首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staphylococcus aureus and coagulase-negative staphylococci, primarily Staphylococcus epidermidis, are recognized as a major cause of nosocomial infections associated with the use of implanted medical devices. The capacity of S. epidermidis to form biofilms, allowing it to evade host immune defence mechanisms and antibiotic therapy, is considered to be crucial in colonizing the surfaces of medical implants and dissemination of infection. It has previously been demonstrated that the biofilm of a model strain S. epidermidis RP62A comprises two carbohydrate-containing moieties, a polysaccharide having a structure of a linear poly-N-acetyl-(1-->6)-beta-D-glucosamine and teichoic acid. In the present paper we show that, unlike this model strain, certain clinical isolates of coagulase-negative staphylococci produce biofilms that do not contain detectable amounts of poly-N-acetyl-(1-->6)-beta-D-glucosamine. In contrast to that of S. epidermidis RP62A, these biofilms are not detached with metaperiodate, while proteinase K causes their partial dispersal.  相似文献   

2.
Bacterial infections are serious complications after orthopaedic implant surgery. Staphylococci, with Staphylococcus epidermidis as a leading species, are the prevalent and most important species involved in orthopaedic implant-related infections. The biofilm mode of growth of these bacteria on an implant surface protects the organisms from the host’s immune system and from antibiotic therapy. Therapeutic agents that disintegrate the biofilm matrix would release planktonic cells into the environment and therefore allow antibiotics to eliminate the bacteria. An addition of a biofilm-degrading agent to a solution used for washing–draining procedures of infected orthopaedic implants would greatly improve the efficiency of the procedure and thus help to avoid the removal of the implant. We have previously shown that the extracellular staphylococcal matrix consists of a poly-N-acetylglucosamine (PNAG), extracellular teichoic acids (TAs) and protein components. In this study, we accessed the sensitivity of pre-formed biofilms of five clinical staphylococcal strains associated with orthopaedic prosthesis infections and with known compositions of the biofilm matrix to periodate, Pectinex Ultra SP, proteinase K, trypsin, pancreatin and dispersin B, an enzyme with a PNAG-hydrolysing activity. We also tested the effect of these agents on the purified carbohydrate components of staphylococcal biofilms, PNAG and TA. We found that the enzymatic detachment of staphylococcal biofilms depends on the nature of their constituents and varies between the clinical isolates. We suggest that a treatment with dispersin B followed by a protease (proteinase K or trypsin) could be capable to eradicate biofilms of a variety of staphylococcal strains on inert surfaces.  相似文献   

3.
The ability to adhere to artificial surfaces and form biofilms is considered as a virulence factor of Staphylococcus epidermidis, one of the major causes of nocosomial infections, especially those related to implanted medical devices. Cell-wall teichoic acid is known to play an important role in biofilm formation of staphylococci. The structure of the cell wall and extracellular teichoic acids of S. epidermidis RP62A, a reference biofilm-positive strain, was studied by NMR spectroscopy and capillary electrophoresis-mass spectrometry. Their structures were found to be a (1-->3)-linked poly(glycerol phosphate), substituted at the 2-position of glycerol residues with alpha-Glc, alpha-GlcNAc, D-Ala and alpha-Glc6Ala. D-Alanyl acylation of a sugar hydroxyl group seems to be a novel structural feature of teichoic acids from staphylococci.  相似文献   

4.
We demonstrated the production of poly-β-1,6-N-acetylglucosamine (PNAG) polysaccharide in the biofilms of Burkholderia multivorans, Burkholderia vietnamiensis, Burkholderia ambifaria, Burkholderia cepacia, and Burkholderia cenocepacia using an immunoblot assay for PNAG. These results were confirmed by further studies, which showed that the PNAG hydrolase, dispersin B, eliminated immunoreactivity of extracts from the species that were tested (B. cenocepacia and B. multivorans). Dispersin B also inhibited biofilm formation and dispersed preformed biofilms of Burkholderia species. These results imply a role for PNAG in the maintenance of Burkholderia biofilm integrity. While PNAG was present in biofilms of all of the wild-type test organisms, a ΔpgaBC mutant of B. multivorans (Mu5) produced no detectable PNAG, indicating that these genes are needed for Burkholderia PNAG formation. Furthermore, restoration of PNAG production in PNAG negative E. coli TRXWMGΔC (ΔpgaC) by complementation with B. multivorans pgaBCD confirmed the involvement of these genes in Burkholderia PNAG production. While the confocal scanning laser microscopy of untreated wild-type B. multivorans showed thick, multilayered biofilm, Mu5 and dispersin B-treated wild-type biofilms were thin, poorly developed, and disrupted, confirming the involvement of PNAG in B. multivorans biofilm formation. Thus, PNAG appears to be an important component of Burkholderia biofilms, potentially contributing to its resistance to multiple antibiotics and persistence during chronic infections, including cystic fibrosis-associated infection.  相似文献   

5.
Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the dissemination of antibiotic-resistant strains. Evidence suggests that the ability to form matrix-encased biofilms contributes to the pathogenesis of S. aureus and S. epidermidis. In this study, we investigated the functions of two staphylococcal biofilm matrix polymers: poly-N-acetylglucosamine surface polysaccharide (PNAG) and extracellular DNA (ecDNA). We measured the ability of a PNAG-degrading enzyme (dispersin B) and DNase I to inhibit biofilm formation, detach preformed biofilms, and sensitize biofilms to killing by the cationic detergent cetylpyridinium chloride (CPC) in a 96-well microtiter plate assay. When added to growth medium, both dispersin B and DNase I inhibited biofilm formation by both S. aureus and S. epidermidis. Dispersin B detached preformed S. epidermidis biofilms but not S. aureus biofilms, whereas DNase I detached S. aureus biofilms but not S. epidermidis biofilms. Similarly, dispersin B sensitized S. epidermidis biofilms to CPC killing, whereas DNase I sensitized S. aureus biofilms to CPC killing. We concluded that PNAG and ecDNA play fundamentally different structural roles in S. aureus and S. epidermidis biofilms.  相似文献   

6.
AIMS: To make a quantitative evaluation of the differences in biofilm formation by Staphylococcus epidermidis using batch and fed-batch growth systems and to correlate this with production of the major biofilm polysaccharide, poly-N-acetyl glucosamine (PNAG). METHODS AND RESULTS: Dry weight measurements of biofilms formed in batch and fed-batch conditions were compared with haemagglutination titres, which measure the amount of PNAG produced. Strains grown in batch systems developed less biofilm than when grown in fed-batch systems. A good correlation was found between the amount of biofilm formed in fed-batch systems and the haemagglutination titres. CONCLUSIONS: Differences in biofilm formation and PNAG production by S. epidermidis are dependent on the availability of nutrients, with higher availability correlating with more biofilm and PNAG production. SIGNIFICANCE OF AND IMPACT OF THE STUDY: Comparisons of the formation of biofilms by S. epidermidis are dependent on choosing an appropriate biofilm growth system. Comparability or disparity of conclusions among different investigations will be strongly influenced by which mode S. epidermidis biofilms are formed.  相似文献   

7.
Extracellular teichoic acid, an essential constituent of the biofilm produced by Staphylococcus epidermidis strain RP62A, is also an important constituent of the extracellular matrix of another biofilm producing strain, Staphylococcus aureus MN8m. The structure of the extracellular and cell wall teichoic acids of the latter strain was studied by NMR spectroscopy and capillary electrophoresis-mass spectrometry. Both teichoic acids were found to be a mixture of two polymers, a (1-->5)-linked poly(ribitol phosphate), substituted at the 4-position of ribitol residues with beta-GlcNAc, and a (1-->3)-linked poly(glycerol phosphate), partially substituted with the D-Ala at 2-position of glycerol residue. Such mixture is unusual for S. aureus.  相似文献   

8.
PNAG is a major component of Staphylococcus epidermidis biofilms involved in intercellular adhesion as well as in the interaction of the biofilm with components of the host immune response. Synthesis of PNAG has been found to be regulated by several environmental factors. In the present study, the effect of glucose metabolism-dependent culture medium acidification in PNAG accumulation was evaluated. Established S. epidermidis biofilms were allowed to grow in excess glucose with or without maintained pH conditions. PNAG accumulation in these biofilms was determined by flow cytometry and fluorescence microscopy using wheat germ agglutinin as a fluorescent probe. Biofilms grown in maintained pH conditions presented significantly higher amounts of this polymer as well as higher icaA expression than biofilms grown in acidic pH conditions. Moreover, PNAG accumulation in biofilms grown in non-maintained pH conditions occurred in association with cell death. Overall, we show that glucose metabolism by decreasing the culture pH affects biofilm physiology in respect to PNAG production and cell death. The reported in vitro modulation of PNAG accumulation within S. epidermidis biofilms further highlights the role of environment on determining the biofilm physiological state.  相似文献   

9.
Recent progress in elucidating the role of the icaADBC-encoded polysaccharide intercellular adhesin (PIA) or polymeric N-acetyl-glucosamine (PNAG) in staphylococcal biofilm development has in turn contributed significantly to our understanding of the pathogenesis of device-related infections. Nevertheless, our understanding of how the ica locus and PIA/PNAG biosynthesis are regulated is far from complete and many questions remain. Moreover, beyond ica, evidence is now emerging for the existence of ica-independent biofilm mechanisms in both Staphylococcus aureus and Staphylococcus epidermidis. Teichoic acids, which are a major carbohydrate component of the S. epidermidis biofilm matrix and the major cell wall autolysin, play an important role in the primary attachment phase of biofilm development, whereas the cell surface biofilm-associated protein and accumulation-associated protein are capable of mediating intercellular accumulation. These findings raise the exciting prospect that other surface proteins, which typically function as antigenic determinants or in binding to extracellular matrix proteins, may also act as biofilm adhesins. Given the impressive array of surface proteins expressed by S. aureus and S. epidermidis, future research into their potential role in biofilm development either independent of PIA/PNAG or in cooperation with PIA/PNAG will be of particular interest.  相似文献   

10.
Compact-colony forming active substance (CCFAS), the material responsible for the compact colonies of Staphylococcus aureus observed in serum soft agar, was found to be an alkaline-stable, associated polysaccharide containing galactose, N-acetylglucosamine, ribitol, phosphorus and a small quantity of alanine. This substance, when extracted from strains unable to produce protein A clumping factor, was able to absorb the serum-reacting factor whereas a teichoic acid preparation of one strain could not. The formation of CCFAS was unaffected by the age of the cells, whereas when staphylococci were cultured at alkaline pH, young cells produced more clumping factor than old ones. Both fibrinogen and its degradation products were capable of inducing compact colonies in a strain of S. aureus. The ability of human sera to interact in compact-colony formation was independent of the immunoglobin content. Thus neither protein A, clumping factor, nor teichoic acid participate in the CCFAS reaction.  相似文献   

11.
Bacteria in a biofilm are enmeshed in a self-synthesized extracellular polysaccharide matrix that holds the bacteria together in a mass and firmly attaches the bacterial mass to the underlying surface. A major component of the extracellular polysaccharide matrix in several phylogenetically diverse bacteria is PGA, a linear polymer of N-acetylglucosamine residues in beta(1,6)-linkage. PGA is produced by the Gram-negative periodontopathogen Actinobacillus actinomycetemcomitans as well as by the Gram-positive device-associated pathogen Staphylococcus epidermidis. We recently reported that A.actinomycetemcomitans produces a soluble glycoside hydrolase named dispersin B, which degrades PGA. Here, we present the crystal structure of dispersin B at 2.0A in complex with a glycerol and an acetate ion at the active site. The enzyme crystallizes in the orthorhombic space group C222(1) with cell dimensions a=41.02A, b=86.13A, c=185.77A. The core of the enzyme consists a (beta/alpha)(8) barrel topology similar to other beta-hexosaminidases but significant differences exist in the arrangement of loops hovering in the vicinity of the active site. The location and interactions of the glycerol and acetate moieties in conjunction with the sequence analysis suggest that dispersin B cleaves beta(1,6)-linked N-acetylglucosamine polymer using a catalytic machinery similar to other family 20 hexosaminidases which cleave beta(1,4)-linked N-acetylglucosamine residues.  相似文献   

12.
Summary In the present work the chemical cell wall composition and some other biochemical characteristics were studied in staphylococci with the intention of utilizing the data obtained in their classification.According to the cell wall peptidoglycans and teichoic acids, the 130 strains of staphylococci studied are divided into 10 major groups. This division of staphylococci into groups is in good agreement with their present classification only in some cases. All of the 47Staphylococcus aureus strains contain a cell wall peptidoglycan of thel-Lys-Gly5–6 type and ribitol teichoic acid. Coagulase-negative staphylococci are more heterogeneous and are divided according to their cell wall composition into 9 major groups. 21 strains of them are classified asS. epidermidis sensu stricto. They form a natural group and are distinguished by the occurrence of thel-Lys-Gly4–5,l-Ser0.5–1.8 peptidoglycan type, glycerol teichoic acid and anl-lactate dehydrogenase which is activated by fructose-1,6-diphosphate. 8 strains with peptidoglycan of thel-Lys-Gly4–5,l-Ser0.5–1.8 type and ribitol teichoic acid are labeled asS. saprophyticus. The remaining groups have not been given species names and require further extensive comparative study.  相似文献   

13.
Passive protective activity of rabbit antiserum prepared by a representative capsular type II strain of Staphylococcus epidermidis in mice was absorbed out with homologous capsular type strains of S. simulans, S. cohnii, S. xylosus, S. hominis, S. capitis, S. hyicus, S. haemolyticus, and S. saprophyticus in addition to the homologous strain. The minimum amount of the strains required for absorption differed greatly, depending upon the strain. No absorption of the activity was shown with a strain of capsular type I and III of S. epidermidis, S. simulans, and S. cohnii, and a strain of capsular type III of S. hominis. These results suggest a possible capsular type specificity in the cross protection between strains of S. epidermidis and other species of coagulase-negative staphylococci.  相似文献   

14.
15.
Staphylococcus lugdunesis and Staphylococcus schleiferi, two newly described species, have been isolated from numerous types of human infections. We compared the pathogenicity of 30 strains of S. lugdunensis, S. schleiferi, Staphylococcus epidermidis, Staphylococcus warneri, and Staphylococcus hominis, using a mouse model in which a foreign body preadhered with the test strain was implanted subcutaneously, followed by injection of the test strain. All five species of staphylococci produced abscesses. Staphylococcus epidermidis, S. schleiferi, and S. lugdunensis yielded species means of 76-91% abscess formation; 80-100% of the infected foreign bodies and tissues were culture positive. These three species were more virulent than S. warneri or S. hominis, which produced abscesses in 54 and 65% of mice, respectively; only 10-48% of the infected samples were culture positive. Transmission electron microscopy of pure cultures of selected strains showed that all species possessed glycocalyx. All species produced a variety of possible virulence factors, such as alpha and delta hemolysins, as well as the aggressins lipase and esterase. The production of exoenzymes did not always correlate with virulence as demonstrated by abscess formation in mice.  相似文献   

16.
Abstract Adhesion of staphylococcal cells to polyethylene with end point-attached heparin was quantified by bioluminescence. Staphylococcus epidermidis 3380 and the slime-producing S. epidermidis RP12 adhered to the highest extent, and S. lugdunensis 2342 to the least extent. Preincubation of the polymer with dialysis fluid reduced adhesion of S. epidermidis 3380 and RP12 but enhanced that of S. aureus , and preadsorption of the surface with fibronectin decreased subsequent adhesion of S. epidermidis and S. haemolyticus strains. When staphylococci were grown in the presence of a biomaterial their ability to activate peritoneal cells was decreased. The bactericidal activity was impaired, whereas ingestion of opsonized coagulase-negative staphylococci (CNS) strains was unaffected. With S. epidermidis RP12 the presence of biomaterial did not influence either phagocytosis or bactericidal effect of peritoneal cells. After intra-peritoneal challenge with staphylococcal strains, the organ uptake of S. aureus Cowan 1 was increased in normal mice whereas immunosuppressed mice died. CNS strains increased mainly in the peritoneal cavity of immunosuppressed mice. The uptake of bacteria in liver and kidneys was increased with S. epidermidis 3380, S. lugdunensis 2343 and S. schleiferi 667-88. Generally, CNS strains persisted in the peritoneal cavity of both normal and immunosuppressed mice. These data indicate that host defense mechanisms, mainly polymorphonuclear neutrophils, fail to eliminate CNS infections in the peritoneum, and that initial adhesion to an implanted biomaterial may be of lesser importance in the peritoneal cavity than in e.g. catheter-associated infections. There are strain-specific virulence factors of bacteria, and slime producing strains evade the host defense mechanisms more efficiently than non-slime producing strains.  相似文献   

17.
Staphylococcus aureus and Staphylococcus epidermidis cause dangerous and difficult to treat medical device-related infections through their ability to form biofilms. Extracellular poly-N-acetylglucosamine (PNAG) facilitates biofilm formation and is a vaccination target, yet details of its biosynthesis by the icaADBC gene products is limited. IcaC is the proposed transporter for PNAG export, however a comparison of the Ica proteins to homologous exo-polysaccharide synthases suggests that the common IcaAD protein components both synthesise and transport the PNAG. The limited distribution of icaC to the Staphylococcaceae and its membership of a family of membrane-bound acyltransferases, leads us to suggest that IcaC is responsible for the known O-succinylation of PNAG that occurs in staphylococci, identifying a potentially new therapeutic target specific for these bacteria.  相似文献   

18.
19.
While coagulase-negative staphylococci (CoNS), with their ability to form a thick, multilayered biofilm on foreign bodies, have been identified as the major cause of implant-associated infections, no data are available about biofilm formation by staphylococcal small-colony variants (SCVs). In the past years, a number of device-associated infections due to staphylococcal SCVs were described, among them, several pacemaker infections due to SCVs of CoNS auxotrophic to hemin. To test the characteristics of SCVs of CoNS, in particular, to study the ability of SCVs to form a biofilm on foreign bodies, we generated a stable mutant in electron transport by interrupting one of the hemin biosynthetic genes, hemB, in Staphylococcus epidermidis. In fact, this mutant displayed a stable SCV phenotype with tiny colonies showing strong adhesion to the agar surface. When the incubation time was extended to 48 h or a higher inoculum concentration was used, the mutant produced biofilm amounts on polystyrene similar to those produced by the parent strain. When grown under planktonic conditions, the mutant formed markedly larger cell clusters than the parental strain which were completely disintegrated by the specific beta-1,6-hexosaminidase dispersin B but were resistant to trypsin treatment. In a dot blot assay, the mutant expressed larger amounts of polysaccharide intercellular adhesin (PIA) than the parent strain. In conclusion, interrupting a hemin biosynthetic gene in S. epidermidis resulted in an SCV phenotype. Markedly larger cell clusters and the ability of the hemB mutant to form a biofilm are related to the augmented expression of PIA.  相似文献   

20.
AIMS: To evaluate differences in biofilm or planktonic bacteria susceptibility to be killed by the polyvalent antistaphylococcus bacteriophage K. METHODS AND RESULTS: In this study, the ability of phage K to infect and kill several clinical isolates of Staphylococcus epidermidis was tested. Strains were grown in suspension or as biofilms to compare the susceptibility of both phenotypes to the phage lytic action. Most strains (10/11) were susceptible to phage K, and phage K was also effective in reducing biofilm biomass after 24 h of challenging. Biofilm cells were killed at a lower rate than the log-phase planktonic bacteria but at similar rate as stationary phase planktonic bacteria. CONCLUSIONS: Staphylococcus epidermidis biofilms and stationary growth phase planktonic bacteria are more resistant to phage K lysis than the exponential phase planktonic bacteria. SIGNIFICANCE OF STUDY: This study shows the differences in Staph. epidermidis susceptibility to be killed by bacteriophage K, when grown in biofilm or planktonic phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号