首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The middle ear in mammals is characterized by structural variations and a broad spectrum of adaptive transformations related to peculiarities of species ecology, but it preserves the general basic principle of structure in most mammals. In species remote from a phylogenetic point of view but close in ecologic specialization, features of parallelism are observed concerning the development of separate elements of auditory ossicles as well as the way of their interconnection and attachment to the tympanum. Along the way to the adaptation to the water lifestyle in semi-aquatic and aquatic species, new additional structures, not intrinsic to initial terrestrial forms, have been formed. The use of ecological and morphological approaches to research the peripheral division of the auditory system of mammals with different ecological specialization in the ontogenesis permitted us to reveal that peculiarities of its structure in different groups of mammals are preconditioned by the animals’ adaptation to specific acoustic properties of their environment. Morphological and functional adaptations of the peripheral auditory system aimed at optimizing auditory sensitivity in the environments differing in physical properties are of great importance in evolution. Adaptive specific features in the structure of the middle ear in aquatic species appear at early stages of development in spite of intrauterine growth without the direct influence of environmental conditions.  相似文献   

2.
Selenium is an essential trace element for mammals. Through selenoproteins, this mineral participates in various biological processes such as antioxidant defence, thyroid hormone production, and immune responses. Some reports indicate that a human organism deficient in selenium may be prone to certain diseases. Adverse health effects following selenium overexposure, although very rare, have been found in animals and people. Contrary to selenium, arsenic and cadmium are regarded as toxic elements. Both are environmental and industrial pollutants, and exposure to excessive amounts of arsenic or cadmium can pose a threat to many people’s health, especially those living in polluted regions. Two other elements, vanadium and chromium(III) in trace amounts are believed to play essential physiological functions in mammals. This review summarizes recent studies on selenium interactions with arsenic and cadmium and selenium interactions with vanadium and chromium in mammals. Human studies have demonstrated that selenium may reduce arsenic accumulation in the organism and protect against arsenic-related skin lesions. Selenium was found to antagonise the prooxidant and genotoxic effects of arsenic in rodents and cell cultures. Also, studies on selenium effects against oxidative stress induced by cadmium in various animal tissues produced promising results. Reports suggest that selenium protection against toxicity of arsenic and cadmium is mediated via sequestration of these elements into biologically inert conjugates. Selenium-dependent antioxidant enzymes probably play a secondary role in arsenic and cadmium detoxification. So far, few studies have evaluated selenium effects on chromium(III) and vanadium actions in mammals. Still, they show that selenium may interact with these minerals. Taken together, the recent findings regarding selenium interaction with other elements extend our understanding of selenium biological functions and highlight selenium as a potential countermeasure against toxicity induced by arsenic and cadmium.  相似文献   

3.
Long interspersed nuclear elements (LINEs) comprise about 21% of the human genome (of which L1 is most abundant) and are preferentially accumulated in AT-rich regions, as well as the X and Y chromosomes. Most knowledge of L1 distribution in mammals is restricted to human and mouse. Here we report the first investigation of L1 distribution in the genomes of a wide variety of eutherian mammals, including species in the two basal clades, Afrotheria and Xenarthra. Our results show L1 accumulation on the X of all eutherian mammals, an observation consistent with an ancestral involvement of these elements in the X-inactivation process (the Lyon repeat hypothesis). Surprisingly, conspicuous accumulation of L1 in AT-rich regions of the genome was not observed in any species outside of Euarchontoglires (represented by human, mouse and rabbit). Although several features were common to most species investigated, our comprehensive survey shows that the patterns observed in human and mouse are, in many aspects, far from typical for all mammals. We discuss these findings with reference to models that have previously been proposed to explain the AT distribution bias of L1 in human and mouse, and how this relates to the evolution of these elements in other eutherian genomes.Paul D. Waters and Gauthier Dobigny contributed equally to this work  相似文献   

4.
The paper considers the problem of peculiarities of maturation of the stellate ganglion nerve elements in mammals of different species. This process differs in precocious and altricial animals. It has been shown that in spite of some individual peculiarities, the neurons, fibers, and conducting pathways in altricial animals are not, on the whole, completely formed morphologically and functionally. In the course of postnatal ontogenesis, not only an increase of cell sizes and development of dendrite tree, but also reorganization of nerve connections with target organ occur. The postnatal ontogenesis is also accompanied by an increase of the excitation transmission rate along the fibers and by their myelination. The asymmetry of the right and left stellate ganglia (SG) by their sizes and functional peculiarities, which exists in adult animals appears as soon as at early stages of postnatal development. The neural elements of precocious animals are changed to a lesser extent in postnatal ontogenesis and are, in many aspects, similar to those of adult organisms as early as at birth.  相似文献   

5.
The protamines are a diverse family of small arginine-rich proteins that are synthesized in the late-stage spermatids of many animals and plants and bind to DNA, condensing the spermatid genome into a genetically inactive state. Vertebrates have from one to 15 protamine genes per haploid genome, which are clustered together on the same chromosome. Comparison of protamine gene and amino-acid sequences suggests that the family evolved from specialized histones through protamine-like proteins to the true protamines. Structural elements present in all true protamines are a series of arginine-rich DNA-anchoring domains (often containing a mixture of arginine and lysine residues in non-mammalian protamines) and multiple phosphorylation sites. The two protamines found in mammals, P1 and P2, are the most widely studied. P1 packages sperm DNA in all mammals, whereas protamine P2 is present only in the sperm of primates, many rodents and a subset of other placental mammals. P2, but not P1, is synthesized as a precursor that undergoes proteolytic processing after binding to DNA and also binds a zinc atom, the function of which is not known. P1 and P2 are phosphorylated soon after their synthesis, but after binding to DNA most of the phosphate groups are removed and cysteine residues are oxidized, forming disulfide bridges that link the protamines together. Both P1 and P2 have been shown to be required for normal sperm function in primates and many rodents.  相似文献   

6.
An established cell line, derived from the dorsal iris of the eastern North American newt, Notophthalmus viridescens, is described. The cells display an epithelial-like behaviour in culture, grow relatively slowly, possess considerably larger chromosomes than mammals and are heteroploid, although some near-diploid cells are present in the culture. The line is characterized by a strong tendency to overlapping and aggregation in spite of its origin from adult tissue.  相似文献   

7.

Background  

Rodentia is the most diverse order of placental mammals, with extant rodent species representing about half of all placental diversity. In spite of many morphological and molecular studies, the family-level relationships among rodents and the location of the rodent root are still debated. Although various datasets have already been analyzed to solve rodent phylogeny at the family level, these are difficult to combine because they involve different taxa and genes.  相似文献   

8.
Summary Many early Australian records indicate that at the time of European settlement there were extensive tracts of highly productive, and species‐rich, grassy communities and chenopod shrublands. Topsoils in many areas were soft and friable. The rapid development of livestock industries led to most changes to the environment being simplistically ascribed to domestic stock grazing, land clearance, introduced pests (such as rabbits) or changed burning practices. It has also commonly been assumed that the hoof action of domestic stock was the principal cause of the compaction and surface sealing of soils in many areas. However, the rapid soil deterioration also coincided with the dramatic decline or complete extinction of many small native ground‐foraging mammals and the consequent cessation of the soil disturbances and interactions that they created. This paper reviews the role of small mammals in disturbing soils, and implications for incorporation of organic matter, aeration, improvement in infiltration and the provision of suitable sites for seed germination and seedling establishment. This can aid topsoil formation and health by providing substrate for microorganisms, improved water balance and mineral cycles and enhanced soil structure. Seeds and mycorrhizal fungi, that are integral to the establishment and growth of many plants, are spread. Such intermittent disturbance may be an important driving force in determining the pathway of succession and lead to greater biodiversity. Further ongoing research on Australia's small mammals is needed, especially in areas where they are able to move freely in a natural environment and are protected from introduced predators.  相似文献   

9.
The diffuse pollution by fission and activation products following nuclear accidents and weapons testing is of major public concern. Among the nuclides that pose a serious risk if they enter the human food chain are the cesium isotopes 137Cs and 134Cs (with half-lives of 30 and 2 years, respectively). The biogeochemical cycling of these isotopes in forest ecosystems is strongly affected by their preferential absorption in a range of ectomycorrhiza-forming basidiomycetes. An even more widely distributed group of symbiotic fungi are the arbuscular mycorrhizal fungi, which colonize most herbaceous plants, including many agricultural crops. These fungi are known to be more efficient than ectomycorrhizas in transporting mineral elements from soil to plants. Their role in the biogeochemical cycling of Cs is poorly known, in spite of the consequences that fungal Cs transport may have for transfer of Cs into the human food chain. This report presents the first data on transport of Cs by these fungi by use of radiotracers and compartmented growth systems where uptake by roots and mycorrhizal hyphae is distinguished. Independent experiments in three laboratories that used different combinations of fungi and host plants all demonstrated that these fungi do not contribute significantly to plant uptake of Cs. The implications of these findings for the bioavailability of radiocesium in different terrestrial ecosystems are discussed.  相似文献   

10.
Several of the most important reindeer forage plants in Svalbard were analysed for content of minerals (Na, K, P, Ca, Mg, S, Cl, Fe, Cu, Mn, Zn, Mo and Co) and for content of ash, crude protein, crude fiber, ether extracts and nitrogen free extracts. Some forage plants were also examined in in vitro digestibility trials. The results were compared with results from similar analyses of alpine mountain plants from southern Norway. Also freshly voided fecal samples were analysed for the same components as the forage plants.
The Svalbard vegetation had a higher content of Na, Ca, Mg, Cl, Fe and Co, than similar plants from Southern Norway. The content of other elements examined seemed to be more equal in Norway and on Svalbard. Within the Svalbard area plants growing in limestone areas had the highest content of calcium and magnesium. Also plants growing on manured soil below bird cliffs appeared to have high nutritional value. It is furthermore concluded that the closeness to the sea as well as the occurrence of several plants with high mineral content, gave the Svalbard reindeer the possibility to further improve their mineral balance compared with continental reindeer. Also the dietary shift from lichens as a major dietary component in Norway, to mosses on Svalbard, may increase mineral intake, but may also have an inferior effect on digestibility.
Although balance experiments and carcass analyses of minerals in Svalbard reindeer are missing, it is concluded that Svalbard reindeer apparently had adequate intake of most mineral elements. In spite of low standing biomass of reindeer forage plants, the quality of the vegetation seemed to compare favourably with continental reindeer pasture.  相似文献   

11.
Cytochrome P450 of the 2B subfamily is easily induced by many xenobiotics. In spite of intensive investigations, the molecular mechanisms of regulation of the CYP2B genes are not clear. The nuclear receptor CAR is shown to play a crucial role in the activation of CYP2B genes by xenobiotics, but many problems of CAR activation in different animal species and humans remain unsolved. This review focuses on signaling pathways involved in the control of CYP2B gene expression in mammals.  相似文献   

12.
The oxygen store/usage hypothesis suggests that larger animals are able to dive for longer and hence deeper because oxygen storage scales isometrically with body mass, whereas oxygen usage scales allometrically with an exponent <1 (typically 0.67-0.75). Previous tests of the allometry of diving tend to reject this hypothesis, but they are based on restricted data sets or invalid statistical analyses (which assume that every species provides independent information). Here we apply information-theoretic statistical methods that are phylogenetically informed to a large data set on diving variables for birds and mammals to describe the allometry of diving. Body mass is strongly related to all dive variables except dive:pause ratio. We demonstrate that many diving variables covary strongly with body mass and that they have allometric exponents close to 0.33. Thus, our results fail to falsify the oxygen store/usage hypothesis. The allometric relationships for most diving variables are statistically indistinguishable for birds and mammals, but birds tend to dive deeper than mammals of equivalent mass. The allometric relationships for all diving variables except mean dive duration are also statistically indistinguishable for all major taxonomic groups of divers within birds and mammals, with the exception of the procellariiforms, which, strictly speaking, are not true divers.  相似文献   

13.
During last three years, the mobile dispersed genetic elements (mdg) were isolated from the genome of Drosophila melanogaster, yeasts and mammals. According to a number of their properties, mdg elements are quite similar to endogenous pro-retroviruses. It is known that in many cases oncogeneity of retroviruses depends on the incorporation of the certain host genes (potential oncogenes) into the viral genome. We suggest that in some cases mdg elements could entrap the potential oncogenes in the course of transposition. As a result, oncogenes become uncontrollable by host regulatory systems and may induce cell transformation. Another possible mechanism underlying switch off of the gene responsible for differentiation control may be mdg transposition to a region in close vicinity of the gene. As transposition of mdg elements seems to occur rather often, they may be regarded as one of the most important factors of genome rearrangements leading to cell transformation.  相似文献   

14.
Data on limb bone lengths from 64 mammalian species were combined with data on 114 bovid species (Scott, '79) to assess the scaling of limb lengths and proportions in mammals ranging from 0.002 to 364 kg. We analyzed log-transformed data using both reduced major axis and least-squares regression to focus on the distribution across mammals of two key traits—limb length and metatarsal/femur ratio—associated with cursorial adaptation. The total lengths of both fore and hindlimbs scale in a manner very close to the M0.33 predicted by geometric similarity. Thus the relative limb lengths of large mammals, including bovids, generally regarded among the most cursorial of mammals, are very similar to those of the rodents and insectivores in this sample. Metatarsal/femur ratio also shows little change with changing mass, although bovids tend to have relatively longer metapodials than do other families in the sample. We argue that many of the remaining morphological traits associated with cursoriality (e.g., reduction in joint mobility and number of distal limb bone elements) promote cursoriality only at large body sizes. These results lead us to question the general perception that cursoriality is most widespread among large mammals. We also suggest that discussions of cursoriality should focus explicitly on the two partially independent aspects of performance that are otherwise confounded under this general term—speed and the ability to cover substantial distance. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Plant genotypes differ in their uptake, translocation, accumulation, and use of mineral elements. Examples of genotype differences to iron, nitrogen, phosphorus, potassium, calcium, magnesium, manganese, boron, copper, zinc, and molybdenum are discussed. Current knowledge is sufficient to indicate that many crop plants can be improved for the efficient use of mineral elements and better adaptation to mineral stress conditions.  相似文献   

16.
The diffuse pollution by fission and activation products following nuclear accidents and weapons testing is of major public concern. Among the nuclides that pose a serious risk if they enter the human food chain are the cesium isotopes 137Cs and 134Cs (with half-lives of 30 and 2 years, respectively). The biogeochemical cycling of these isotopes in forest ecosystems is strongly affected by their preferential absorption in a range of ectomycorrhiza-forming basidiomycetes. An even more widely distributed group of symbiotic fungi are the arbuscular mycorrhizal fungi, which colonize most herbaceous plants, including many agricultural crops. These fungi are known to be more efficient than ectomycorrhizas in transporting mineral elements from soil to plants. Their role in the biogeochemical cycling of Cs is poorly known, in spite of the consequences that fungal Cs transport may have for transfer of Cs into the human food chain. This report presents the first data on transport of Cs by these fungi by use of radiotracers and compartmented growth systems where uptake by roots and mycorrhizal hyphae is distinguished. Independent experiments in three laboratories that used different combinations of fungi and host plants all demonstrated that these fungi do not contribute significantly to plant uptake of Cs. The implications of these findings for the bioavailability of radiocesium in different terrestrial ecosystems are discussed.  相似文献   

17.
With the imminent completion of the whole genome sequence of humans, increasing attention is being focused on the annotation of cis-regulatory elements in the human genome. Comparative genomics approaches based on evolutionary conservation have proved useful in the detection of conserved cis-regulatory elements. The pufferfish, Fugu rubripes, is an attractive vertebrate model for comparative genomics, by virtue of its compact genome and maximal phylogenetic distance from mammals. Fugu has lost a large proportion of nonessential DNA, and retained single orthologs for many duplicate genes that arose in the fish lineage. Non-coding sequences conserved between fugu and mammals have been shown to be functional cis-regulatory elements. Thus, fugu is a model fish genome of choice for discovering evolutionarily conserved regulatory elements in the human genome. Such evolutionarily conserved elements are likely to be shared by all vertebrates, and related to regulatory interactions fundamental to all vertebrates. The functions of these conserved vertebrate elements can be rapidly assayed in mammalian cell lines or in transgenic systems such as zebrafish/medaka and Xenopus, followed by validation of crucial elements in transgenic rodents.  相似文献   

18.
Gypsy LTR-retrotransposons have been identified in the genomes of many organisms, but only a small number of vertebrate examples have been reported to date. Here we show that members of this family are likely to be widespread in many vertebrate classes with the possible exceptions of mammals and birds. Phylogenetic analyses demonstrate that although there are several distinct lineages of vertebrate gypsy LTR-retrotransposons, the majority clusters into one monophyletic clade. Groups of fungal, plant, and insect elements were also observed, suggesting horizontal transfer between phyla may be infrequent. However, in contrast to this, there was little evidence to support sister relationships between elements derived from vertebrate and insect hosts. In fact, the majority of the vertebrate elements appeared to be most closely related to a group of gypsy LTR-retrotransposons present within fungi. This implies either that at least one horizontal transmission between these two phyla has occurred previously or that a gypsy LTR-retrotransposon lineage has been lost from insect taxa. Received: 22 December 1998 / Accepted: 6 April 1999  相似文献   

19.
中国云南下禄丰组的早侏罗世中国尖齿兽的新材料显示出从前未曾认识到的早期哺乳动物牙齿特征.中国尖齿兽的门齿和犬齿,像非哺乳类犬齿兽一样,是多次替换的。新的中国尖齿兽幼体标本保存有前臼齿,前臼齿替换一次之后,在较大(更老)的标本上就永久消失。犬后齿分化为前臼齿与臼齿,以及前臼齿仅替换一次是现代哺乳动物的衍生特征。中国尖齿兽前边的臼齿可能无后继齿替换而消失;后边的臼齿替换一次.中国尖齿鲁当其成体的牙齿还在经受替换期间,头骨仍在继续生长。中国尖齿首是所有其他哺乳动物的姊妹类群。中国尖齿兽的牙齿替换方式可解释为从爬行类原始多出齿系向哺乳动物进步的二出齿系进化的中间过渡类型。由中国尖齿兽的多出齿系和其头骨无期限式生长推知,该类动物尚不具备现代哺乳动物所具有的有期限生长方式和哺乳特征。  相似文献   

20.
Whiskers are present in many species of mammals. They are specialised vibrotactile sensors that sit within strongly innervated follicles. Whisker size and shape will affect the mechanical signals that reach the follicle, and hence the information that reaches the brain. However, whisker size and shape have not been quantified across mammals before. Using a novel method for describing whisker curvature, this study quantifies whisker size and shape across 19 mammalian species. We find that gross two-dimensional whisker shape is relatively conserved across mammals. Indeed, whiskers are all curved, tapered rods that can be summarised by Euler spiral models of curvature and linear models of taper, which has implications for whisker growth and function. We also observe that aquatic and semi-aquatic mammals have relatively thicker, stiffer, and more highly tapered whiskers than arboreal and terrestrial species. In addition, smaller mammals tend to have relatively long, slender, flexible whiskers compared to larger species. Therefore, we propose that whisker morphology varies between larger aquatic species, and smaller scansorial species. These two whisker morphotypes are likely to induce quite different mechanical signals in the follicle, which has implications for follicle anatomy as well as whisker function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号