首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Streptomyces peucetius dpsY and dnrX genes govern early and late steps in the biosynthesis of the clinically valuable antitumor drugs daunorubicin (DNR) and doxorubicin (DXR). Although their deduced products resemble those of genes thought to be involved in antibiotic production in several other bacteria, this information could not be used to identify the functions of dpsY and dnrX. Replacement of dpsY with a mutant form disrupted by insertion of the aphII neomycin-kanamycin resistance gene resulted in the accumulation of UWM5, the C-19 ethyl homolog of SEK43, a known shunt product of iterative polyketide synthases involved in the biosynthesis of aromatic polyketides. Hence, DpsY must act along with the other components of the DNR-DXR polyketide synthase to form 12-deoxyaklanonic acid, the earliest known intermediate of the DXR pathway. Mutation of dnrX in the same way resulted in a threefold increase in DXR production and the disappearance of two acid-sensitive, unknown compounds from culture extracts. These results suggest that dnrX, analogous to the role of the S. peucetius dnrH gene (C. Scotti and C. R. Hutchinson, J. Bacteriol. 178:7316–7321, 1996), may be involved in the metabolism of DNR and/or DXR to acid-sensitive compounds, possibly related to the baumycins found in many DNR-producing bacteria.  相似文献   

2.
3.
Abstract

Doxorubicin (DXR), which is produced by Streptomyces peucetius, is an important anthracycline-type antibiotic used for the treatment of various cancers. However, due to the low DXR productivity of wild-type S. peucetius, it is difficult to produce DXR by one-step fermentation. In this study, a DXR-resistance screening method was developed to screen for DXR high-producing mutants. Then, S. peucetius SIPI-11 was treated several times with UV and ARTP (atmospheric and room temperature plasma) to induce mutations. Treated strains were screened by spreading on a DXR-containing plate, isolating a mutant (S. peucetius 33-24) with enhanced DXR yield (570?mg/L vs. 119?mg/L for the original strain). The components of the fermentation medium, including the carbon and nitrogen sources, were optimized to further enhance DXR yield (to 850?mg/L). The pH of the fermentation medium and culture temperature were also optimized for effective DXR production. Finally, DXR production by S. peucetius 33-24 was investigated in flask culture and a fermenter. The yield of DXR was as high as 1100?mg/L in a 5-L fermenter, which is the highest DXR productivity reported thus far, suggesting that S. peucetius 33-24 has the potential to produce DXR by direct fermentation.  相似文献   

4.
5.
Doxorubicin (DXR) and daunorubicin (DNR) are anthracycline antibiotics produced by Streptomyces peucetius and widely used as cancer chemotherapeutic agents. To improve their productivity, regulation of DXR/DNR synthesis genes as well as central metabolic pathway genes must be understood more clearly. So far, studies have focused on DXR/DNR gene regulation. To investigate the correlation between the central metabolic pathway genes and DXR/DNR productivity, we selected 265 genes involved in glycolysis, fermentation, the citric acid cycle, butanoate metabolism, etc., and searched for their sequences in the S. peucetius genome by comparing gene sequences to those of Streptomyces coelicolor. The homologous genes were amplified by PCR and arrayed on glass microarray slides. Gene expression was monitored under two different growth media conditions, R2YE and NDYE. Genes involved in the production of malonyl-CoA and propionyl-CoA, the main precursors for doxorubicin synthesis, were mainly upregulated in NDYE media. Genes related to acetyl-CoA and the urea cycle were also upregulated. These changes in gene expression were confirmed by real-time RT-PCR.  相似文献   

6.
Biosynthesis of polyketide compounds depends upon the starter and extender units of coenzyme A derivatives of carboxylic acids present in the host organism. To increase the coenzyme A (CoA) pool, pantothenate kinase (panK) gene from Escherichia coli was integrated into S. peucetius ATCC 27952 (panK-integrated strain, BG200), which resulted in increase in aglycone polyketide ε-rhodomycinone (RHO), but decrease in the desired product, i.e., doxorubicin (DXR). To reduce RHO accumulation by synthesizing daunorubicin (DNR) from RHO more efficiently, glycosyltransferase (dnrQS) was overexpressed (pIBR25::dnrQS in panK-integrated strain, BG201). However, DnrQS overexpression still resulted in less production of DXR compared with the parental strain. To understand the results in detail by investigating the proteome changes in the panK-integrated strain, two-dimensional (2D) gel electrophoresis was performed. Among the several proteins that are up- or downregulated in BG200, efflux protein DrrA was our main target of interest, because it is directly related to DXR/DNR production in S. peucetius. DXR transporter DrrAB was additionally introduced in BG200 to enhance secretion of toxic DXR. Compared with S. peucetius ATCC 27952, BG204 (pIBR25::drrAB in panK-integrated strain), produced two times higher amount of DXR, which is 9.4-fold higher than that of panK-integrated strain BG200. The results show that the proteomic approach is quite useful in host development of Streptomyces and understanding cell physiology for antibiotic production.  相似文献   

7.
The doxorubicin biosynthetic gene cluster in Streptomyces peucetius ATCC 27952 contains a TDP-D-glucose 4,6-dehydratase gene, dnmM, that is putatively involved in the biosynthesis of daunosamine, but the gene contains a frameshift in the DNA sequence that would cause premature termination of translation. In pursuit of another TDP-D-glucose 4,6-dehydratase in S. peucetius, a homologue gene, rmbB, was found, whose deduced product exhibits high sequence similarity to a number of TDP-D-glucose 4,6-dehydratases. The gene was located within a putative rhamnose biosynthetic gene cluster at another locus in the genome. RmbB was verified to be a functional TDP-D-glucose 4,6-dehydratase by enzyme assay as it catalyzed the conversion of TDP-D-glucose into TDP-4-keto-6-deoxy-D-glucose. Inactivation of rmbB in the S. peucetius genome abolished the production of doxorubicin while complementation of the same gene in an rmbB knockout mutant restored the doxorubicin production. Hence, rmbB provides TDP-4-keto-6-deoxy-D-glucose as a nucleotide sugar precursor for the biosynthesis of doxorubicin.  相似文献   

8.
Daunorubicin and its derivative doxorubicin are antitumour anthracycline antibiotics produced byStreptomyces peucetius. In this study we report isolation of stable mutants ofS. peucetius blocked in different steps of the daunorubicin biosynthesis pathway. Mutants were screened on the basis of colony colour since producer strains are distinctively coloured on agar plates. Different mutants showed accumulation of aklaviketone, ε-rhodomycinone, maggiemycin or 13-dihydrocarminomycin in their culture filtrates. These results indicate that the mutations in these isolates affect steps catalysed bydnrE (mutants SPAK and SPMAG),dnrS (SPFS and SPRHO) anddoxA (SPDHC) gene products.  相似文献   

9.
Additional copies of the centromeric DNA (CEN) region induce pseudohyphal growth in a dimorphic yeast, Candida maltosa (T. Nakazawa, T. Motoyama, H. Horiuchi, A. Ohta, and M. Takagi, J. Bacteriol. 179:5030–5036, 1997). To understand the mechanism of this transition, we screened the gene library of C. maltosa for sequences which could suppress this morphological change. As a result, we isolated the 5′ end of a new gene, EPD1 (for essential for pseudohyphal development), and then cloned the entire gene. The predicted amino acid sequence of Epd1p was highly homologous to those of Ggp1/Gas1/Cwh52p, a glycosylphosphatidylinositol-anchored protein of Saccharomyces cerevisiae, and Phr1p and Phr2p of Candida albicans. The expression of EPD1 was moderately regulated by environmental pH. A homozygous EPD1 null mutant showed some morphological defects and reduction in growth rate and reduced levels of both alkali-soluble and alkali-insoluble β-glucans. Moreover, the mutant could not undergo the transition from yeast form to pseudohyphal form induced by additional copies of the CEN sequence at pH 4 or by n-hexadecane at pH 4 or pH 7, suggesting that EPD1 is not essential for yeast form growth but is essential for transition to the pseudohyphal form. Overexpression of the amino-terminal part of Epd1p under the control of the GAL promoter suppressed the pseudohyphal development induced by additional copies of the CEN sequence, whereas overexpression of the full-length EPD1 did not. This result and the initial isolation of the 5′ end of EPD1 as a suppressor of the pseudohyphal growth induced by the CEN sequence suggest that the amino-terminal part of Epd1p may have a dominant-negative effect on the functions of Epd1p in the pseudohyphal growth induced by the CEN sequence.  相似文献   

10.
11.
Phosphatidate phosphatase (PAP) catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol. In the yeast Saccharomyces cerevisiae, PAP is encoded by PAH1, DPP1, and LPP1. The presence of PAP activity in the pah1Δ dpp1Δ lpp1Δ triple mutant indicated another gene(s) encoding the enzyme. We purified PAP from the pah1Δ dpp1Δ lpp1Δ triple mutant by salt extraction of mitochondria followed by chromatography with DE52, Affi-Gel Blue, phenyl-Sepharose, MonoQ, and Superdex 200. Liquid chromatography/tandem mass spectrometry analysis of a PAP-enriched sample revealed multiple putative phosphatases. By analysis of PAP activity in mutants lacking each of the proteins, we found that APP1, a gene whose molecular function has been unknown, confers ∼30% PAP activity of wild type cells. The overexpression of APP1 in the pah1Δ dpp1Δ lpp1Δ mutant exhibited a 10-fold increase in PAP activity. The PAP activity shown by App1p heterologously expressed in Escherichia coli confirmed that APP1 is the structural gene for the enzyme. Introduction of the app1Δ mutation into the pah1Δ dpp1Δ lpp1Δ triple mutant resulted in a complete loss of PAP activity, indicating that distinct PAP enzymes in S. cerevisiae are encoded by APP1, PAH1, DPP1, and LPP1. Lipid analysis of cells lacking the PAP genes, singly or in combination, showed that Pah1p is the only PAP involved in the synthesis of triacylglycerol as well as in the regulation of phospholipid synthesis. App1p, which shows interactions with endocytic proteins, may play a role in vesicular trafficking through its PAP activity.  相似文献   

12.
We have identified a gene in Escherichia coli that is required for both the normal decay of mRNA and RNA synthesis. Originally designated mrsC (mRNA stability), the mrsC505 mutation described here is, in fact, an allele of the hflB/ftsH locus (R.-F. Wang et al., J. Bacteriol. 180:1929–1938, 1998). Strains carrying the thermosensitive mrsC505 allele stopped growing soon after the temperature was shifted to 44°C but remained viable for several hours. Net RNA synthesis stopped within 20 min after the shift, while DNA and protein synthesis continued for over 60 min. At 44°C, the half-life of total pulse-labeled RNA rose from 2.9 min in a wild-type strain to 5.9 min in the mrsC505 single mutant. In an rne-1 mrsC505 double mutant, the average half-life was 19.8 min. Inactivating mrsC significantly increased the half-lives of the trxA, cat, secG, and kan mRNAs, particularly in an mrsC505 pnp-7 rnb-500 rne-1 multiple mutant. In addition, Northern analysis showed dramatic stabilizations of full-length mRNAs in a variety of mrsC505 multiple mutants at 44°C. These results suggest that MrsC, directly or indirectly, controls endonucleolytic processing of mRNAs that may be independent of the RNase E-PNPase-RhlB multiprotein complex.  相似文献   

13.
The psd gene of Bacillus subtilis Marburg, encoding phosphatidylserine decarboxylase, has been cloned and sequenced. It encodes a polypeptide of 263 amino acid residues (deduced molecular weight of 29,689) and is located just downstream of pss, the structural gene for phosphatidylserine synthase that catalyzes the preceding reaction in phosphatidylethanolamine synthesis (M. Okada, H. Matsuzaki, I. Shibuya, and K. Matsumoto, J. Bacteriol. 176:7456–7461, 1994). Introduction of a plasmid containing the psd gene into temperature-sensitive Escherichia coli psd-2 mutant cells allowed growth at otherwise restrictive temperature. Phosphatidylserine was not detected in the psd-2 mutant cells harboring the plasmid; it accumulated in the mutant up to 29% of the total phospholipids without the plasmid. An enzyme activity that catalyzes decarboxylation of 14C-labeled phosphatidylserine to form phosphatidylethanolamine was detected in E. coli psd-2 cells harboring a Bacillus psd plasmid. E. coli cells harboring the psd plasmid, the expression of which was under the control of the T710 promoter, produced proteins of 32 and 29 kDa upon induction. A pulse-labeling experiment suggested that the 32-kDa protein is the primary translation product and is processed into the 29-kDa protein. The psd gene, together with pss, was located by Southern hybridization to the 238- to 306-kb SfiI-NotI fragment of the chromosome. A B. subtilis strain harboring an interrupted psd allele, psd1::neo, was constructed. The null psd mutant contained no phosphatidylethanolamine and accumulated phosphatidylserine. It grew well without supplementation of divalent cations which are essential for the E. coli pssA null mutant lacking phosphatidylethanolamine. In both the B. subtilis null pss and psd mutants, glucosyldiacylglycerol content increased two- to fourfold. The results suggest that the lack of phosphatidylethanolamine in the B. subtilis membrane may be compensated for by the increases in the contents of glucosyldiacylglycerols by an unknown mechanism.  相似文献   

14.
CWH41, a gene involved in the assembly of cell wall β-1,6-glucan, has recently been shown to be the structural gene for Saccharomyces cerevisiae glucosidase I that is responsible for initiating the trimming of terminal α-1,2-glucose residue in the N-glycan processing pathway. To distinguish between a direct or indirect role of Cwh41p in the biosynthesis of β-1,6-glucan, we constructed a double mutant, alg5Δ (lacking dolichol-P-glucose synthase) cwh41Δ, and found that it has the same phenotype as the alg5Δ single mutant. It contains wild-type levels of cell wall β-1,6-glucan, shows moderate underglycosylation of N-linked glycoproteins, and grows at concentrations of Calcofluor White (which interferes with cell wall assembly) that are lethal to cwh41Δ single mutant. The strong genetic interactions of CWH41 with KRE6 and KRE1, two other genes involved in the β-1,6-glucan biosynthetic pathway, disappear in the absence of dolichol-P-glucose synthase (alg5Δ). The triple mutant alg5Δcwh41Δkre6Δ is viable, whereas the double mutant cwh41Δkre6Δ in the same genetic background is not. The severe slow growth phenotype and 75% reduction in cell wall β-1,6-glucan, characteristic of the cwh41Δkre1Δ double mutant, are not observed in the triple mutant alg5Δcwh41Δkre1Δ. Kre6p, a putative Golgi glucan synthase, is unstable in cwh41Δ strains, and its overexpression renders these cells Calcofluor White resistant. These results demonstrate that the role of glucosidase I (Cwh41p) in the biosynthesis of cell wall β-1,6-glucan is indirect and that dolichol-P-glucose is not an intermediate in this pathway.  相似文献   

15.
Previously, members of our group reported the isolation and characterization of mutacin II from Streptococcus mutans T8 and the genetic analyses of the mutacin II biosynthesis genes (J. Novak, P. W. Caufield, and E. J. Miller, J. Bacteriol. 176:4316–4320, 1994; F. Qi, P. Chen, and P. W. Caufield, Appl. Environ. Microbiol. 65:652–658, 1999; P. Chen, F. Qi, J. Novak, and P. W. Caufield, Appl. Environ. Microbiol. 65:1356–1360, 1999). In this study, we cloned and sequenced the mutacin III biosynthesis gene locus from a group III strain of S. mutans, UA787. DNA sequence analysis revealed eight open reading frames, which we designated mutR, -A, -A′, -B, -C, -D, -P, and -T. MutR bears strong homology with MutR of mutacin II, while MutA, -B, -C, -D, -P, and -T are counterparts of proteins in the lantibiotic epidermin group. MutA′ has 60% amino acid identity with MutA and therefore appears to be a duplicate of MutA. Insertional inactivation demonstrated that mutA is an essential gene for mutacin III production, while mutA′ is not required. Mutacin III was purified to homogeneity by using reverse-phase high-pressure liquid chromatography. N-terminal peptide sequencing of the purified mutacin III determined mutA to be the structural gene for prepromutacin III. The molecular mass of the purified peptide was measured by laser disorption mass spectrophotometry and found to be 2,266.43 Da, consistent with our supposition that mutacin III has posttranslational modifications similar to those of the lantibiotic epidermin.  相似文献   

16.
Tn5 transposase (Tnp) overproduction is lethal to Escherichia coli. The overproduction causes cell filamentation and abnormal chromosome segregation. Here we present three lines of evidence strongly suggesting that Tnp overproduction killing is due to titration of topoisomerase I. First, a suppressor mutation of transposase overproduction killing, stkD10, is localized in topA (the gene for topoisomerase I). The stkD10 mutant has the following characteristics: first, it has an increased abundance of topoisomerase I protein, the topoisomerase I is defective for the DNA relaxation activity, and DNA gyrase activity is reduced; second, the suppressor phenotype of a second mutation localized in rpoH, stkA14 (H. Yigit and W. S. Reznikoff, J. Bacteriol. 179:1704–1713, 1997), can be explained by an increase in topA expression; and third, overexpression of wild-type topA partially suppresses the killing. Finally, topoisomerase I was found to enhance Tn5 transposition up to 30-fold in vivo.  相似文献   

17.
Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Streptomyces circumvents problems such as host-controlled restriction and instability of foreign DNA during the transformation of Streptomyces protoplasts. The anthracycline antibiotic-producing strains Streptomyces peucetius and Streptomyces sp. strain C5 were transformed using E. coli ET12567(pUZ8002) as a conjugal donor. When this donor species, carrying pSET152, was mated with Streptomyces strains, the resident plasmid was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. Analysis of the exconjugants showed stable integration of the plasmid at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the chromosomal integration site was determined and shown to be conserved. However, the core sequence, where the crossover presumably occurred in C5 and S. peucetius, is TTC. These results also showed that the C31 integrative recombination is active and the phage attP site is functional in S. peucetius as well as in C5. The efficiency and specificity of C31-mediated site-specific integration of the plasmid in the presence of a 3.7-kb homologous DNA sequence indicates that integrative recombination is preferred under these conditions. The integration of plasmid DNA did not affect antibiotic biosynthesis or biosynthesis of essential amino acids. Integration of a single copy of a mutant chiC into the wild-type S. peucetius chromosome led to the production of 30-fold more chitinase.  相似文献   

18.
19.
The signaling molecule cyclic AMP (cAMP) is a ubiquitous second messenger that enables cells to detect and respond to extracellular signals. cAMP is generated by the enzyme adenylyl cyclase, which is activated or inhibited by the Gα subunits of heterotrimeric G proteins in response to ligand-activated G-protein-coupled receptors. Here we identified the unique gene (CAC1) encoding adenylyl cyclase in the opportunistic fungal pathogen Cryptococcus neoformans. The CAC1 gene was disrupted by transformation and homologous recombination. In stark contrast to the situation for Saccharomyces cerevisiae, in which adenylyl cyclase is essential, C. neoformans cac1 mutant strains were viable and had no vegetative growth defect. Furthermore, cac1 mutants maintained the yeast-like morphology of wild-type cells, in contrast to the constitutively filamentous phenotype found upon the loss of adenylyl cyclase in another basidiomycete pathogen, Ustilago maydis. Like C. neoformans mutants lacking the Gα protein Gpa1, cac1 mutants were mating defective and failed to produce two inducible virulence factors: capsule and melanin. As a consequence, cac1 mutant strains were avirulent in animal models of cryptococcal meningitis. Reintroduction of the wild-type CAC1 gene or the addition of exogenous cAMP suppressed cac1 mutant phenotypes. Moreover, the overexpression of adenylyl cyclase restored mating and virulence factor production in gpa1 mutant strains. Physiological studies revealed that the Gα protein Gpa1 and adenylyl cyclase controlled cAMP production in response to glucose, and no cAMP was detectable in extracts from cac1 or gpa1 mutant strains. These findings provide direct evidence that Gpa1 and adenylyl cyclase function in a conserved signal transduction pathway controlling cAMP production, hyphal differentiation, and virulence of this human fungal pathogen.  相似文献   

20.
李嵘  王喆之 《植物研究》2007,27(1):59-67
采用生物信息学的方法和工具对已在GenBank上注册的拟南芥、玉米、岩蔷薇、水稻、黄花蒿、亚麻等植物的萜类合成酶1-脱氧-D-木酮糖-5-磷酸还原异构酶的核酸及氨基酸序列进行分析,并对其组成成分、转运肽、跨膜拓朴结构域、疏水性/亲水性、蛋白质二级及三级结构、分子系统进化关系等进行预测和推断。结果表明:该类酶基因的全长包括5′、3′非翻译区和一个开放阅读框,无跨膜结构域,是一个具转运肽的亲水性蛋白,包括两个功能DXR结合motif及两个功能NADPH结合motif,α-螺旋和不规则卷曲是蛋白质二级结构最大量的结构元件,β-转角和β-折叠散布于整个蛋白质中,蛋白质的功能域在空间结构上折叠成“V”形,“V”形的两臂由N-端与C-端构成,“V”形的底部,是N 端臂与C-端臂的结合域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号