首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
土壤-植物系统是生物圈的基本结构单元,土壤与植物之间存在密切的相互反馈.土壤退化导致植物面临各种非生物胁迫,植物的生理代谢遭到干扰,养分获取受到抑制.蚯蚓被称为"生态系统的工程师".蚯蚓能够通过调控土壤物理-化学-生物学特性,改良退化土壤(盐碱土、重金属和有机污染物污染土壤),缓解植物所受胁迫,增加土壤养分有效性,促进...  相似文献   

2.
Seng  Vang  Bell  R.W.  Willett  I.R.  Nesbitt  <<>H.J. 《Plant and Soil》1999,207(2):121-132
In the rainfed lowlands, temporary loss of soil-water saturation during crop growth is a common factor limiting rice (Oryza sativa L.) yield but its effects on phosphorus (P) availability are poorly understood. Rice plants were transplanted into pots containing soils that were either continuously flooded, maintained at field capacity or flooded and then dried to field capacity for 3 weeks during the vegetative stage. A black clay soil (Kandic Plinthaquult) and a sandy soil (Plinthustalf) from south-east Cambodia were compared with or without amendments by rice straw and P fertilizer. Under continuously flooded conditions, the growth of rice was vigorous without straw addition and there was a strong response of rice growth to the addition of P fertilizer. The soil underwent reduction, which increased pH from 4.2 to 5.5 or 6.0, in the black clay or sandy soil, respectively. By contrast, a loss of soil-water saturation 3 weeks before panicle initiation (PI) markedly impaired the growth of rice. This was not through any effect of water stress, and the growth reductions were not as strong as with continued loss of soil-water saturation from transplanting to PI. Fluctuations in soil pH and Eh corresponded closely to changes in soil-water regimes. Growth reductions were attributed to reduced shoot P levels resulting from the decline in P availability during the loss of soil-water saturation. The addition of rice straw stimulated soil reduction and lessened changes in soil pH and Eh during the loss of soil-water saturation in both soils. Straw addition enhanced P uptake by the rice plants during loss of soil-water saturation, but its beneficial effects could not be attributed to the direct addition of P, N or K to the soils. Thus the application of rice straw may be effective in lessening the effects of temporary loss of soil-water saturation on rice growth in lowland rice soils by minimising the decline in P availability. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Despite the importance of nitrogen (N) limitation of forest carbon (C) sequestration at rising atmospheric CO2 concentration, the mechanisms responsible are not well understood. To elucidate the interactive effects of elevated CO2 (eCO2) and soil N availability on forest productivity and C allocation, we hypothesized that (1) trees maximize fitness by allocating N and C to maximize their net growth and (2) that N uptake is controlled by soil N availability and root exploration for soil N. We tested this model using data collected in Free‐Air CO2 Enrichment sites dominated by evergreen (Pinus taeda; Duke Forest) and deciduous [Liquidambar styraciflua; Oak Ridge National Laboratory (ORNL)] trees. The model explained 80–95% of variation in productivity and N‐uptake data among eCO2, N fertilization and control treatments over 6 years. The model explains why fine‐root production increased, and why N uptake increased despite reduced soil N availability under eCO2 at ORNL and Duke. In agreement with observations at other sites, the model predicts that soil N availability reduced below a critical level diminishes all eCO2 responses. At Duke, a negative feedback between reduced soil N availability and N uptake prevented progressive reduction in soil N availability at eCO2. At ORNL, soil N availability progressively decreased because it did not trigger reductions in N uptake; N uptake was maintained at ORNL through a large increase in the production of fast turnover fine roots. This implies that species with fast root turnover could be more prone to progressive N limitation of carbon sequestration in woody biomass than species with slow root turnover, such as evergreens. However, longer term data are necessary for a thorough evaluation of this hypothesis. The success of the model suggests that the principle of maximization of net growth to control growth and allocation could serve as a basis for simplification and generalization of larger scale forest and ecosystem models, for example by removing the need to specify parameters for relative foliage/stem/root allocation.  相似文献   

4.
Tree species can affect the soil they are growing on and this might influence their fitness. The New Zealand gymnosperm tree species kauri (Agathis australis (D. Don) Lindl.) which grows in mixed angiosperm–gymnosperm forests has a substantial effect upon the soil. We studied the hypotheses that: (1) low soil moisture availability below mature kauri trees hampers growth of kauri seedlings and angiosperm seedlings, (2) low nutrient availability below kauri trees hampers only angiosperm seedlings, and (3) angiosperm seedlings are hampered more than kauri seedlings by the conditions below kauri trees. We tested these hypotheses by planting seedlings of kauri and mapau (Myrsine australis (A. Rich) Allan) under kauri trees and applying the following treatments: removal of herbs, removal of litter, removal of nutrient limitation, and elimination of root competition of mature kauri trees. The results indicate that low soil moisture availability, or the combination of low soil moisture availability and low nutrient fertility, hampers the growth of kauri as well as mapau seedlings below kauri trees. The mapau seedlings are hampered relatively more than the kauri seedlings which might result in an increased relative fitness of the latter.  相似文献   

5.
Differences in mycotrophic growth and response to phosphorus (P) fertilization were studied in seedlings of two woody native species: Clusia minor L. and Clusia multiflora H.B.K. from a cloud montane forest of tropical America. Greenhouse investigation was undertaken to determine the relationships between mycorrhizal dependency of host species associated with P utilization and growth in two different soils contrasting in pH (acidic and neutral) and nutrient content. Four treatments were performed: sterilized soil; sterilized soil plus 375 mg/kg of triple superphosphate (TSP); sterilized soil inoculated with Scutellospora fulgida (20 g/pot); and sterilized soil plus S. fulgida and TSP, with 10 replications per treatment for the two species. Results showed that both Clusia species presented high growth response to increasing P availability, which indicates that the root morphology (magnolioid roots) of these species is not a limiting factor for the incorporation of P from soils. Plants inoculated with arbuscular mycorrhizal fungi (AMF) in acidic soil had significantly increased shoot and root biomass, leaf area and height, in comparison to the biomass of P-fertilized plants and nonmycorrhizal plants. In neutral soil, seedlings of C. minor and C. multiflora were negatively affected by inoculation with AMF. In contrast, a significant decrease in growth was observed when inoculated plants were compared with noninoculated plants on neutral soil. Results indicate that an increase in the availability of a limiting nutrient (P) can turn a balanced mutualistic relationship into a less balanced nonmutualistic one.  相似文献   

6.
Aims Identifying factors that drive variation in herbivore effects on plant populations can provide insight for explaining plant distributions and for limiting weeds. Abiotic resource availability to plants is a key explanation for variation in herbivore effects on individual plants, but the role of resources in determining herbivore effects on plant populations is largely unexplored. We tested the hypothesis that soil nutrient availability drives variation in insect and mammal herbivore effects on tall thistle (Cirsium altissimum) population growth.  相似文献   

7.
Effect of drying and rewetting on bacterial growth rates in soil   总被引:6,自引:0,他引:6  
The effect of soil moisture on bacterial growth was investigated, and the effects of rewetting were compared with glucose addition because both treatments increase substrate availability. Bacterial growth was estimated as thymidine and leucine incorporation, and was compared with respiration. Low growth rates were found in air-dried soil, increasing rapidly to high stable values in moist soils. Respiration and bacterial growth at different soil moisture contents were correlated. Rewetting air-dried soil resulted in a linear increase in bacterial growth with time, reaching the levels in moist soil (10 times higher) after about 7 h. Respiration rates increased within 1 h to a level >10 times higher than that in moist soil. After the initial flush, there was a gradual decrease in respiration rate, while bacterial growth increased to levels twice that of moist soil 24 h after rewetting, and decreased to levels similar to those in moist soil after 2 days. Adding glucose resulted in no positive effect on bacterial growth during the first 9 h, despite resulting in more than five times higher respiration. This indicated that the initial increase in bacterial growth after rewetting was not due to increased substrate availability.  相似文献   

8.
Due to its ability to create aboveground conditions that favour plant diversity, mowing is often used to preserve the high conservation value of semi-natural species-rich grasslands. However, mowing can also affect belowground conditions. By decreasing plant carbon supply to soil, mowing can suppress the activity of soil decomposers, diminish plant nutrient availability and thus create a feedback on plant growth. In this study, we first documented the effects of three-year mowing on plant community structure in a species-rich grassland. We found that mowing decreased the total areal cover of woody plants and increased the total cover of leguminous forbs. At the species level, mowing further increased the cover of two non-leguminous forbs, Prunella vulgaris and Sagina procumbens. Mowing did not affect the species number, diversity or evenness of the plant community. To study whether any of these effects could be explained by mowing-induced changes in the soil, and particularly by reduced nutrient availability, we then collected soil from different treatment plots and monitored the growth of nine plant species in these soils in a greenhouse. Plant growth did not differ between soils collected from mowed and unmowed plots, suggesting that our mowing regimes did not impose such changes in soil decomposer activity and nutrient supply that would feedback on plant growth. Moreover, each of the nine species responded equally to the different nutrient availability in different parts of the grassland, which indicates that even if mowing had reduced plant nutrient supply, this would not have led to changes in plant community structure. It appears that those changes in aboveground vegetation that we recorded after three years of mowing were purely due to the aboveground effects, such as frequent cutting of woody plants and enhanced light availability for low-growing forbs.  相似文献   

9.
Köhler  Barbara  Ryser  Peter  Güsewell  Sabine  Gigon  Andreas 《Plant and Soil》2001,230(2):323-332
Management is necessary for the conservation of limestone grasslands. However, the traditional management of hay-making every year in July is no longer profitable for farmers. Hence many species-rich grasslands have become abandoned. The aim of this study is (a) to investigate the consequences of abandonment (as compared with annual mowing) on the availability of soil nutrients, and (b) to determine the type of nutrient limitation. The soil was taken from a long-term experimental site set up 22 years ago in northern Switzerland. The availability of soil N and P was assessed in a bioassay where soil from mown and unmown plots was supplied with different nutrient solutions or deionised water as control. Seedlings of Galium mollugo s.str. L. and Raphanus sativus ssp. oleiferus (DC) Metzg. were used as phytometer plants. Their growth in the control treatment was limited by N and P almost to the same extent, indicating that the availability of both elements was very low in this soil. P limited plant growth slightly more, but was overcome in the case of Raphanus by a high P content in the seeds. The N and P availability responded differently to management. The availability of N was slightly higher in soil from the abandoned plots, whereas the P availability did not differ significantly. Accumulation of nitrogen in the soil after abandonment did presumably not have any decisive effect on the vegetation because the amount was small and because the vegetation seemed primarily P-limited. The direct effect of mowing or abandonment on plants is therefore likely to be much more important for species composition than the minor changes in soil nutrients.  相似文献   

10.
The interactions between the biotic processes of reproduction, growth, and death and the abiotic processes which regulate temperature and water availability, and the interplay between the biotic and abiotic processes regulating N and light availabilities are important in the dynamics of forest ecosystems. We have developed a computer simulation that assembles a model ecosystem which links these biotic and abiotic interactions through equations that predict decomposition processes, actual evapo-transpiration, soil water balance, nutrient uptake, growth of trees, and light penetration through the canopy. The equations and parameters are derived directly from field studies and observations of forests in eastern North America, resulting in a model that can make accurate quantitative predictions of biomass accumulation, N availability, soil humus development and net primary production.  相似文献   

11.
Natural regeneration of timber species is critical to the sustainable management of tropical forests. To understand what determines regeneration success of timber species in the Congo Basin, we evaluated whether seedling recruitment rates differed between forest logged 30 years previously and unlogged forest and determined the environmental factors that influence seedling density, growth and survival. We monitored the fate of 2186 seedlings of seven timber species within 462, 25‐m2 plots located along 21 transects. We characterized seedling plots by light availability, soil nutrient availability and pH, and abundance of mammalian herbivores and then used linear and generalized linear mixed models to evaluate the variables that influenced seedling density, growth and survival. Light availability and canopy openness were 18% and 81% higher in logged than unlogged forest, and concentration of soil nutrients varied between sites. Seedling density was 32% higher in unlogged than logged forest. Taking all species together, seedling survival was positively correlated with calcium and negatively with magnesium and available phosphorus. Rates of seedling growth increased with available light. Taken separately, seedlings of the selected timber species responded differently to abiotic and biotic factors, demonstrating species‐specific regeneration requirements.  相似文献   

12.
free air carbon dioxide enrichment (FACE) and open top chamber (OTC) studies are valuable tools for evaluating the impact of elevated atmospheric CO2 on nutrient cycling in terrestrial ecosystems. Using meta‐analytic techniques, we summarized the results of 117 studies on plant biomass production, soil organic matter dynamics and biological N2 fixation in FACE and OTC experiments. The objective of the analysis was to determine whether elevated CO2 alters nutrient cycling between plants and soil and if so, what the implications are for soil carbon (C) sequestration. Elevated CO2 stimulated gross N immobilization by 22%, whereas gross and net N mineralization rates remained unaffected. In addition, the soil C : N ratio and microbial N contents increased under elevated CO2 by 3.8% and 5.8%, respectively. Microbial C contents and soil respiration increased by 7.1% and 17.7%, respectively. Despite the stimulation of microbial activity, soil C input still caused soil C contents to increase by 1.2% yr?1. Namely, elevated CO2 stimulated overall above‐ and belowground plant biomass by 21.5% and 28.3%, respectively, thereby outweighing the increase in CO2 respiration. In addition, when comparing experiments under both low and high N availability, soil C contents (+2.2% yr?1) and above‐ and belowground plant growth (+20.1% and+33.7%) only increased under elevated CO2 in experiments receiving the high N treatments. Under low N availability, above‐ and belowground plant growth increased by only 8.8% and 14.6%, and soil C contents did not increase. Nitrogen fixation was stimulated by elevated CO2 only when additional nutrients were supplied. These results suggest that the main driver of soil C sequestration is soil C input through plant growth, which is strongly controlled by nutrient availability. In unfertilized ecosystems, microbial N immobilization enhances acclimation of plant growth to elevated CO2 in the long‐term. Therefore, increased soil C input and soil C sequestration under elevated CO2 can only be sustained in the long‐term when additional nutrients are supplied.  相似文献   

13.
Summary Poor or lack of response of lowland rice to P fertilization is a well-known fact. Several studies were conducted in this direction however, our understanding regarding the underlying mechanism has been far from clear. A remarkable influence of rice plants on P transformation in submerged soil is identified in this experiment which may shed light on this problem. Accordingly, in presence of rice plants P was mobilized during the initial growing period followed by immobilization. The increased microbial activity in presence of physiologically active roots was responsible for P mobilization, while capacity of rice plants to reoxidize the rhizosphere, by secretion of oxygen from roots, during later growing period was responsible for P immobilization.The extent of P mobilization decreased while that of immobilization increased with increasing P levels in different soils. At a given P level the ratio of P mobilization to immobilization was higher in a soil where crop growth was better and P uptake was higher as compared to another soil where crop growth was poor with lower P uptake.Thus, lowland rice plants appear to possess an unique physiological mechanism, to regulate the contrasting changes in P availability in the rhizosphere depending on P requirement by the plants or P availability in soil, which in turn is responsible for the poor or lack of response to P fertilization.The experiment was conducted in a growth chamber. Two soils with widely varying properties were used.  相似文献   

14.
1 We tested whether seedlings of small‐seeded species were more reliant on soil nutrients than large‐seeded ones by growing 21 species from three woody genera ( Eucalyptus, Hakea and Banksia ) along a gradient of nutrient availability.
2 At very low nutrient availability, larger seeds produced larger seedlings. This was seen especially among the eucalypts, but the difference was eliminated at optimal soil nutrient levels. Hakea species with large seed mass, and all Banksia species, appeared unable to exploit additional soil nutrients for growth, whatever the level supplied.
3 Larger seeds tended to have proportionately higher contents of N, P and K and, under nutrient‐poor conditions, supplied more of these to their seedlings, although at a diminishing rate.
4 We suggest that large‐seededness could be an adaptation to the high‐light, nutrient‐impoverished habitats in which these species occur by providing the seedling with the mineral nutrients, rather than carbon‐based metabolites, needed for maximizing initial root growth. Reaching reliable moisture before summer (drought avoidance) is an alternative strategy to physiological tolerance of drought.  相似文献   

15.
The availability of nitrogen (N) is a critical control on the cycling and storage of soil carbon (C). Yet, there are conflicting conceptual models to explain how N availability influences the decomposition of organic matter by soil microbial communities. Several lines of evidence suggest that N availability limits decomposition; the earliest stages of leaf litter decay are associated with a net import of N from the soil environment, and both observations and models show that high N organic matter decomposes more rapidly. In direct contrast to these findings, experimental additions of inorganic N to soils broadly show a suppression of microbial activity, which is inconsistent with N limitation of decomposition. Resolving this apparent contradiction is critical to representing nutrient dynamics in predictive ecosystem models under a multitude of global change factors that alter soil N availability. Here, we propose a new conceptual framework, the Carbon, Acidity, and Mineral Protection hypothesis, to understand the effects of N availability on soil C cycling and storage and explore the predictions of this framework with a mathematical model. Our model simulations demonstrate that N addition can have opposing effects on separate soil C pools (particulate and mineral‐protected carbon) because they are differentially affected by microbial biomass growth. Moreover, changes in N availability are frequently linked to shifts in soil pH or osmotic stress, which can independently affect microbial biomass dynamics and mask N stimulation of microbial activity. Thus, the net effect of N addition on soil C is dependent upon interactions among microbial physiology, soil mineralogy, and soil acidity. We believe that our synthesis provides a broadly applicable conceptual framework to understand and predict the effect of changes in soil N availability on ecosystem C cycling under global change.  相似文献   

16.
The sustainable management of unwanted vegetation in agricultural fields through integrated weed control strategies requires detailed knowledge about the maternal formation of primary seed dormancy, to support the prediction of seedling emergence dynamics. This knowledge is decisive for the timing of crop sowing and nonchemical weed control measures. Studies in controlled environments have already demonstrated that thermal conditions and, to some extent, water availability during seed set and maturation has an impact on the level of dormancy. However, it is still unclear if this applies also under field conditions, where environmental stressors and their timing are more variable. We address this question for Alopecurus myosuroides in south‐western Sweden. We quantified the effects of cumulated temperature and precipitation as well as soil water potential during the reproductive growth phase of A myosuroides on primary seed dormancy under field conditions. Empirical models differing in focal time intervals and, in case of soil water potential, focal soil depths were compared regarding their predictive power. The highest predictive power for the level of primary dormancy of A. myosuroides seeds was found for a two‐factorial linear model containing air temperature sum between 0 and 7 days before peak seed shedding as well as the number of days with soil water potential below field capacity between 7 and 35 days before peak seed shedding. For soil water potential, it was found that only the top 10 cm soil layer is of relevance, which is in line with the shallow root architecture of A. myosuroides. We conclude that for this species the level of dormancy depends on the magnitude and timing of temperature and water availability during the reproductive growth phase. Water availability appears to be more important during maternal environmental perception and temperature during zygotic environmental perception.  相似文献   

17.
Thaler  Philippe  Pagès  Loï c 《Plant and Soil》1999,217(1-2):151-157
When plants develop in strong soils, growth of the root system is generally depressed. However, branching and elongation of branches are often less affected than growth of the main axes, whenever the whole root system encounters even-impeded conditions. On the basis of a model simulating root growth and architecture as related to assimilate availability, we propose a simple hypothesis to explain such behaviour. In the model, growth of each root depends on its own elongation potential, which is estimated by its apical diameter. The potential elongation rate–apical diameter relationship is the same for all the roots of the system and is described by a monomolecular function. Our hypothesis is that the effect of soil strength can be simulated by introducing an impedance factor in the definition of root maximum potential elongation rate, common to the whole root system. When such impedance factor is applied, it affects more the potential of larger roots (main axes) than that of thinner roots (secondary and tertiary branches). Simulations provided in high impedance conditions led to root systems characterised by short taproots, whereas growth of secondary roots was unaffected and growth of tertiary roots was enhanced. Actual branching density was also higher, although branching rules have been unchanged. Such simulated systems where similar to that observed in strong soils. Friction laws or pore size can be involved in the larger reduction of the potential growth of main axes. Moreover, when growth of main axes is restricted, assimilate availability becomes higher for branches and that could explain that their growth could be increased in a homogeneous strong soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Phosphorus (P) is a critical nutrient that plays an essential role in improving soil fertility for optimum plant growth and productivity. It is one of the most deficient macro-nutrients in agricultural soils after nitrogen and is considered inadequate for plant growth and production. To P availability in soils, the farmers are applying huge amounts of synthetic P fertilizers that adversely affect the wider environment, groundwater, soil fertility and microbial population. Many beneficial microbes are known to release and supply soluble P for improving growth and yield of a variety of plants in a sustainable manner in P deficient soils. Thus, inoculation of these microbes, including arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) to soil to enhance crop production without harming the environment, is an alternative approach to chemical fertilizers. The combined role of AMF and PSB in P solubilization is not well understood and the application and mode of action of these microbial groups are often naive due to variation in the environment. Therefore, the current review article would develop a better understanding of the interactive role and mechanisms of AMF and PSB in improving P availability from both organic and inorganic sources in a sustainable crop production system. Finally, the current review would loop out further avenues for researchers interested to commercially produce effective AMF and PSB-based biofertilizers for sustainable management of phosphorus over a wide range of agricultural crops worldwide.  相似文献   

19.
Resource availability and heterogeneity are recognized as two essential environmental aspects to determine species diversity and community abundance. However, how soil resource availability and heterogeneity determine species diversity and community abundance in highly heterogeneous and most fragile karst landscapes is largely unknown. We examined the effects of soil resource availability and heterogeneity on plant community composition and quantified their relative contribution by variation partitioning. Then, a structural equation model (SEM) was used to further disentangle the multiple direct and indirect effects of soil resource availability on plant community composition. Species diversity was significantly influenced by the soil resource availability in shrubland and woodland but not by the heterogeneity in woodland. Abundance was significantly affected by both soil resource availability and heterogeneity, whereas variation partitioning results showed that soil resource availability explained the majority of the variance in abundance, and the contribution of soil resource heterogeneity was marginal. These results indicated that soil resource availability plays a more important role in determining karst plant community composition than soil resource heterogeneity. Our SEMs further found that the multiple direct and indirect processes of soil resource availability in determining karst species diversity and abundance were different in different vegetation types. Soil resource availability and heterogeneity both played a certain role in determining karst plant community composition, while the importance of soil resource availability far exceeded soil resource heterogeneity. We propose that steering community restoration and reconstruction should be highly dependent on soil resource availability, and multiple direct and indirect pathways of soil resource availability for structuring karst plant communities need to be taken into account.  相似文献   

20.
张宇亭  朱敏  线岩相洼  申鸿  赵建  郭涛 《生态学报》2012,32(22):7091-7101
在温室盆栽条件下,分别模拟单作、间作和尼龙网分隔种植,比较接种丛枝菌根(arbuscular mycorrhizal, AM)真菌Glomus intraradicesGlomus mosseae对菌根植物玉米和非菌根植物油菜生长和磷吸收状况的影响,并分析土壤中各无机磷组分的变化。结果发现,接种AM真菌可以促进土壤中难溶性磷(Ca10-P和O-P)向有效态磷转化,并显著降低总无机磷含量 (P<0.05),显著提高菌根植物玉米的生物量和磷吸收量(P<0.05),特别是在间作体系中使玉米的磷营养竞争比率显著提高了45.0%-104.1% (P<0.05),显著降低了油菜的生物量和磷吸收量(P<0.05),从而增强了了菌根植物的竞争优势,降低了非菌根植物与菌根植物的共存能力。揭示了石灰性土壤中AM真菌对植物物种多样性的影响,有助于更加全面地理解AM真菌在农业生态系统中的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号