首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Liver parenchymal cells cultured in serum-free medium may retain their ability to synthesize glycogen in response to insulin. Specific hormone requirements are needed by hepatocytes to retain the biochemical pattern of mature cells. Insulin supplementation of culture medium seems to be essential to maintain the glycogen synthesis rate of cultured hepatocytes. The continuous presence of dexamethasone amplified the insulin-induced glycogen synthesis. Cytophotometric analysis showed differences in the way that individual cells accumulate glycogen in response to insulin stimulus, which indicates that liver parenchymal cells in culture are functionally heterogeneous.  相似文献   

2.
DNA synthesis of adult rat parenchymal hepatocytes alone in primary culture can be stimulated only by the addition of humoral growth factors to the culture medium. However, when parenchymal hepatocytes were cocultured with nonparenchymal liver cells from adult rats, their DNA synthesis was markedly stimulated in the absence of added growth factors or calf serum. DNA synthesis of parenchymal hepatocytes was not stimulated by conditioned medium from nonparenchymal liver cells and was greatest when the parenchymal cells were plated on 24-h cultures of nonparenchymal liver cells. A dead feeder layer of nonparenchymal cells was almost as effective as a feeder layer of viable nonparenchymal cells. These results suggest that the stimulation of DNA synthesis in parenchymal hepatocytes was not due to some soluble factors secreted by nonparenchymal liver cells but to an insoluble material(s) produced by the nonparenchymal liver cells. This insoluble material(s) was collagenase- and acid-sensitive, suggesting that it was a protein containing collagen. The effect of nonparenchymal liver cells was specific: coculture with hepatoma cells, liver epithelial cells, or Swiss 3T3 cells did not stimulate DNA synthesis in parenchymal hepatocytes. Added insulin and epidermal growth factor showed additive effects with nonparenchymal cells in the cocultures. These results suggest that DNA synthesis in parenchymal hepatocytes is stimulated not only by various humoral growth factors but also by cell-cell interaction between parenchymal and nonparenchymal hepatocytes, possibly endothelial cells. This cell-cell interaction may be important in repair of liver damage and liver regeneration.  相似文献   

3.
The short-term controls of glycogen synthase [EC 2.4.1.11] and glycogen phosphorylase [EC 2.4.1.1] by major regulators, such as insulin, glucose, catecholamine, and glucagon, were compared in a simple, yet organized experimental system, i.e., adult rat hepatocytes in primary culture. Glycogen synthase was activated by glucose markedly and dose-dependently (5-40 mM), but insulin alone (1 X 10(-8) M) activated this enzyme only two-fold. Therefore, activation of the enzyme by the two regulators together was mostly due to activation by glucose. Glucagon at a concentration of 5 X 10(-10) M suppressed this activation almost completely. Glucagon at this concentration activated phosphorylase considerably and this activation was slightly inhibited by insulin. Phenylephrine also activated phosphorylase, and this activation was inhibited by phenoxybenzamine or prazosin, suggesting that activation by catecholamine is through the alpha 1-adrenergic receptor. Similarly a high concentration of glucose diminished the effects of glucagon and phenylephrine. These results suggest that in rat liver, glycogen metabolism is controlled mainly by glucagon, catecholamine, and glucose; the former two activate phosphorylase and inactivate synthase, while glucose activates synthase strongly and inactivates phosphorylase partially. Insulin plays a minor role in both reactions. Thus, the liver is primarily an organ for glucose production, which is regulated by hormones, not for glycogen storage, which is increased only by a high glucose concentration in the portal blood.  相似文献   

4.
Summary Protein synthesis (measured by 3H-leucine incorporation) by catfish hepatocytes in culture was enhanced when trace amounts of catfish serum were added. Serum from 15°C-acclimated fish was significantly more effective than serum from 25°C-acclimated fish.Total protein content of the cells was slightly diminished; DNA content was not altered.Added triiodothyronine (T3) significantly reduced protein synthesis by cultured hepatocytes, more at 25°C than at 15°C culture. Threshold concentration of T3 was 10–9 M.Removal of T3 from serum by exchange resin resulted in increased protein synthesis. Addition of T3 to that preparation decreased protein synthesis.The concentration of T3 in serum from 25°C-acclimated catfish is three times greater than the concentration in serum from 15°C-acclimated fish.Increase in protein synthesis after removal of T3 suggests that there is a blood-borne stimulating factor, more active in cold- than in warm-acclimated fish. The stimulating substance was present after dialysis (2000 Da cutoff) and was partially inactivated by heat.Insulin stimulated protein synthesis; salmon insulin was more effective than bovine insulin. Insulin content did not differ in serum from 15°C- and 25°C-fish.The effects of growth hormone and prolactin were equivocal or negative.The inhibitory effect of T3 may explain the reduction in metabolism during warm-acclimation. The nature of a stimulating hormone in cold acclimation is unknown.Abbreviations DNA desoxyribonucleic acid - DPM desintegrations per minute - GH growth hormone - HPLC high performance liquid chromatography - LDH lactate dehydrogenase - MEM minimal essential medium - PBS phosphate buffered saline - POPOP 1,4-bis [5-phenyl-2-oxazolyl]benzene 2,2-p-phenylene-bis[5-phenyloxazole] - PPO 2,5-diphenyloxazole - RIA radioimmunoassay - TCA trichloroacetic acid - T 3 3,5,5-triiodothyronine - T 4 thyroxine - VO 2 oxygen consumption  相似文献   

5.
Density-dependent growth control of adult rat hepatocytes in primary culture   总被引:11,自引:0,他引:11  
Adult rat hepatocytes in primary culture, which show various liver functions, did not show any mitosis at confluent cell density, although they entered the S phase and remained in the G2 phase, judging by cytofluorometry, when insulin and epidermal growth factor (EGF) were added to 2-day cultures (Tomita, Y., Nakamura, T., & Ichihara, A. (1981) Exp. Cell Res. 135, 363-371). However, when the cell density was decreased by half or one third, the number of nuclei and cell number increased to 1.5-2.0 times that after culture for 35 h with insulin and EGF. Moreover, at these lower densities, DNA synthesis started much earlier, although at the usual high density DNA synthesis with these two hormones did not start until the hepatocytes had been cultured for over 40 h. These results suggest that proliferation of mature rat hepatocytes is regulated by the cell density. First, cells in G0 enter the G1 phase density-dependently; then cells in the G1 phase seem to be stimulated to enter the S phase by insulin and EGF, and a low cell density may permit cells after DNA synthesis to enter the M phase. DNA synthesis of rat hepatocyte cultures at low cell density was strongly inhibited by co-culture with a dense culture. Therefore, the density-dependent mechanism of hepatocyte proliferation seems to involve regulation by a soluble inhibitor(s) secreted by the hepatocytes into the culture medium.  相似文献   

6.
The changes in glycogen content and in its rate of synthesis in two-day-old primary cultures of rat hepatocytes were assessed under various conditions. Hepatocytes cultivated in serum-free and hormone-free medium switch from glycogen degradation to glycogen deposition at 10.3 mM glucose. After pretreatment of the cells with glucocorticoids this threshold was reduced, in the absence or presence of insulin, to 5.4 or 1.2 mM glucose, respectively. The rate of glycogen synthesis in the presence of 10 mM glucose was amplified from 5 nmol x h-1 x mg protein-1 to 20 nmol glucose x h-1 x mg protein-1 after pretreatment with triamcinolone. Glucagon pretreatment also significantly increased the subsequent glycogen synthesis rate. Insulin addition accelerated glycogen synthesis about twofold regardless of the pretreatment. The dose-response relationship between insulin concentration and glycogen synthesis rate showed half-maximal effect at 0.62 +/- 0.22 nM (mean +/- S.D.) insulin. Pretreatment of hepatocytes with glucocorticoids, glucagon, insulin or combinations of these hormones did not significantly change the concentration which gives the half-maximal effect.  相似文献   

7.

Introduction

Glucose has been reported to have an essential role in the synthesis and secretion of insulin in hepatocytes. As the efflux of glucose is facilitated from the liver cells into the circulation, the mechanism of transportation of glucose into the hepatocytes for the synthesis of insulin was investigated.

Methods

Grated liver suspension (GLS) was prepared by grating intact liver from adult mice by using a grater. Nitric oxide (NO) was measured by methemoglobin method. Glucose transporter-4 (Glut-4) was measured by immunoblot technique using Glut-4 antibody.

Results

Incubation of GLS with different amounts of glucose resulted in the uptake of glucose by the suspension with increased NO synthesis due to the stimulation of a glucose activated nitric oxide synthase that was present in the liver membrane. The inhibition of glucose induced NO synthesis resulted in the inhibition of glucose uptake. Glucose at 0.02M that maximally increased NO synthesis in the hepatocytes led to the translocation and increased synthesis of Glut-4 by 3.3 fold over the control that was inhibited by the inhibition of NO synthesis. The glucose induced NO synthesis was also found to result in the synthesis of insulin, in the presence of glucose due to the expression of both proinsulin genes I and II in the liver cells.

Conclusion

It was concluded that glucose itself facilitated its own transportation in the liver cells both via Glut-4 and by the synthesis of NO which had an essential role for insulin synthesis in the presence of glucose in these cells.  相似文献   

8.
Prostaglandins E1 or E2 (PGE1, PGE2)1 stimulated adenylate cyclase(s) from particulate fractions of whole liver homogenates 5- to 6-fold, but caused only slight (1.5- to 2-fold) stimulation of the enzyme from homogeneous hepatocytes. In contrast, glucagon stimulated enzyme from hepatocytes 12- to 15-fold and enzyme from whole liver 8- to 10-fold. Accordingly, most of the total prostaglandin-sensitive adenylate cyclase in cell suspensions was recovered in fractions containing non-parenchymal cells, and most of the total glucagon-sensitive activity was recovered with hepatocytes. PGE1 did not change adenosine-3′,5′-monophosphate (cyclic AMP) concentrations, or alter cyclic AMP increases caused by glucagon in hepatocytes. Glucagon consistently increased hepatocyte cyclic AMP concentrations and stimulated glycogenolysis by 35 to 40%. PGE1 did not affect basal or glucagon-stimulated glycogenolysis in the intact cells.  相似文献   

9.
Glycerolipid synthesis was studied by determining radioactive incorporation from either [1-14C] acetate or [U-14C] palmitate. Glycerolipid synthesis in adipocytes, mainly from exogenous palmitate, was preferentially directed to the formation of triacylglycerols, whereas in hepatocytes triacylglycerols and phospholipids were synthesized at similar rates. Insulin stimulated glycerolipid synthesis from acetate in both types of cells, being triacylglycerols more significantly increased than phospholipids. The most relevant difference was the finding that in adipocytes insulin strongly stimulated the formation of diglycerides, apparently from phosphatidate, whereas in hepatocytes insulin only slightly increased diglyceride levels. A possible role of diacylglycerol in insulin action in adipocytes, but not in hepatocytes, is also discussed.  相似文献   

10.
Summary High yields of human hepatocytes (up to 23×106 viable cells/g) were obtained from small surgical liver biopsies (1 to 3 g) by a two-step collagenase microperfusion method. Cell viability was about 95%, attachment efficiency of hepatocytes seeded on fibronectin-coated plates was 80% within 1 h after plating, and cells survived for about 2 wk in serum-free Ham’s F12 containing 0.2% bovine serum albumin, 10−8 M insulin, and 10−8 M dexamethasone. To evaluate the metabolism of human hepatocytes in serum-free conditions, we measured their most characteristic biochemical functions and compared them to those reported for human liver. After 24 h in culture, glycogen content was 1250±177 nmol glucose/mg cell protein and remained stable for several days. Gluconeogenesis from lactate in hormone-free media was (3.50±0.17 nmol glucose·mg−1·min−1) similar to that reported for human liver. Insulin at 10−8 M activated glycolysis (×1.40) and glycogenesis (×1.34), and glucagon at 10−9 M stimulated gluconeogenesis (×1.35) and glycogenolysis (×2.18). Human hepatocytes synthesized albumin, transferrin, fibrinogen, α1-antitrypsin, α1-antichymotrypsin, α1-acid glycoprotein, haptoglobin, α2-macroglobulin, and plasma fibronectin and excreted them to the culture medium. Maximum protein synthesis was stimulated by 10−9 M dexamethasone. Basal urea synthesis oscillated between 2.5 and 3.5 nmol·mg−1 cell protein·min−1, about 5 times the value estimated for human liver. Cytochrome P-450 decreased in culture but it was still 20% of freshly isolated hepatocytes by Day 5 in culture. In addition, ethoxycumarin-O-deethylase and aryl hydrocarbon hydroxylase could be induced in vitro by treatment with methyl cholanthrene. Glutathione levels were similar to those reported for human liver (35 nmol·mg−1). The results of our work show that adult human hepatocytes obtained from small surgical biopsies and cultured in chemically defined conditions express their most important metabolic functions to an extent that is similar to that reported for adult human liver.  相似文献   

11.
The use of normal adult liver hepatocytes in cell culture for biochemical, toxicological and pharmacological studies has been greatly limited owing to the loss of replicative capacity and differentiated liver function. This is contrary to the ability of the liver to regenerate following injury in vivo. This suggests that liver stem or transitional hepatocytes exist that upon proper stimulus divide and differentiate into mature hepatocytes. In this study we report the establishment and culture of hepatocytes from normal human adult liver, which: (1) possess replicative capacity sufficient to subpassage 12–15 times (27–37 cumulative population doublings); (2) can be cryopreserved for subsequent use without loss of replica five capacity; and (3) upon differentiation in culture synthesize albumin and keratin 18 and metabolize benzo[a]pyrene. The ability of these cells to divide or express differentia tedfunctions appears to be due to a number of cellular, biochemical and physical characteristics that are present during the primary establishment and subsequent growth phases of the cell cultures. Disassociation of cells ffom excess liver tissue was best achieved by combining the mechanical action of the Stomacher@ with very low amounts of proteolytic enzymes and EGTA. The cell lines appeared to grow best when established and subpassaged in an rnALPHA medium supplemented with insulin, hydrocortisone, transferrin, epithelial growth factor and fetal bovine serum ® rescreened for human hepatocyte cell growth). The seeding density and cell-cell contact in culture appeared to be important for both cell division and expression of liver function. When cells were seeded at a low density and subpassaged before confluency, the cells continued to divide. Albumin and keratin 18 synthesis occurred primarily in tightly packed cell clusters. When cells were seeded at a high density, near confluency, albumin and keratin 18 synthesis occurred uniformly in all of the cells of the culture and the culture metabolized benzo[a]pyrene to water-soluble metabolites, which covalently bound to cellular DNA. This appearance of liver functions was consistent with the transition of hepatocytes to a terminally differentiated state. Nonhepatic markers, i.e., -fetoprotein, factor VIII and -glutamyl transpeptidase activity were not expressed in cells cultured at either low or high density. Thus, the data presented here indicate that normal human adult liver hepatocytes, once established in culture, can be subpassaged to a high number of population doublings, cryopreserved for later use, and modulated to express differentiated liver functions.bl]References  相似文献   

12.
To determine the relative contributions of glucose, insulin, dexamethasone, and triiodothyronine to the induction of hepatic glucose-6-phosphate dehydrogenase, hepatocytes isolated from normal or adrenalectomized rats, either fasted or fed, were examined in culture. Addition of insulin (42 milliunits/ml, 0.9 microM) and dexamethasone (1 microM) to hepatocytes obtained from 3-day-fasted rats and cultured for 48 h in serum-free Dulbecco's medium resulted in a 7- to 11-fold increase in Glc-6-P dehydrogenase specific activity compared with a 2- to 3-fold increase in activity in control cultures incubated without added hormones. The effects of insulin and dexamethasone were independent of DNA synthesis, dose-dependent, and additive; each contributing about one-half of the total response. Medium glucose was neither sufficient nor necessary for the insulin- or dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Addition of triiodothyronine (10 microM) preferentially blocked the dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Insulin failed to stimulate the induction of Glc-6-P dehydrogenase in hepatocytes obtained from normal fed rats or from fasted and fed adrenalectomized rats. However, insulin caused a significant increase in the Glc-6-P dehydrogenase specific activity of these cells when dexamethasone was concurrently added to the culture medium.  相似文献   

13.
J L Ding  G D Smith  T J Peters 《FEBS letters》1982,142(2):207-209
Glucagon and insulin both stimulated the 32P-labelling of ribosomal protein S6 in rat hepatocytes that had been incubated with 32Pi. Glucagon selectively enhanced the labelling of the tryptic peptide phosphorylated by cyclic AMP-dependent protein kinase, demonstrating that 6 S is a physiological substrate for this enzyme. Insulin stimulated the phosphorylation of distinct tryptic peptides, at least one of which appears to be very close in the primary structure to the sites phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

14.
Blood glucose was significantly decreased by insulin (4 I.U./kg). Glucagon (1 mg/kg) and Cortisol (5 mg/kg) administration produced a significant hyperglycaemia. Insulin administration did not modify liver glycogen levels. Glucagon showed a marked liver glycogen mobilization. Cortisol stimulated liver glycogen deposition. Insulin and Glucagon showed a significant inverse effect on gluconeogenesis from (U-14C)glutamate, decreasing and increasing 14C-glucose formation respectively. Hormonal treatments did not influence the very low levels of incorporation of (U-14C)glutamate into liver and muscle glycogen.  相似文献   

15.
S R Wagle 《Life sciences》1975,17(6):827-835
Hepatocytes were isolated from normal fed, fasted and alloxan diabetic animals. The best cell preparations were obtained by using low concentrations of collagenase (10–20 mg) and exposing the liver for a very short period of time (10–15 min). Addition of hyaluronidase significantly decreased the glycogen content of the isolated hepatocytes. Glucagon (10−12M) stimulated glycogenesis in hepatocytes containing high glycogen whereas, in cells containing low glycogen much higher concentration of glucagon was needed (10−9M). Addition of insulin (100 μunits) stimulated both glycogen and protein synthesis in isolated hepatocytes containing high glycogen. Under these conditions glycogen synthase activity was stimulated by 40%. Incorporation of 14C phenylalanine into protein was linear for only 3–4 hr in cells containing low glycogen whereas, in cells containing high glycogen incorporating was linear for 8–10 hr. These studies suggest that intracellular glycogen plays an important role in the hormonal regulation of metabolism in hepatocytes.  相似文献   

16.
Rat liver hepatocytes were isolated by collagenase in vitro perfusion technique and effect of insulin on glycogen synthesis and ultra-structure was studied. Addition of insulin stimulated glycogen synthesis and maintained better cellular structure. Synthesis of glycogen was linear in isolated hepatocytes when incubated with various concentrations of glucose (0–800 mg%) reaching initial levels. Concanavaline A inhibited epinephrine stimulated glycogenolysis but had no effect on glucagon stimulated glycogenolysis. These studies indicate that insulin is required for glycogen synthesis and for maintaining hepatocytes ultrastructure. Furthermore, isolated hepatocytes retain various receptors and that different hormones utilize different receptor sites.  相似文献   

17.
Primary fetal rat liver cells cultured in medium deficient in, but not free of, arginine in the presence of dialyzed fetal calf serum grow until the final cell density is attained and cells become quiescent in the Go phase of the cell cycle. When growing cells are transferred into arginine free medium, cells become reversibly arrested in Go. Fetal rat liver cells can be induced to synthesize DNA by addition of high levels of arginine to serum free medium. Low arginine levels in the culture medium do not induce cell growth unless serum is present. Serum stimulates arginine uptake in fetal rat liver cells suggesting that serum growth factor(s) act by increasing intracellular arginine levels high enough to initiate the growth cycle. Fractionation of fetal calf serum by gel filtration on G-200 Sephadex yields a partially purified arginine uptake stimulating activity which is eluted from the column in the same fractions that contain fetal rat liver cell growth promoting activity. Insulin induces DNA synthesis in quiescent fetal rat liver cells. Glucagon reverses the stimulatory effects of insulin. N-6,O-2-Dibutyryl adenosine 3:5-cyclic monophosphoric acid (But2c-AMP) (10-minus4 M) and theophilline (10-minus3 M) inhibit arginine uptake and the initiation of DNA synthesis by serum. The role of arginine in the control of DNA synthesis in fetal rat liver cells and the mechanism of action of serum growth factors are discussed.  相似文献   

18.
Insulin and dexamethasone, usually added to culture media, play an important role in maintaining the survival of functional hepatocytes. Adenine nucleotide concentrations and energy charge values of cultured hepatocytes were determined to investigate the relationship between the beneficial effects of these hormones and the energy status of the cells. The results indicate that insulin and dexamethasone are essential in maintaining the metabolic competence of cultured hepatocytes and that this correlates with the absolute concentration of ATP rather than with the energy charge.  相似文献   

19.
  • 1.1. Primary cultures of isolated sheep hepatocytes were used to characterize metabolic functions of liver: gluconeogenesis, ureagenesis and protein synthesis. The rates of all three metabolic activities were linear over a 20 hr culture period.
  • 2.2. Hepatocytes in the presence of glucagon increased the synthesis of urea by approx 30% (P < 0.05) and increased release of glucose into the medium by 60% (P < 0.05).
  • 3.3. In the absence of insulin, significantly more (35%; P < 0.05) glucose was released in the medium than in the presence of insulin.
  • 4.4. Results help evaluate the primary culture of sheep hepatocytes as an appropriate experimental model to study nutritional and hormonal regulation of liver in the ruminant species.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号