific site of coliphage M13AB28 replicative form DNA by a "single-stranded linker-ligation" technique. The resulting DNA was purified and transfected into appropriate recA+ or recA- Escherichia coli host cells. The effect of epsilon C on survival was determined from transfection efficiency. Both the frequency and specificity of mutations induced by epsilon C were determined by direct sequence analysis of randomly picked progeny phage plaques. The results indicated that epsilon C has little effect on the survival of M13 DNA. Approximately 30% of the progeny phage obtained by transfecting epsilon C DNA had a base substitution mutation precisely at the lesion site. No such mutations were observed in progeny plaques obtained by transfecting the control DNA construct. All epsilon C-induced mutations were either C-to-T transitions or C-to-A transversions. Neither survival nor mutagenic efficiency was significantly affected in recA- host cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Metabolites of vinyl chloride react with cytosine in DNA to form 3,N(4)-ethenocytosine. Recent studies suggest that ethenocytosine is repaired by the base excision repair pathway with the ethenobase being removed by thymine-DNA glycosylase. Here single turnover kinetics have been used to compare the excision of ethenocytosine by thymine-DNA glycosylase with the excision of thymine. The effect of flanking DNA sequence on the excision of ethenocytosine was also investigated. The 34-bp duplexes studied here fall into three categories. Ethenocytosine base-paired with guanine within a CpG site (i.e. CpG.(epsilon)C-DNA) was by far the best substrate having a specificity constant (k(2)/K(d)) of 25.1 x 10(6) m(-1) s(-1). The next best substrates were DNA duplexes containing TpG.(epsilon)C, GpG.(epsilon)C, and CpG.T. These had specificity constants 45-130 times smaller than CpG.(epsilon)C-DNA. The worst substrates were DNA duplexes containing ApG.(epsilon)C and TpG.T, which had specificity constants, respectively, 1,600 and 7,400 times lower than CpG.(epsilon)C-DNA. DNA containing ethenocytosine was bound much more tightly than DNA containing a G.T mismatch. This is probably because thymine-DNA glycosylase can flip out ethenocytosine from a G.(epsilon)C base pair more easily than it can flip out thymine from a G.T mismatch. Because thymine-DNA glycosylase has a larger specificity constant for the removal of ethenocytosine, it has been suggested its primary purpose is to deal with ethenocytosine. However, these results showing that thymine-DNA glycosylase has a strong sequence preference for CpG sites in the excision of both thymine and ethenocytosine suggest that the main role of thymine-DNA glycosylase in vivo is the removal of thymine produced by deamination of 5-methylcytosine at CpG sites.  相似文献   

3.
5-Trifluoromethyl-2'-deoxyuridine (CF3dUrd) is incorporated into the DNA of mammalian cells in culture. We have synthesized oligonucleotides that allows site specific introduction of CF3dUrd residue into synthetic DNA oligonucleotide. We described here the utilization of these oligonucleotides as template for in vitro DNA synthesis. When CF3dUrd residue located at an internucleotide site in the template, the chain elongation was partially arrested one nucleotide after or before the CF3dUrd residue of template using Escherichia coli polymerase I (Klenow fragment) or human polymerase alpha (pol alpha). These results suggested that a mechanism of antitumor activity of CF3dUrd is inhibition of DNA replication.  相似文献   

4.
5.
The Escherichia coli UVM response is a recently described phenomenon in which pretreatment of cells with DNA-damaging agents such as UV or alkylating agents significantly enhances mutation fixation at a model mutagenic lesion (3,N4-ethenocytosine; epsilon C) borne on a transfected M13 single-stranded DNA genome. Since UVM is observed in delta recA cells in which SOS induction should not occur, UVM may represent a novel, SOS-independent, inducible response. Here, we have addressed two specific hypothetical mechanisms for UVM: (i) UVM results from a recA-independent pathway for the induction of SOS genes thought to play a role in induced mutagenesis, and (ii) UVM results from a polymerase switch in which M13 replication in treated cells is carried out by DNA polymerase I (or DNA polymerase II) instead of DNA polymerase III. To address these hypotheses, E. coli cells with known defects in recA, lexA, umuDC, polA, or polB were treated with UV or 1-methyl-3-nitro-1-nitrosoguanidine before transfection of M13 single-stranded DNA bearing a site-specific ethenocytosine lesion. Survival of the transfected DNA was measured as transfection efficiency, and mutagenesis at the epsilon C residue was analyzed by a quantitative multiplex DNA sequencing technology. Our results show that UVM is observable in delta recA cells, in lexA3 (noninducible SOS repressor) cells, in LexA-overproducing cells, and in delta umuDC cells. Furthermore, our data show that UVM induction occurs in the absence of detectable induction of dinD, an SOS gene. These results make it unlikely that UVM results from a recA-independent alternative induction pathway for SOS gene.  相似文献   

6.
Functional effects of cis-thymine glycol lesions on DNA synthesis in vitro   总被引:8,自引:0,他引:8  
J M Clark  G P Beardsley 《Biochemistry》1987,26(17):5398-5403
  相似文献   

7.
We have studied mutagenic specificities of DNA lesions in vivo in yeast CYC1 oligonucleotide transformation assay. We introduced two lesions into oligonucleotides. One was a nucleoside analog, 3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one 2'-deoxyriboside (dP), which is highly mutagenic to bacteria. It is supposed to be a miscoding, but otherwise good template for DNA polymerases. The other lesion was the TT pyrimidine(6-4)pyrimidone photoproduct, one of the typical UV lesions, which blocks DNA replication. These oligonucleotides were used to transform yeast cyc1 mutants with ochre nonsense mutation to Cyc1+. As expected from its templating properties in vitro, the transforming activity of dP-containing oligonucleotides was similar to those of unmodified oligonucleotides. Results indicated that dP may direct incorporation of guanine and adenine at a ratio of 1:20 or more in vivo. An oligonucleotide containing the photoproduct showed the transforming activity of as low as 3-5% of that of the corresponding unmodified oligonucleotide. This bypass absolutely required REV1 gene. The sequence analysis of the transformants has shown that the lesion was read as TT and TC at a ratio of 3:7, indicating its high mutagenic potential.  相似文献   

8.
Error-free lesion bypass and error-prone lesion bypass are important cellular responses to DNA damage during replication, both of which require a DNA polymerase (Pol). To identify lesion bypass DNA polymerases, we have purified human Polκ encoded by the DINB1 gene and examined its response to damaged DNA templates. Here, we show that human Polκ is a novel lesion bypass polymerase in vitro. Purified human Polκ efficiently bypassed a template 8-oxoguanine, incorporating mainly A and less frequently C opposite the lesion. Human Polκ most frequently incorporated A opposite a template abasic site. Efficient further extension required T as the next template base, and was mediated mainly by a one-nucleotide deletion mechanism. Human Polκ was able to bypass an acetylaminofluorene-modified G in DNA, incorporating either C or T, and less efficiently A opposite the lesion. Furthermore, human Polκ effectively bypassed a template (–)-trans-anti-benzo[a]pyrene-N2-dG lesion in an error-free manner by incorporating a C opposite the bulky adduct. In contrast, human Polκ was unable to bypass a template TT dimer or a TT (6-4) photoproduct, two of the major UV lesions. These results suggest that Polκ plays an important role in both error-free and error-prone lesion bypass in humans.  相似文献   

9.
2-Chloroacetaldehyde (CAA), a metabolite of the carcinogenic industrial chemical vinyl chloride, reacts with single-stranded DNA to form the cyclic etheno lesions predominantly at adenine and cytosine. In both ethenoadenine and ethenocytosine, normal Watson-Crick hydrogen-bonding atoms are compromised. We have recently shown that CAA adduction leads to efficient mutagenesis in Escherichia coli predominantly at cytosines, and less efficiently at adenines. About 80% of the mutations at cytosines were C-to-T transitions, and the remainder were C-to-A transversions, a result similar to that of many noninstructional DNA lesions opposite which adenine residues are preferentially incorporated. It is widely believed that noninstructional lesions stop replication and depend on SOS functions for efficient mutagenesis. We have examined the effects of in vitro CAA adduction of the lacZ alpha gene of phage M13AB28 on in vivo mutagenesis in SOS-(UV)-induced E. coli. CAA adduction was specifically directed to a part of the lacZ sequence within M13 replicative form DNA by a simple experimental strategy, and the DNA was transfected into appropriate unirradiated or UV-irradiated cells. Mutant progeny were defined by DNA sequencing. In parallel in vitro experiments, the effects of CAA adduction on DNA replication by E. coli DNA polymerase I large (Klenow) fragment were examined. Our data do not suggest a strong SOS dependence for mutagenesis at cytosine lesions. While adenine lesions remain much less mutagenic than cytosine lesions, mutation frequency at adenines is increased by SOS. SOS induction does not significantly alter the specificity of base changes at cytosines or adenines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
DNA polymerase eta (Pol eta) bypasses a cis-syn thymine-thymine dimer efficiently and accurately, and inactivation of Pol eta in humans results in the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Also, Pol eta bypasses the 8-oxoguanine lesion efficiently by predominantly inserting a C opposite this lesion, and it bypasses the O(6)-methylguanine lesion by inserting a C or a T. To further assess the range of DNA lesions tolerated by Pol eta, here we examine the bypass of an abasic site, a prototypical noninstructional lesion. Steady-state kinetic analyses show that both yeast and human Pol eta are very inefficient in both inserting a nucleotide opposite an abasic site and in extending from the nucleotide inserted. Hence, Pol eta bypasses this lesion extremely poorly. These results suggest that Pol eta requires the presence of template bases opposite both the incoming nucleotide and the primer terminus to catalyze efficient nucleotide incorporation.  相似文献   

12.
The synthetic oligonucleotide heptamer 5'-ATCCGTC-3' was reacted in vitro with N-acetoxy-N-(trifluoroacetyl)-2-aminofluorene and the resulting product isolated by reverse-phase high-performance liquid chromatography (HPLC). This purified oligonucleotide, which was shown by chemical and enzymatic analysis to be a heptamer containing a single N-(deoxyguanin-8-yl)-2-aminofluorene adduct, was then used to situate the putatively mutagenic aminofluorene lesion within the genome of M13 mp9 by ligating it into a complementary single-stranded region located at a specific site in the negative strand of the duplex M13 mp9 DNA molecule. The presence of the adduct at the anticipated location was confirmed by taking advantage of the facts that AF adducts inhibit many restriction enzymes when located in or near their restriction sites and that the AF moiety should be contained within the HincII recognition sequence on M13 mp9 DNA. Upon attempted cleavage of the M13 DNA containing the site-specific AF adduct with HincII, we find that the large majority of the DNA remained circular, demonstrating the incorporation of the AF adduct in high yield into the DNA molecule at this location. This system should prove useful in vivo for the study of mutagenesis by chemical carcinogens and in vitro to study the interaction of purified DNA metabolizing proteins with a template containing a site-specific lesion.  相似文献   

13.
1,N6-Ethenoadenine (epsilon A) and 3,N4-ethenocytosine (epsilon C) are formed when electrophilic vinyl chloride (VC) metabolites, chloroethylene oxide (CEO) or chloroacetaldehyde (CAA) react with adenine and cytosine residues in DNA. They were assayed for their miscoding properties in an in vitro system using Escherichia coli DNA polymerase I and synthetic templates prepared by reaction of poly(dA) and poly(dC) with increasing concentrations of CEO or CAA. Following the introduction of etheno groups, an increasing inhibition of DNA synthesis was observed. dGMP was misincorporated on CAA- or CEO-treated poly(dA) templates and dTMP was misincorporated on CAA- or CEO-treated poly(dC) templates, suggesting that epsilon A and epsilon C may miscode. The error rates augmented with the extent of reaction of CEO or CAA with the templates. Base-pairing models are proposed for the epsilon A.G. and epsilon C.T pairs. The potentially miscoding properties of epsilon A and epsilon C may explain why metabolically-activated VC and its reactive metabolites specifically induce base-pair substitution mutations in Salmonella typhimurium. Promutagenic lesions may represent one of the initial steps in VC- or CEO-induced carcinogenesis.  相似文献   

14.
Triple helices represent an attractive method for modulating specific gene expression. In particular, cross-linking between a triplex-forming oligonucleotide (TFO) and its duplex DNA target, typically through the formation of psoralen photoadducts, allows efficient blocking of elongation by RNA polymerases in vitro. However, in vivo, this approach is limited by DNA repair of the photoadduct. Here we describe the use of an oligodeoxyribonucleotide 19mer psoralen-modified TFO to form covalent linkages between an oligonucleotide and both strands of the targeted duplex DNA, thereby efficiently blocking expression of a luciferase reporter gene. Most importantly, we demonstrate that both the psoralen cross-link and the purine-motif triplex remained intact for at least 72 h post-transfection, indicating that such species can persist for an extended period of time in vivo. These findings support the feasibility of an antigene approach for the therapeutic regulation of specific gene expression.  相似文献   

15.
The action of 5-trifluoromethyl-2'-deoxyuridine (CF3dUrd) on DNA synthesis was investigated in vitro assay systems with purified DNA polymerases. CF3dUrd was incorporated into the DNA of mammalian cells in culture. We studied the incorporation of CF3dUrd 5'-triphosphate (CF3dUTP) into DNA and effect of CF3dUrd residue on DNA synthesis. Therefore, we synthesized oligonucleotides that allow site specific introduction of a CF3dUrd residue into a synthetic DNA oligonucleotide. After CF3dUTP incorporation, the primer was extended for human DNA polymerase alpha (pol. alpha). When CF3dUrd residue was located at an internucleotide site in the template, however, pol. alpha was exhibited a strong arrest band one nucleotide after the CF3dUrd residue site, and Escherichia coli polymerase I (Klenow fragment) also exhibited a weaker arrest band one nucleotide before the CF3dUrd residue. These results suggested that a mechanism of antitumor activity of CF3dUrd is inhibition of DNA replication.  相似文献   

16.
Lesion bypass is an important mechanism to overcome replication blockage by DNA damage. Translesion synthesis requires a DNA polymerase (Pol). Human Pol ι encoded by the RAD30B gene is a recently identified DNA polymerase that shares sequence similarity to Pol η. To investigate whether human Pol ι plays a role in lesion bypass we examined the response of this polymerase to several types of DNA damage in vitro. Surprisingly, 8-oxoguanine significantly blocked human Pol ι. Nevertheless, translesion DNA synthesis opposite 8-oxoguanine was observed with increasing concentrations of purified human Pol ι, resulting in predominant C and less frequent A incorporation opposite the lesion. Opposite a template abasic site human Pol ι efficiently incorporated a G, less frequently a T and even less frequently an A. Opposite an AAF-adducted guanine, human Pol ι was able to incorporate predominantly a C. In both cases, however, further DNA synthesis was not observed. Purified human Pol ι responded to a template TT (6–4) photoproduct by inserting predominantly an A opposite the 3′ T of the lesion before aborting DNA synthesis. In contrast, human Pol ι was largely unresponsive to a template TT cis-syn cyclobutane dimer. These results suggest a role for human Pol ι in DNA lesion bypass.  相似文献   

17.
18.
Zhang Y  Wu X  Guo D  Rechkoblit O  Wang Z 《DNA Repair》2002,1(7):559-569
In cells, the major benzo[a]pyrene DNA adduct is the highly mutagenic (+)-trans-anti-BPDE-N(2)-dG. In eukaryotes, little is known about lesion bypass of this DNA adduct during replication. Here, we show that purified human Polkappa can effectively bypass a template (+)-trans-anti-BPDE-N(2)-dG adduct in an error-free manner. Kinetic parameters indicate that Polkappa bypass of the (-)-trans-anti-BPDE-N(2)-dG adduct was approximately 41-fold more efficient compared to the (+)-trans-anti-BPDE-N(2)-dG adduct. Furthermore, we have found another activity of human Polkappa in response to the (+)- and (-)-trans-anti-BPDE-N(2)-dG adducts: extension synthesis from mispaired primer 3' ends opposite the lesion. In contrast, the two adducts strongly blocked DNA synthesis by the purified human Polbeta and the purified catalytic subunits of yeast Polalpha, Poldelta, and Pol epsilon right before the lesion. Extension by human Polkappa from the primer 3' G opposite the (+)- and (-)-trans-anti-BPDE-N(2)-dG adducts was mediated by a -1 deletion mechanism, probably resulting from re-aligning the primer G to pair with the next template C by Polkappa prior to DNA synthesis. Thus, sequence contexts 5' to the lesion strongly affect the fidelity and mechanism of the Polkappa-catalyzed extension synthesis. These results support a dual-function model of human Polkappa in bypass of BPDE DNA adducts: it may function both as an error-free bypass polymerase alone and an extension synthesis polymerase in combination with another polymerase.  相似文献   

19.
The recombinant Ca2+-activated photoprotein obelin was used as a reporter protein in a solid-phase bioluminescent hybridization DNA assay. Oligonucleotide probes were immobilized on the surface of polymer methacrylate beads or microbiological plates of different types. A 30-mer oligonucleotide or its derivative with the biotin residue on the 3′-terminus, as well as a denatured double-stranded PCR fragment of the hepatitis C virus with the sequence of the 30-mer oligonucleotide was used as a DNA template. The probe in the hybridization complex was labeled by the elongation of the chain using a Taq DNA polymerase in the presence of biotinylated deoxyuridine triphosphate. The results of the bioluminescent assay were compared with the results of colorimetric analysis obtained with alkaline phosphatase as a reporter protein. It was shown that the use of the bioluminescent obelin label substantially accelerates the DNA detection procedure, provides a high sensitivity of the assay (no less than 10?15 mol of DNA template), and ensures a quantitative determination of the amount of DNA template in the tested sample.  相似文献   

20.
UV light-induced DNA lesions block the normal replication machinery. Eukaryotic cells possess DNA polymerase eta (Poleta), which has the ability to replicate past a cis-syn thymine-thymine (TT) dimer efficiently and accurately, and mutations in human Poleta result in the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Here, we test Poleta for its ability to bypass a (6-4) TT lesion which distorts the DNA helix to a much greater extent than a cis-syn TT dimer. Opposite the 3' T of a (6-4) TT photoproduct, both yeast and human Poleta preferentially insert a G residue, but they are unable to extend from the inserted nucleotide. DNA Polzeta, essential for UV induced mutagenesis, efficiently extends from the G residue inserted opposite the 3' T of the (6-4) TT lesion by Poleta, and Polzeta inserts the correct nucleotide A opposite the 5' T of the lesion. Thus, the efficient bypass of the (6-4) TT photoproduct is achieved by the combined action of Poleta and Polzeta, wherein Poleta inserts a nucleotide opposite the 3' T of the lesion and Polzeta extends from it. These biochemical observations are in concert with genetic studies in yeast indicating that mutations occur predominantly at the 3' T of the (6-4) TT photoproduct and that these mutations frequently exhibit a 3' T-->C change that would result from the insertion of a G opposite the 3' T of the (6-4) TT lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号