共查询到20条相似文献,搜索用时 0 毫秒
1.
Gosse Schraa Brigit M. Bethe Alex R. W. Van Neerven Will J. J. Van Den Tweel Ewout Van Der Wende Alexander J. B. Zehnder 《Antonie van Leeuwenhoek》1987,53(3):159-170
In an attempt to obtain bacteria growing on 1,2-dimethylbenzene as sole carbon and energy source two different strains were isolated. One was identified as an Arthrobacter strain, the other as a Corynebacterium strain. Corynebacterium strain C125 was further investigated. The organism was not capable to grow on 1,3- and 1,4-dimethylbenzene. cis-1,2-Dihydroxycyclohexa-3,5-diene oxidoreductase and 3,4-dimethylcatechol-2,3-dioxygenase activity was found in cell extracts. When 3,4-dimethylcatechol was added to cell extract of 1,2-dimethylbenzene-grown cells, first a compound with the spectral properties of 2-hydroxy-5-methyl-6-oxo-2,4-heptadienoate was formed and subsequently acetate was produced. It is proposed that dioxygenases are involved in the initial steps of 1,2-dimethylbenzene degradation, and ring opening proceeds via meta-cleavage. 相似文献
2.
A sulfate-reducing bacterium, Desulfovibrio sp. (B strain) isolated from an anaerobic reactor treating furfural-containing waste-water was studied for its ability to metabolize trinitrotoluene (TNT). The result showed that this isolate could transform 100 ppm TNT within 7 to 10 days of incubation at 37°C, when grown with 30 mm pyruvate as the primary carbon source and 20 mm sulfate as electron acceptor. Under these conditions, the main intermediate produced was 2,4-diamino-6-nitrotoluene. Under culture conditions where TNT served as the sole source of nitrogen for growth with pyruvate as electron donor and sulfate as electron acceptor, TNT was first converted to 2,4-diamino-6-nitrotoluene within 10 days of incubation. This intermediate was further converted to toluene by a reductive deamination process via triaminotoluene. Apart from pyruvate, various other carbon sources such as ethanol, lactate, formate and H2 + CO2 were also studied as potential electron donors for TNT metabolism. The rate of TNT biotransformation by Desulfovibrio sp. (B strain) was compared with other sulfate-reducing bacteria and the results were evaluated. This new strain may be useful in decontaminating TNT-contaminated soil and water under anaerobic conditions in conjunction with toluene-degrading denitrifiers (Pseudomonas spp.) or toluene-degrading sulfate reducers in a mixed culture system.
Correspondence to: R. Boopathy 相似文献
3.
4.
Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS2, FeS2, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Resting cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed. 相似文献
5.
Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS2, FeS2, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Resting cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed. 相似文献
6.
G S Jacob J R Garbow L E Hallas N M Kimack G M Kishore J Schaefer 《Applied microbiology》1988,54(12):2953-2958
Metabolism of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. strain LBr, a bacterium isolated from a glyphosate process waste stream, was examined by a combination of solid-state 13C nuclear magnetic resonance experiments and analysis of the phosphonate composition of the growth medium. Pseudomonas sp. strain LBr was capable of eliminating 20 mM glyphosate from the growth medium, an amount approximately 20-fold greater than that reported for any other microorganism to date. The bacterium degraded high levels of glyphosate, primarily by converting it to aminomethylphosphonate, followed by release into the growth medium. Only a small amount of aminomethylphosphonate (about 0.5 to 0.7 mM), which is needed to supply phosphorus for growth, could be metabolized by the microorganism. Solid-state 13C nuclear magnetic resonance analysis of strain LBr grown on 1 mM [2-13C,15N]glyphosate showed that about 5% of the glyphosate was degraded by a separate pathway involving breakdown of glyphosate to glycine, a pathway first observed in Pseudomonas sp. strain PG2982. Thus, Pseudomonas sp. strain LBr appears to possess two distinct routes for glyphosate detoxification. 相似文献
7.
Metabolism of glyphosate in Pseudomonas sp. strain LBr 总被引:1,自引:0,他引:1
G S Jacob J R Garbow L E Hallas N M Kimack G M Kishore J Schaefer 《Applied and environmental microbiology》1988,54(12):2953-2958
Metabolism of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. strain LBr, a bacterium isolated from a glyphosate process waste stream, was examined by a combination of solid-state 13C nuclear magnetic resonance experiments and analysis of the phosphonate composition of the growth medium. Pseudomonas sp. strain LBr was capable of eliminating 20 mM glyphosate from the growth medium, an amount approximately 20-fold greater than that reported for any other microorganism to date. The bacterium degraded high levels of glyphosate, primarily by converting it to aminomethylphosphonate, followed by release into the growth medium. Only a small amount of aminomethylphosphonate (about 0.5 to 0.7 mM), which is needed to supply phosphorus for growth, could be metabolized by the microorganism. Solid-state 13C nuclear magnetic resonance analysis of strain LBr grown on 1 mM [2-13C,15N]glyphosate showed that about 5% of the glyphosate was degraded by a separate pathway involving breakdown of glyphosate to glycine, a pathway first observed in Pseudomonas sp. strain PG2982. Thus, Pseudomonas sp. strain LBr appears to possess two distinct routes for glyphosate detoxification. 相似文献
8.
9.
R M Wittich H Wilkes V Sinnwell W Francke P Fortnagel 《Applied and environmental microbiology》1992,58(3):1005-1010
In the course of our screening for dibenzo-p-dioxin-utilizing bacteria, a Sphingomonas sp. strain was isolated from enrichment cultures inoculated with water samples from the river Elbe. The isolate grew with both the biaryl ethers dibenzo-p-dioxin and dibenzofuran (DF) as the sole sources of carbon and energy, showing doubling times of about 8 and 5 h, respectively. Biodegradation of the two aromatic compounds initially proceeded after an oxygenolytic attack at the angular position adjacent to the ether bridge, producing 2,2',3-trihydroxydiphenyl ether or 2,2',3-trihydroxybiphenyl from the initially formed dihydrodiols, which represent extremely unstable hemiacetals. Results obtained from determinations of enzyme activities and oxygen consumption suggest meta cleavage of the trihydroxy compounds. During dibenzofuran degradation, hydrolysis of 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate yielded salicylate, which was branched into the catechol meta cleavage pathway and the gentisate pathway. Catechol obtained from the product of meta ring fission of 2,2',3-trihydroxydiphenyl ether was both ortho and meta cleaved by Sphingomonas sp. strain RW1 when this organism was grown with dibenzo-p-dioxin. 相似文献
10.
In the course of our screening for dibenzo-p-dioxin-utilizing bacteria, a Sphingomonas sp. strain was isolated from enrichment cultures inoculated with water samples from the river Elbe. The isolate grew with both the biaryl ethers dibenzo-p-dioxin and dibenzofuran (DF) as the sole sources of carbon and energy, showing doubling times of about 8 and 5 h, respectively. Biodegradation of the two aromatic compounds initially proceeded after an oxygenolytic attack at the angular position adjacent to the ether bridge, producing 2,2',3-trihydroxydiphenyl ether or 2,2',3-trihydroxybiphenyl from the initially formed dihydrodiols, which represent extremely unstable hemiacetals. Results obtained from determinations of enzyme activities and oxygen consumption suggest meta cleavage of the trihydroxy compounds. During dibenzofuran degradation, hydrolysis of 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate yielded salicylate, which was branched into the catechol meta cleavage pathway and the gentisate pathway. Catechol obtained from the product of meta ring fission of 2,2',3-trihydroxydiphenyl ether was both ortho and meta cleaved by Sphingomonas sp. strain RW1 when this organism was grown with dibenzo-p-dioxin. 相似文献
11.
During growth of Micrococcus sp. strain 12B with dimethylphthalate, 4-carboxy-2-hydroxymuconate lactone (CHML, X) and 3,4-dihydroxyphthalate-2-methyl ester (XI) were isolated from culture filtrates. CHML is the lactone of intermediate 4-carboxy-2-hydroxymuconate (IX). Accumulation of XI which is not a substrate for 3,4-dihydroxyphthalate-2-decarboxylase in strain 12B afforded an easy access to the preparation of 3,4-dihydroxyphthalate. 相似文献
12.
A bacterial isolate, tentatively identified as Pseudomonas sp. strain TR3, was found to utilize the diaryl ester phenylbenzoate as sole source of carbon and energy. This strain has the ability to productively degrade phenylbenzoate and some substituted derivatives by a catabolic sequence which was characterized biochemically. The biodegradation of phenylbenzoate is thus initiated by an inducible esterase, effectively hydrolyzing the diaryl esters to produce stoichiometric amounts of two monoaromatic metabolites, identified as benzoate and phenol in the case of phenylbenzoate. The diaryl ester p-tolylbenzoate was hydrolyzed to yield benzoate and 4-methylphenol while 4-chlorophenylbenzoate gave rise to the production of benzoate and 4-chlorophenol. These monoaromatic catabolites were further degraded via the oxoadipate pathway. 相似文献
13.
The pyrene-degrading Mycobacterium strain AP1 was found to utilize fluoranthene as a sole source of carbon and energy. Identification of metabolites formed from fluoranthene (by growing cells and washed-cell suspensions), the kinetics of metabolite accumulation, and metabolite-feeding studies all indicated that strain AP1 oxidizes fluoranthene using three alternative routes. The first route is initiated by dioxygenation at C-7 and C-8 and, following meta cleavage and pyruvate release, produces a hydroxyacenaphthoic acid that is decarboxylated to acenaphthenone (V). Monooxygenation of this ketone to the quinone and subsequent hydrolysis generates naphthalene-1,8-dicarboxylic acid (IV), which is further degraded via benzene-1,2,3-tricarboxylic acid (III). A second route involves dioxygenation at C-1 and C-2, followed by dehydrogenation and meta cleavage of the resulting diol. A two-carbon fragment excision of the meta cleavage product yields 9-fluorenone-1-carboxylic acid (II), which appears to undergo angular dioxygenation and further degradation to produce benzene-1,2,3-tricarboxylic acid (III), merging this route with the 7,8-dioxygenation route. Decarboxylation of benzene-1,2,3-tricarboxylic acid to phthalate (VIII), as well as further oxidation of the latter, would connect both routes with the central metabolism. The identification of Z-9-carboxymethylenefluorene-1-carboxylic acid (I) suggests a third route for fluoranthene degradation involving dioxygenation at C-2, C-3, and ortho cleavage. There is no evidence of any further degradation of this compound. 相似文献
14.
A bacterium, designated as Moraxella sp., was enriched with 2-hydroxyphenylglyoxylate (2HPGA) as sole source of carbon and energy. Identified metabolites and enzyme activities determined with whole cells and extracts indicated that 2HPGA was degraded by an inducible sequence of enzymes via salicylaldehyde, salicylate, and gentisate; only minute amounts of salicylate were converted to catechol. Further evidence was obtained that permeases were necessary for the uptake of most aromatic compounds utilized for growth. For the direct determination of 2HPGA decarboxylase activity, an enzyme assay involving high-performance liquid chromatography for quantitation of the substrate was developped to study the initial step of the degradative pathway. 相似文献
15.
Y Ueno K Nakayama K Ishii F Tashiro Y Minoda T Omori K Komagata 《Applied microbiology》1983,46(1):120-127
The metabolic pathway of T-2 toxin in Curtobacterium sp. strain 114, one of the T-2 toxin-assimilating soil bacteria, was investigated by thin-layer and gas-liquid chromatographic analyses. T-2 toxin added to the basal medium as a single carbon and energy source was biotransformed into HT-2 toxin and an unknown metabolite. Infrared, mass spectrum, proton magnetic resonance, and other physico-chemical analyses identified this new metabolite as T-2 triol. T-2 toxin was first deacetylated by the bacterium into HT-2 toxin, and this metabolite was then biotransformed into T-2 triol without formation of neosolaniol and T-2 tetraol. No trichothecenes remained in the culture medium after prolonged culture. Some properties of T-2 toxin-hydrolyzing enzymes were observed with whole cells, the cell-free soluble fraction, and the culture filtrate. Besides T-2 toxin, trichothecenes such as diacetoxyscirpenol, neosolaniol, nivalenol, and fusarenon-X were also assimilated by this bacterium. 相似文献
16.
Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. 总被引:4,自引:10,他引:4 下载免费PDF全文
Micrococcus sp. strain 12B was isolated by enriching for growth with dibutylphthalate as the sole carbon and energy source. A pathway for the metabolism of dibutylphthalate and phthalate by micrococcus sp. strain 12B is proposed: dibutylphthalate leads to monobutylphthalate leads to phthalate leads to 3,4-dihydro-3,4-dihydroxyphthalate leads to 3,4-dihydroxyphthalate leads to protocatechuate (3,4-dihdroxybenzoate). Protocatechuate is metabolized both by the meta-cleavage pathway through 4-carboxy-2-hydroxymuconic semialdehyde and 4-carboxy-2-hydroxymuconate to pyruvate and oxaloacetate and by the ortho-cleavage pathway to beta-ketoadipate. Dibutylphthalate- and phthalate-grown cells readily oxidized dibutylphthalate, phthalate, 3,4-dihydroxyphthalate, and protocatechuate. Extracts of cells grown with dibutylphthalate or phthalate contained the 3,4-dihydroxyphthalate decarboxylase and the enzymes of the protocatechuater 4,5-meta-cleavage pathway. Extracts of dibutylphthalate-grown cells also contained the protocatechuate ortho-cleavage pathway enzymes. The dibutylphthalate-hydrolyzing esterase and 3,4-dihydroxyphthalate decarboxylase were constitutively synthesized; phthalate-3,4-dioxygenase (and possibly the "dihydrodiol" dehydrogenase) was inducible by phthalate or a metabolite occurring before protocatechuate in the pathway; two protocatechuate oxygenases and subsequent enzymes were inducible by protocatechuate or a subsequent metabolic product. During growth at 37 degrees C, strain 12B gave clones at high frequency that had lost the ability to grow with phthalate esters. One of these nonrevertible mutants, strain 12B-Cl, lacked all of the enzymes required for the metabolism of dibutylphthalate through the protocatechuate meta-cleavage pathway. Enzymes for the metabolism of protocatechuate by the ortho-cleavage pathway were present in this strain grown with p-hydroxybenzoate or protocatechuate. 相似文献
17.
The microbial degradative characteristics of butyl benzyl phthalate (BBP) were investigated by the Gordonia sp. strain MTCC 4818 isolated from creosote-contaminated soil. The test organism can utilize a number of phthalate esters as sole sources of carbon and energy, where BBP was totally degraded within 4 days under shake culture conditions. High performance liquid chromatography profile of the metabolites isolated from spent culture indicated the accumulation of two major products apart from phthalic acid (PA), which were characterized by gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy as mono-n-butyl phthalate (MBuP) and monobenzyl phthalate (MBzP). Neither of the metabolites, MBuP, MBzP or PA, supported growth of the test organism, while in resting cell transformation, the monoesters were hydrolyzed to PA to a very minor extent, which was found to be a dead-end product in the degradation process. On the other hand, the test organism grew well on benzyl alcohol and butanol, the hydrolyzed products of BBP. The esterase(s) was found to be inducible in nature and can hydrolyze in vitro the seven different phthalate diesters tested to their corresponding monoesters irrespective of their support to the growth of the test organism. 相似文献
18.
T Watabe A Hiratsuka T Tsurumori 《Biochemical and biophysical research communications》1985,130(1):65-70
Enantiomers of 1,2-epoxy-1,2,3,4-tetrahydronaphthalene (ETN) were conjugated with glutathione (GSH) specifically at their benzylic oxiran carbons, with a marked difference in rate [(1R,2S)-(+)- less than (1S,2R)-(-)-ETNs] as well as in affinity for GSH S-transferase [Km: (1S,2R)-(-)- less than (1R, 2S)-(+)-ETNs], in rat liver cytosol to yield two diastereomeric S-(2-hydroxy-1,2,3,4-tetrahydronaphth-1-yl)glutathiones which were separable by reverse partition hplc. Enzymatic GSH conjugation of racemic ETN occurred preferentially with the (1S,2R)-(-)-component as a result of its retarding effect on the conjugation of the (1R,2S)-(+)-counterpart, one half of which remained in enantiomerically pure form in the incubation medium when the (1S,2R)-(-)-component had been completely conjugated. 相似文献
19.
Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15-3 总被引:2,自引:2,他引:2 下载免费PDF全文
A haloalkane dehalogenase was purified to electrophoretic homogeneity from cell extracts of a 1-chlorobutane-utilizing strain, m15-3, which was identified as a Corynebacterium sp. The enzyme hydrolyzed C2 to C12 mono- and dihalogenated alkanes, some haloalcohols, and haloacids. The Km value of the enzyme for 1-chlorobutane was 0.18 mM. Its molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 33,000 by gel filtration. The isoelectric point was pH 4.5. The optimum pH for enzyme activity was found to be 9.4, and the optimum temperature was 30 to 35 degrees C. The enzyme was stable for 1 h at temperatures ranging from 4 to 30 degrees C but was progressively less stable at 40 and 50 degrees C. 相似文献