首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tryptophan (Trp) fluorescence quenching of phytochrome has been studied using anionic, cationic and neutral quenchers, I-, Cs+ and acrylamide, respectively, in an effort to understand the molecular differences between the Pr and Pfr forms. The data have been analyzed using both Stern-Volmer and modified Stern-Volmer kinetic treatments. The anionic quencher, I-, was proven to be an ineffective quencher with Stern-Volmer constants, Ksv, of 0.60 and 0.63 M-1, respectively, for the Pr and Pfr forms of phytochrome. The cationic quencher, Cs+, showed about a 2-fold difference in the Ksv of Pr and Pfr, indicating a significant change in the fluorescent Trp environments during the Pr to Pfr phototransformation. However, only 25-37% of the fluorescent Trp residues were accessible to the cationic quencher. Most of the fluorescent Trp residues were accessible to acrylamide, but the quenching by acrylamide was indistinguishable for the Pr and Pfr forms. An additional quenching by acrylamide after a saturated quenching with Cs+ showed more than 40% increase in the Ksv of Pfr over Pr. These observations, along with the finding of two distinct components in the Trp fluorescence lifetime, indicate the existence of Trp residues in at least two different sets of environments in the phytochrome protein. The two components of the fluorescence had lifetimes of 1.1 ns (major) and 4.7 ns (minor) for Pr and 0.9 ns (major) and 4.6 ns (minor) for Pfr. Fluorescence quenching was found to be both static and dynamic as the Stern-Volmer constants for the steady-state fluorescence quenching were higher than for the dynamic fluorescence quenching. Based on the quenching results, in combination with the location of Trp residues in the primary structure, we conclude that the Pr to Pfr phototransformation involves a significant conformation change in the phytochrome molecule, preferentially in the 74 kDa chromophore-bearing domain.  相似文献   

2.
The intrinsic fluorescence of the exonuclease isolated from Crotalus adamanteus venom, was studied. The position of its maximum at 335 nm and half-width of the emission band 55 nm (lambda exc. 295 nm) suggested the existence of at least two types of tryptophan residues in the enzyme molecule. Differential analysis of the fluorescence spectra obtained by excitation at 280 and 295 nm revealed about 12.5% contribution of the tyrosine fluorescence in the overall emission excited at 280 nm. The environment of the tryptophan residues in the exonuclease was studied by quenching of their fluorescence with various ionic (NO3-, NO2-, I-, Br- and Cs+) and non-ionic agents (acrylamide, chloroform-methanol). On this basis, fractions of inner (non-polar) and surface tryptophan residues located in charged and neutral regions of the enzyme molecule were evaluated. More than half of the residues (60%) was found in the inner part of the exonuclease while most of its surface tryptophans--in a neutral region(s).  相似文献   

3.
Quenching of tryptophan fluorescence of Luciola mingrelica (single tryptophan residue, Trp-419) and Photinus pyralis (two tryptophan residues, Trp-417 and Trp-426) luciferases with different quenchers (I-, Cs+, acrylamide) was studied. The conserved Trp-417(419) residue was shown to be not accessible to charged particles, and positively and negatively charged amino acid residues are located in close vicinity to it. We found previously unreported effective energy transfer from this tryptophan to luciferin during the quenching of the tryptophan fluorescence. The distance between the luciferin molecule and Trp-417(419) was calculated: 11-15 and 12-17 A for P. pyralis and L. mingrelica luciferases, respectively. The role of the conserved Trp residue in the catalysis is discussed. ATP and AMP are also quenchers of the tryptophan fluorescence of the luciferases. In this case, an allosteric mechanism of the interaction of Trp-417(419) with an excess of ATP (AMP) is proposed.  相似文献   

4.
The uncoupling protein from brown adipose tissue is a member of the family of metabolite carriers of the mitochondrial inner membrane. It contains two tryptophan residues which have been characterized by fluorescence spectroscopy. Application of fluorescence-quenching-resolved spectroscopy (FQRS) allowed the determination of the emission maximum for each residue, both of which occur at 332 nm, thus suggesting that they are both located in a non-polar environment. Fluorescence quenching has demonstrated that both residues are accessible to acrylamide and inaccessible to Cs+, while only one of them is accessible to I-. When FQRS is combined with guanidinium hydrochloride denaturation, the unfolding of the regions containing each tryptophan can be monitored separately as they are transferred to the polar medium where the emission maximum appears at 359 nm, revealing also that the iodide-accessible residue is more sensitive to the denaturant. Secondary structure predictions, together with the data presented here, suggest that the iodide-accessible residue could correspond to Trp173 and the denaturant-resistant iodide-inaccessible one to Trp280, located in the center of the sixth transmembrane alpha-helix. Interaction of the protein with GDP (a transport inhibitor) has been studied and has revealed that it partially shields Trp173 from the interaction with I-, as well as reducing the static component of the acrylamide quenching.  相似文献   

5.
Tryptophan (Trp) fluorescence quenching of phytochrome has been studied using anionic, cationic and neutral quenchers, I, Cs+ and acrylamide, respectively, in an effort to understand the molecular differences between the Pr and Pfr forms. The data have been analyzed using both Stern-Volmer and modified Stern-Volmer kinetic treatments. The anionic quencher, I, was proven to be an ineffective quencher with Stern-Volmer constants, Ksv, of 0.60 and 0.63 M−1, respectively, for the Pr and Pfr forms of phytochrome. The cationic quencher, Cs+, showed about a 2-fold difference in the Ksv of Pr and Pfr, indicating a significant change in the fluorescent Trp environments during the Pr to Pfr phototransformation. However, only 25–37% of the fluorescent Trp residues were accessible to the cationic quencher. Most of the fluorescent Trp residues were accessible to acrylamide, but the quenching by acrylamide was indistinguishable for the Pr and Pfr forms. An additional quenching by acrylamide after a saturated quenching with Cs+ showed more than 40% increase in the Ksv of Pfr over Pr. These observations, along with the finding of two distinct components in the Trp fluorescence lifetime, indicate the existence of Trp residues in at least two different sets of environments in the phytochrome protein. The two components of the fluorescence had lifetimes of 1.1 ns (major) and 4.7 ns (minor) for Pr and 0.9 ns (major) and 4.6 ns (minor) for Pfr. Fluorescence quenching was found to be both static and dynamic as the Stern-Volmer constants for the steady-state fluorescence quenching were higher than for the dynamic fluorescence quenching. Based on the quenching results, in combination with the location of Trp residues in the primary structure, we conclude that the Pr to Pfr phototransformation involves a significant conformation change in the phytochrome molecule, preferentially in the 74 kDa chromophore-bearing domain.  相似文献   

6.
The effect of inhibitors, 1-deazaadenosine (1-dAdo) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), on the conformation of adenosine deaminase was studied using the method of selective quenching of fluorescence emission by acrylamide, I- and Cs+. Both in free adenosine deaminase and in its complexes with the inhibitors, the wavelength maxima and half-width of the emission characterize the environment of fluorescing tryptophan residues in adenosine deaminase as weak polar with limited access to solvent. The formation of complexes with the ground state inhibitors used did not quench or change the main emission characteristics of tryptophan fluorescence in adenosine deaminase. Small blue shifts of emission maxima were observed upon quenching in all three samples. The Stern-Volmer parameters of tryptophan fluorescence quenching by acrylamide were not essentially influenced by complex formation of the enzyme with the inhibitors: in general, the folding of the enzyme molecule in the complexes is not perturbed. On the contrary, the emission quenching by charged heavy ions, I- and Cs+, in the complexes was hindered in comparison with free adenosine deaminase. In the complex with 1-deazaadenosine, the parameters for quenching by both ions evidence the essential worsening of their interaction with tryptophans. In the complex with erythro-9-(2-hydroxy-3-nonyl)adenine, along with the worse quenching by I-, complete prohibition of quenching by Cs+ was observed. These data indicate that the local environments of fluorescing tryptophan residues is substantially distorted compared with free adenosine deaminase, which leads to their screening from charged heavy ions.  相似文献   

7.
By the methods of spectroscopy, fluorimetry and chemical modification of tryptophane residues with N-bromsuccinimide, the sarcoplasmic reticulum of rabbit sceletal muscle was shown to contain 18 +/- 1 tryptophane residues per Ca2+-ATPase molecule, 6 of which were, probably, inside the protein globule, in its hydrophobic region, and thus unavailable for modifier, while the rest 12 +/- 1 were easily transformed to the 6-oxyindole chromophore being the main source of the intrinsic fluorescence of the enzyme. The quantum yield for the rest four residues was equal to 0.015. Four tryptophane residues are located at the distance of less than 14 A from the ATP-binding site of the enzyme. The quantum yields of fluorescence for 8 of the tryptophane residues of Ca2+-ATPase were similar and equal to 0.03.  相似文献   

8.
Fluorescence of an intramembranous polypeptide (T-3) derived from the carboxy-terminal sequence of lipophilin was studied in aqueous solution, detergent micelles, and lipid vesicles. In all cases, the fluorescence of the only Trp (211) was indicative of a hydrophobic, buried residue. Addition of lysophosphatidylcholine (LPC) or phosphatidylcholine (PC) gave Trp-211 a more hydrophobic, less quenching environment as compared to that in aqueous solution. Energy transfer between Trp and Tyr observed in aqueous solution was decreased by the addition of lipid or detergent. There was limited quenching by acrylamide both in the aqueous and in the lipid or detergent environments. However, PC or LPC further decreased this quenching. Cs+ and I- were even less accessible than acrylamide to Trp, further proving that the Trp was located inside the lipid bilayer. The quenching indicated that I- binds to positive charges of the protein located on the surface of the membrane. This, combined with knowledge of the sequence of lipophilin, suggested that Trp-211 was located within the membrane but was close to amino acid residues that are external to the bilayer.  相似文献   

9.
The fluorescence behaviour of human orosomucoid was investigated. The intrinsic fluorescence was more accessible to acrylamide than to the slightly larger succinimide, indicating limited accessibility to part of the tryptophan population. Although I- showed almost no quenching, that of Cs+ was enhanced, and suggested a region of negative charge proximal to an emitting tryptophan residue. Removal of more than 90% of sialic acid from the glycan chains led to no change in the Cs+, I-, succinimide or acrylamide quenching, indicating that the negatively charged region originates with the protein core. Quenching as a function of pH and temperature supported this view. The binding of chlorpromazine monitored by fluorescence quenching, in the presence and in the absence of the small quenching probes (above), led to a model of its binding domain on orosomucoid that includes two tryptophan residues relatively shielded from the bulk solvent, with the third tryptophan residue being on the periphery of the domain, or affected allotopically and near the negatively charged field.  相似文献   

10.
The fluorescent and phosphorescent properties of NADPH-adrenodoxin reductase were investigated. It was shown that the fluorescence of protein tryptophanyls was quenched completely by acrylamide and partially by ionic quenchers (I- and Cs+). A removal of the prosthetic group from the protein causes insignificant changes in fluorescent properties of the enzyme. The denaturation of the enzyme by urea was accompanied by growth of quenching parameters. Indeed, some differences were observed in the quenching of flavin fluorescence by ionic quenchers (I- and Cs+). NADPH appeared to be an efficient quencher of NADPH-adrenodoxin reductase tryptophan fluorescence. Using F?rster's equations for non-radiative energy transfer, the distance between NADPH-binding site and tryptophanyls was evaluated to 35-40 A.  相似文献   

11.
Cofactor and tryptophan accessibility of the 65-kDa form of rat brain glutamate decarboxylase (GAD) was investigated by fluorescence quenching measurements using acrylamide, I-, and Cs+ as the quenchers. Trp residues were partially exposed to solvent. I- was less able and Cs+ was more able to quench the fluorescence of Trp residues in the holoenzyme of GAD (holoGAD) than the apoenzyme (apoGAD). The fraction of exposed Trp residues were in the range of 30-49%. In contrast, pyridoxal-P bound to the active site of GAD was exposed to solvent. I- was more able and Cs+ was less able to quench the fluorescence of pyridoxal-P in holoGAD. The cofactor was present in a positively charged microenvironment, making it accessible for interactions with anions. A difference in the exposure of Trp residues and pyridoxal-P to these charged quenchers suggested that the exposed Trp residues were essentially located outside of the active site. Changes in the accessibility of Trp residues upon pyridoxal-P binding strongly supported a significant conformational change in GAD. Fluorescence intensity measurements were also carried out to investigate the unfolding of GAD using guanidine hydrochloride (GdnHCl) as the denaturant. At 0.8-1.5 M GdnHCl, an intermediate step was observed during the unfolding of GAD from the native to the denatured state, and was not found during the refolding of GAD from the denatured to native state, indicating that this intermediate step was not a reversible process. However, at >1.5 M GdnHCl for holoGAD and >2.0 M GdnHCl for apoGAD, the transition leading to the denatured state was reversible. It was suggested that the intermediate step involved the dissociation of native dimer of GAD into monomers and the change in the secondary structure of the protein. Circular dichroism revealed a decrease in the alpha-helix content of GAD from 36 to 28%. The unfolding pattern suggested that GAD may consist of at least two unfolding domains. Unfolding of the lower GdnHCl-resisting domain occurred at a similar concentration of denaturant for apoGAD and holoGAD, while unfolding of the higher GdnHCl-resisting domain occurred at a higher concentration of GdnHCl for apoGAD than holoGAD.  相似文献   

12.
The intrinsic fluorescence of lauryl maltoside solubilized bovine heart cytochrome c oxidase has been determined to arise from tryptophan residues of the oxidase complex. The magnitude of the fluorescence is approximately 34% of that from n-acetyltryptophanamide (NATA). This level of fluorescence is consistent with an average heme to tryptophan distance of 30 A. The majority of the fluorescent tryptophan residues are in a hydrophobic environment as indicated by the fluorescence emission maximum at 328 nm and the differing effectiveness of the quenching agents: Cs+, I-, and acrylamide. Cesium was ineffective up to a concentration of 0.7 M, whereas quenching by the other surface quenching agent, iodide, was complex. Below 0.2 M, KI was ineffective whereas between 0.2 and 0.7 M 15% of the tryptophan fluorescence was found to be accessible to iodide. This pattern indicates that protein structural changes were induced by iodide and may be related to the chaotropic character of KI. Acrylamide was moderately effective as a quenching agent of the oxidase fluorescence with a Stern-Volmer constant of 2 M-1 compared with acrylamide quenching of NATA and the water-soluble enzyme aldolase having Stern-Volmer constants of 12 M-1 and 0.3 M-1, respectively. There was no effect of cytochrome c on the tryptophan emission intensity from cytochrome c oxidase under conditions where the two proteins form a tight, 1:1 complex, implying that the tryptophan residues near the cytochrome c binding site are already quenched by energy transfer to the homes of the oxidase. The lauryl maltoside concentration used to solubilize the enzyme did not affect the fluorescence of NATA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
B E Peerce  E M Wright 《Biochemistry》1987,26(14):4272-4279
The Na+-induced change in conformation of the intestinal brush border glucose carrier has been examined by three procedures. In the first, we have measured the effect of Na+ on the binding of fluorescein isothiocyanate (FITC) to the glucose site; 100 mM Na increased the specific [blocked by D-glucose, p-(chloromercuri)benzenesulfonic acid, and N-acetylimidazole] FITC binding to a 75-kilodalton polypeptide 3-fold. In the second series, we have examined the effect of Na+ on the susceptibility of the fluorescently labeled glucose site [pyrene isothiocyanate (PYTC) labeled] to a hydrophilic quencher (Tl+); 100 mM NaCl increased the fraction of PYTC sites available to Tl+ from 32% to 92% and decreased the apparent quenching constant from 94 to 44 M-1. Finally, in the third series, we probed the distribution of tryptophan residues 15-30 A from the glucose site using a "distant reporter group method", where tryptophan was used an an energy donor to anthracene isothiocyanate bound to the glucose site. Tryptophan quench reagents (I-, Cs+, and acrylamide) were then employed to probe the accessibility of the glucose site tryptophans in the presence and absence of sodium. In the absence of Na+, there were two major classes of glucose tryptophans--exterior surface residues and residues buried in the hydrophobic protein matrix. Na+ caused a redistribution of the donor tryptophans such that a higher percentage were accessible to I- (51% vs. 25%) and fewer were accessible to Cs+ (13% vs. 25%) and acrylamide (27% vs. 57%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
alpha-1-antitrypsin, the major inhibitor of proteolytic enzymes in human serum, was isolated from normal individuals (protease inhibitor type MM) and from those with an inherited deficiency (protease inhibitor type ZZ) of circulatory protein. The two proteins were compared by circular dichroism spectroscopy, and by fluorescence quenching experiments using anionic (I-), and neutral (acrylamide) probes. Both proteins share a similar secondary structure, i.e. approximately 45--50% alpha-helix and 15--20% beta-structure. Evidence was accumulated to show that the microenvironment in the vicinity of the three tryptophanyl residues is altered in Z form as compared to the M form as shown by (a) the absence of the positive dichroic band in the region 290--300 nm of the circular dichroism spectra, (b) a greater than 50% increase in quantum yield in the tryptophanyl fluorescence emission spectra, (c) an increased accessibility of tryptophan to quenching by iodide, and (d) acrylamide quenching experiments which indicate that all tryptophanyl residues in the Z protein are quenched equally or that quenching is dominated by a single residue, while in the M protein, heterogeneous quenching occurs. The potential significance of these findings in terms of alpha-1-antitrypsin deficiency state are discussed.  相似文献   

15.
16.
Complexes of Salmonella typhimurium lipopolysaccharide toxin (LPS) with low density lipoproteins (LDL) containing various amounts of LPS were prepared in vitro. The 31P-NMR spectra showed that in the LDL-LPS complexes as well as in native LDL all phosphate groups of phospholipids are accessible to the paramagnetic shift reagent, Pr3+. Besides, the low frequency mobility of phospholipid phosphates in the complex is diminished. It was supposed that the phospholipid molecules in the LDL/LPS complex as in native LDL form a monolayer structure on the surface of LDL. The intrinsic fluorescence spectra of tryptophan residues of the apoprotein (apo B-100) revealed that the incorporation of LPS molecules into LDL particles is accompanied by minor changes in the conformation and orientation of the apo B molecule. As a result of these changes, certain fragments become exposed to a more hydrophilic environment and become more accessible to fluorescence quenchers. The use of charged (I-, Cs+) and uncharged (acrylamide) quenchers permitted to identify in the apo B molecule different tryptophan residues, some of which are localized in the vicinity of negatively charged groups, whereas others are neighbouring positively charged groups. It is suggested that the LPS molecules incorporated into LDL particle do not screen the apo B molecule to such an extent that it would hinder the LDL/LPS complex binding to apo B/E cellular receptors.  相似文献   

17.
Steady-state and time-resolved fluorescence techniques were used to monitor pH-induced conformational changes in spinach ferredoxin. An increase was seen in the wave-length maximum of tryptophan-73 (Trp-73) emission, from 325 nm below pH 6.0 to 342 nm above pH 7.0, indicating significantly diminished hydrophobicity, at pH 7.0, in the environment of the indole ring. Raising the solution pH from 6.0 to 7.6 also decreased the binding of the detergent Brij-96, showing that the ferredoxin molecule as a whole became more hydrophilic at higher pH. Nonionic (acrylamide) and ionic (I- and Cs+) quenchers were used to probe the tryptophan environment. Trp-73 is partially shielded from I-, presumably by negatively charged residues, as predicted from the amino acid sequence and three-dimensional structure of plant-type ferredoxins. Ionic strength and pH effects on tryptophan fluorescence lifetimes follow a pattern common to single-tryptophan proteins: the emission decays can be fit to a biexponential model in which the lifetime of the excited state increases with increasing pH. The indication of a pH-induced conformational change in the range pH 6.0 to 7.6 is discussed with reference to the physiological association of ferredoxin with ferredoxin:NADP+ oxidoreductase and the rise in chloroplast stromal pH in the light.  相似文献   

18.
We studied fusion induced by a 20-amino acid peptide derived from the amino-terminal segment of hemagglutinin of influenza virus A/PR/8/34 [Murata, M., Sugahara, Y., Takahashi, S., & Ohnishi, S. (1987) J. Biochem. (Tokyo) 102, 957-962]. To extend the study, we have prepared several water-soluble amphiphilic peptides derived from the HA peptide; the anionic peptides D4, E5, and E5L contain four and five acidic residues and the cationic peptide K5 has five Lys residues in place of the five Glu residues in E5. Fusion of egg phosphatidylcholine large unilamellar vesicles induced by these peptides is assayed by two different fluorescence methods, lipid mixing and internal content mixing. Fusion is rapid in the initial stage (12-15% within 20 s) and remains nearly the same or slightly increasing afterward. The anionic peptides cause fusion at acidic pH lower than 6.0-6.5, and the cationic peptide causes fusion at alkaline pH higher than 9.0. Leakage and vesiculation of vesicles are also measured. These peptides are bound and associated with vesicles as shown by Ficoll discontinuous gradients and by the blue shift of tryptophan fluorescence. They take an alpha-helical structure in the presence of vesicles. They become more hydrophobic in the pH regions for fusion. When the suspension is made acidic or alkaline, the vesicles aggregate, as shown by the increase in light scattering. The fusion mechanism suggests that the amphiphilic peptides become more hydrophobic by neutralization due to protonation of the carboxyl groups or deprotonation of the lysyl amino groups, aggregate the vesicles together, and interact strongly with lipid bilayers to cause fusion. At higher peptide concentrations, E5 and E5L cause fusion transiently at acidic pH followed by vesiculation.  相似文献   

19.
The environment of tryptophan in castor bean hemagglutinin (CBH) was analyzed by fluorescence spectroscopy with regard to saccharide binding. Upon binding of specific saccharides, the fluorescence maximum of 333 nm of CBH shifted to a wavelength 2 nm shorter, owing to the change in the environment of tryptophan at the saccharide-binding site. By analyzing the change in the fluorescence intensity at 320 nm as a function of concentration of saccharides, the association constants for binding of saccharides to CBH were determined. The results suggest that the saccharide-binding site on each B-chain is actually composed of a subsite with which the saccharide residue linked to galactopyranoside at the non-reducing end can interact, and another site which recognizes the galactopyranoside moiety. Quenching data indicated that five out of 22 tryptophans in CBH are surface-localized and are available for quenching with both KI and acrylamide, and three other tryptophans are buried and are available only to acrylamide. Binding of raffinose to CBH decreased by 2 the number of tryptophan residues accessible to quenchers in the CBH molecule. We speculate that raffinose binds to CBH in such a manner as to shield the tryptophan located at the subsite from quenching by KI and acrylamide. The results also suggest that the tryptophan residue at the saccharide-binding site on each B-chain is localized near the surface, and present in the positively charged environment.  相似文献   

20.
A comparative study of gelonin and A-chains of ricin, mistletoe lectin I and diphtheria toxin was undertaken. The effect of pH was studied on: a) the conformation of the proteins under study using intrinsic fluorescence; b) interaction of these proteins with ricin B-chain using gel-filtration. Structural stability of the proteins was assessed according to denaturing action of guanidine hydrochloride and temperature, and localization of tryptophan residues was determined using fluorescence quenching by I-, Cs+ and acrylamide. All investigated proteins were shown to undergo the conformational changes when a environment became acidic. In comparison with an intact protein--gelonin, the A-chains of ricin, a mistletoe lectin and a diphtheria toxin are less stable. At pH less than 5.0 tryptophan residues became more accessible to quencher and a positive charge of the surrounding area increases (in the case of gelonin it is negatively charged). No reliable interaction of a ricin B-chain with both gelonin and A-chain of diphtheria toxin was observed. The interaction of a ricin B-chain with a A-chain of mistletoe lectin I is weaker than that with ricin A-chain and is practically pH-independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号