首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The range of fatty acids formed by preparations of ultrasonically ruptured avocado mesocarp plastids was dependent on the substrate. Whereas [1-14C]palmitate and [14C]oleate were the major products obtained from [-14C]acetate and [1-14C]acetyl-CoA, the principal product from [2-14C]malonyl-CoA was [14-C]stearate. 2. Ultracentrifugation of the ruptured plastids at 105000g gave a supernatant that formed mainly stearate from [2-14C]malonyl-CoA and to a lesser extent from [1-14C]acetate. The incorporation of [1-14C]acetate into stearate by this fraction was inhibited by avidin. 3. The 105000g precipitate of the disrupted plastids incorporated [1-14C]acetate into a mixture of fatty acids that contained largely [14C]plamitate and [14C]oleate. The formation of [14C]palmitate and [14C]oleate by disrupted plastids was unaffected by avidin. 4. The soluble fatty acid synthetase was precipitated from the 105000g supernatant in the 35-65%-saturated-(NH4)2SO4 fraction and showed an absolute requirement for acyl-carrier protein. 5. Both fractions synthesized fatty acids de novo.  相似文献   

2.
3.
Regulation of fatty acid biosynthesis in Escherichia coli.   总被引:25,自引:0,他引:25       下载免费PDF全文
Our understanding of fatty acid biosynthesis in Escherichia coli has increased greatly in recent years. Since the discovery that the intermediates of fatty acid biosynthesis are bound to the heat-stable protein cofactor termed acyl carrier protein, the fatty acid synthesis pathway of E. coli has been studied in some detail. Interestingly, many advances in the field have aided in the discovery of analogous systems in other organisms. In fact, E. coli has provided a paradigm of predictive value for the synthesis of fatty acids in bacteria and plants and the synthesis of bacterial polyketide antibiotics. In this review, we concentrate on four major areas of research. First, the reactions in fatty acid biosynthesis and the proteins catalyzing these reactions are discussed in detail. The genes encoding many of these proteins have been cloned, and characterization of these genes has led to a better understanding of the pathway. Second, the function and role of the two essential cofactors in fatty acid synthesis, coenzyme A and acyl carrier protein, are addressed. Finally, the steps governing the spectrum of products produced in synthesis and alternative destinations, other than membrane phospholipids, for fatty acids in E. coli are described. Throughout the review, the contribution of each portion of the pathway to the global regulation of synthesis is examined. In no other organism is the bulk of knowledge regarding fatty acid metabolism so great; however, questions still remain to be answered. Pursuing such questions should reveal additional regulatory mechanisms of fatty acid synthesis and, hopefully, the role of fatty acid synthesis and other cellular processes in the global control of cellular growth.  相似文献   

4.
Metabolic engineering of fatty acid biosynthesis in plants.   总被引:27,自引:0,他引:27  
Fatty acids are the most abundant form of reduced carbon chains available from nature and have diverse uses ranging from food to industrial feedstocks. Plants represent a significant renewable source of fatty acids because many species accumulate them in the form of triacylglycerol as major storage components in seeds. With the advent of plant transformation technology, metabolic engineering of oilseed fatty acids has become possible and transgenic plant oils represent some of the first successes in design of modified plant products. Directed gene down-regulation strategies have enabled the specific tailoring of common fatty acids in several oilseed crops. In addition, transfer of novel fatty acid biosynthetic genes from noncommercial plants has allowed the production of novel oil compositions in oilseed crops. These and future endeavors aim to produce seeds higher in oil content as well as new oils that are more stable, are healthier for humans, and can serve as a renewable source of industrial commodities. Large-scale new industrial uses of engineered plant oils are on the horizon but will require a better understanding of factors that limit the accumulation of unusual fatty acid structures in seeds.  相似文献   

5.
6.
The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for the development of new antibacterial agents. The extended use of the antituberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for antibacterial development. Differences in subcellular organization of the bacterial and eukaryotic multienzyme fatty acid synthase systems offer the prospect of inhibitors with host versus target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalog of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes.  相似文献   

7.
Mevinolinic acid, the open acid form of mevinolin, which is a metabolite of Aspergillus terreus, has been shown to be a competitive inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (Alberts et al., Proc. Natl. Acad. Sci. U.S.A. 77:3957-3961, 1980). The biosynthesis of mevinolinic acid was studied by examining the incorporation of [1-14C]acetate and [methyl-14C]methionine into the molecule. These isotopes were rapidly incorporated into mevinolinic acid, with [1-14C]acetate and [methyl-14C]methionine incorporation being linear for at least 10 and 30 min, respectively. A comparison of acetate incorporation into mevinolinic acid and fatty acids indicated that mevinolinic acid biosynthesis increased with a maximum between days 3 and 5 of growth; at this time cell growth had ceased and fatty acid biosynthesis was negligible. Hydrolysis of the mevinolinic acid and isolation of the products showed that [1-14C]acetate and [methyl-14C]methionine were incorporated into the 2-methylbutyric acid side chain as well as into the main (alcohol) portion of the molecule.  相似文献   

8.
9.
Biological esterification with fatty acids is a feature that is now known to be common to most steroids. The esterification of estradiol in the D-ring at the 17 beta-hydroxyl leads to a family of extremely active estrogens. Similarly, esterification of the weaker estrogen, estriol (E3), has an even greater impact on its hormonal potency. We have recently shown that synthetic long chain esters of E3 at either 16 alpha- or 17 beta- are highly potent estrogens. The estrogenic activity of the synthetic E3 esters led us to determine whether E3 is biologically esterified, and if so, to characterize the resulting esters. Incubation of E3 with rat lung, a tissue which is highly active in esterifying estradiol, produces a nonpolar metabolite which upon saponification is converted back into E3. There was no evidence for the formation of a diester. Purification by high performance liquid chromatography separates the non-polar metabolite into two peaks, one the C-16 alpha- (approximately 60%) and the other the C-17 beta-ester (approximately 40%). The two fractions were further purified and characterized; each is a mixture of fatty acid esters of E3. The composition of the C-16 alpha- and the C-17 beta-fatty acid esters of E3 is identical. The predominant fatty acids are arachidonate, 34%, palmitate, 26%, followed by oleate 14%, linoleate 13%, stearate 8%, and palmitoleate 5%. The similarity of the esters at C-16 and C-17 may indicate that the fatty acid precursor for the acyltransferase is the same for both hydroxyl groups. It may also suggest that the same enzyme esterifies both positions in the D-ring. Since synthetic estriol fatty acid esters are extremely potent and long-lived estrogens, the enzymatic esterification of estriol produces powerful estrogens with considerable physiological potential.  相似文献   

10.
11.
12.
β-Ketoacyl-acyl carrier protein (ACP) synthase III (KASIII) catalyzes the first elongation step in straight-chain fatty acid (SCFA) biosynthesis in Escherichia coli. Overproduction of the corresponding KASIII gene, or the Brassica napus KASIII gene has previously been observed to lead to an increase in the amount of shorter-chain fatty acids produced by E. coli. In this study it is shown that overexpression of the KASIII gene, which initiates branched-chain fatty acid (BCFA) in Streptomyces glaucescens, does not lead to a change in the fatty acid profiles of E. coli. E. coli produces trace levels of BCFAs when grown in the presence of isobutyric acid, but the amounts of these are not significantly altered by expression of the S. glaucescens KASIII gene. In contrast, the amounts of BCFAs produced from isobutyryl CoA in vitro by E. coli cell-free extracts can be increased at least four-fold by the presence of the S. glaucescens KASIII. These observations suggest that in vivo production of isopalmitate by E. coli expressing the S. glaucescens KASIII is limited by availability of the appropriate BCFA biosynthetic primers. Journal of Industrial Microbiology & Biotechnology (2001) 27, 246–251. Received 10 January 2001/ Accepted in revised form 13 July 2001  相似文献   

13.
The synthesis of 22-carbon fatty acids, with their first double bond at position 4, requires the participation of enzymes in both peroxisomes and the endoplasmic reticulum as well as the controlled movement of fatty acids between these two cellular compartments. It has been observed that there is generally an inverse relationship between rates of peroxisomal beta-oxidation vs those for the microsomal esterification of fatty acids into 1-acyl-sn-glycero-3-phosphocholine. With a variety of different substrates it was found that when a fatty acid is produced in peroxisomes, with its first double bond at position 4, its preferred metabolic fate is to move to microsomes for esterification rather than to serve as a substrate for continued degradation. The required movement, and the associated reactions, in peroxisomes and microsomes is not restricted to the synthesis of 4,7,10,13,16-docosapentaenoic acid and 4,7,10,13,16,19-docosahexaenoic acid. When microsomes and peroxisomes were incubated with NAD, NADPH and malonyl-CoA it was found that 6,9,12-octadecatrienoic acid was metabolized to linoleate. Collectively our findings suggest that there may be considerably more recycling of fatty acids between peroxisomes and the endoplasmic reticulum than was previously recognized.  相似文献   

14.
The biosynthesis and post-translocational processing of the murine erythrocyte sialoglycoproteins gp2 and gp3 have been studied on splenic erythroblasts obtained from mice rendered anemic by treatment with phenylhydrazine. A putative precursor-product relationship has been established between gp3 and a peptide (gp3pr) of apparent Mr = 22,000. No precursor to gp2 has been found. gp3pr was selectively and efficiently converted to gp3 in pulse-chase experiments after a 45-60-min chase. [3H]Palmitate labeled a series of splenic cell proteins, including gp2, gp3, and gp3pr. Chemical analyses indicated that the fatty acid is covalently linked to protein by an ester bond. Splenic cells incorporated [3H]galactose in both gp2 and gp3 but not in gp3pr. The results indicate that the murine sialoglycoproteins are modified in succession by fatty acid acylation and terminal glycosylation. [3H]Palmitate labeling appears to be an early modification that affects concomitantly gp3pr and gp3, suggesting that fatty acid acylation is a cytosolic event not obligatorily coupled to translocation.  相似文献   

15.
The effect of low temperatures on fatty acid biosynthesis in plants   总被引:12,自引:2,他引:10       下载免费PDF全文
1. Of three systems, bulb tissue, plant leaf tissue and intact green algal (Chlorella vulgaris) cells, only the former shows an increase in rate of formation of unsaturated fatty acids with decrease in temperature. 2. In bulb tissue the oxygen concentration is rate-limiting for synthesis of unsaturated fatty acids at temperatures down to 10°. 3. At elevated oxygen concentrations the formation of unsaturated fatty acids in bulb tissue increases with temperature. 4. The failure of photosynthetic tissues to respond to either lower temperatures or increased oxygen concentrations in the presence of light is attributed to photosynthetic production of excess of oxygen. This is supported by the fact that in the dark a potentiating oxygen effect on the formation of unsaturated fatty acids can be demonstrated. 5. The HCO3 ion concentration has a small effect on the formation of unsaturated fatty acids. 6. Elevated content of unsaturated acids at lower temperatures in plants is attributed to increases in oxygen concentration in solution.  相似文献   

16.
The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using [1-14C]butyric acid and [1-14C]lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of [14C]lignoceric acid into primary bile acids was approximately four times higher than that of [14C]butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo [F. Hashimoto and H. Hayashi (1987) Biochim. Biophys. Acta 921, 142-150]. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both [14C]lignoceric acid and [14C]butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.  相似文献   

17.
1. Plastid and mitochondrial preparations were obtained by density-gradient centrifugation of homogenates made by gentle disintergration of avocado fruit mesocarp and cauliflower bud tissue. 2. The mitochondrial preparations had respiratory activity but did not incorporate [1-14C]acetate into fatty acids. 3. The plastid preparations incorporated [1--14C]acetate into the range of fatty acids found in the parent tissue. No fatty acid synthetase activity could be detected in the 12000g supernatant of these homogenates. 4. Homogenates produced by rupture of the tissue in an Ato-Mix blender and plastid preparations disintegrated by ultrasonic treatment both had fatty acid synthetase activity which did not sediment at 105000g and which formed mainly [14-C]stearate from [2-14C]malonyl-CoA. 5. It is concluded that the plastids are the principal site of fatty acid biosynthesis in the tissues studied.  相似文献   

18.
fabD mutants of Escherichia coli contain a thermolabile malonyl-coenzyme A-acyl carrier protein transacylase which causes defective fatty acid synthesis and temperature-sensitive growth. By conjugation and P1 transduction the fabD locus has now been mapped at min 24, between pyrC and purB and close to cat. The order of sites is tentatively given as pyrC, cat, fabD, and purB, though the orientation of cat and fabD could be reversed. The possible relationship of fabD with another mutation lying in this region and also affecting acid synthesis is discussed. In the course of these studies we also confirmed the location of the fabA gene, determined that poaA lies between fabA and pyrC, and inadvertently found that the pyr mutation in strain AT3143 is probably pyrF and not pyrC.  相似文献   

19.
20.
During de novo fatty acid synthesis in sunflower seeds, saturated fatty acid production is influenced by the competition between the enzymes of the principal pathways and the saturated acyl-ACP thioesterases. Genetic backgrounds with more efficient saturated acyl-ACP thioesterase alleles only express their phenotypic effects when the alleles for the enzymes in the main pathway are less efficient. For this reason, we studied the incorporation of [2-(14)C]acetate into the lipids of developing sunflower seeds (Helianthus annuus L.) from several mutant lines in vivo. The labelling of different triacylglycerol fatty acids in different oilseed mutants reflects the fatty acid composition of the seed and supports the channelling theory of fatty acid biosynthesis. Incubation with methyl viologen diminished the conversion of stearoyl-ACP to oleoyl-ACP in vivo through a decrease in the available reductant power. In turn, this led to the accumulation of stearoyl-ACP to the levels detected in seeds from high stearic acid mutants. The concomitant reduction of oleoyl-ACP content inside the plastid allowed us to study the activity of acyl-ACP thioesterases on saturated fatty acids. In these mutants, we verified that the accumulation of saturated fatty acids requires efficient thioesterase activity on saturated-ACPs. By studying the effects of cerulenin on the in vivo incorporation of [2-(14)C]acetate into lipids and on the in vitro activity of beta-ketoacyl-ACP synthase II, we found that elongation to very long chain fatty acids can occur both inside and outside of the plastid in sunflower seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号