首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have generated mice lacking synaptogyrin I and synaptophysin I to explore the functions of these abundant tyrosine-phosphorylated proteins of synaptic vesicles. Single and double knockout mice were alive and fertile without significant morphological or biochemical changes. Electrophysiological recordings in the hippocampal CA1 region revealed that short-term and long-term synaptic plasticity were severely reduced in the synaptophysin/synaptogyrin double knockout mice. LTP was decreased independent of the induction protocol, suggesting that the defect in LTP was not caused by insufficient induction. Our data show that synaptogyrin I and synaptophysin I perform redundant and essential functions in synaptic plasticity without being required for neurotransmitter release itself.  相似文献   

2.
The four-transmembrane domain proteins synaptophysin and synaptogyrin represent the major constituents of synaptic vesicles. Our previous studies in PC12 cells demonstrated that synaptogyrin or its nonneuronal paralog cellugyrin targets efficiently to synaptic-like microvesicles (SLMVs) and dramatically increases the synaptophysin content of SLMVs (Belfort, G. M., and Kandror, K. V. (2003) J. Biol. Chem. 278, 47971-47978). Here, we explored the mechanism of these phenomena and found that ectopic expression of cellugyrin increases the number of SLMVs in PC12 cells. Mutagenesis studies revealed that cellugyrin's hydrophilic cytoplasmic domains are not involved in vesicle biogenesis, whereas small conserved hydrophobic hairpins in the first luminal loop and the carboxyl terminus of cellugyrin were found to be critical for the formation of SLMVs. In addition, the length but not the primary sequence of the second luminal loop was essential for SLMV biogenesis. We suggest that changing the length of this loop similar to disruption of the short hydrophobic hairpins alters the position of the vicinal transmembrane domains that may be crucial for protein function.  相似文献   

3.
Expression of the integral membrane protein of small synaptic vesicles, synaptophysin, was investigated in the pheochromocytoma cell line PC12 using a quantiative dot immunoassay. Specific synaptophysin contents of the cultures varied with cell density, high levels being observed in densely seeded dishes and/or after some days of subculturing. Northern blot analysis revealed these cell density-related changes in synaptophysin protein contents to result partly from corresponding alterations in mRNA levels. Treatment with nerve growth factor (NGF), but not with various other effectors of intracellular messenger systems, inhibited both synaptophysin and DNA accumulation in the cultures. These data indicate that synaptophysin expression is high in densely proliferating PC12 cells and uncoupled from process formation and neuronotypic differentiation induced by NGF.  相似文献   

4.
One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.  相似文献   

5.
Rab3B is a monomeric GTPase that modulates norepinephrine secretion when expressed in PC12 neuroendocrine cells. In the present study we determined whether rab3B also regulates the organization of intercellular junctions, since this GTPase localizes to regions of cell contact in multiple cell types. The stable expression of rab3B, but not the closely related rab3A, led to two morphological phenotypes in PC12 cells: (i) reorganization of F-actin into long filopodia and (ii) redistribution of the junction-associated protein ZO-1. ZO-1 localization was not appreciably affected by the expression of a GTP binding mutant of rab3B (N135I) that stimulates norepinephrine secretion by PC12 cells. The apparent diversity of these rab3B phenotypes implies that this GTPase is capable of influencing cell signaling pathways that in turn modulate the cytoskeleton and junction organization. In support of this hypothesis we observed that rab3B expression also altered the profile of proteins that interact with the signaling molecule, phosphatidylinositol 3-kinase (PI3-kinase). The effect of rab3B on protein interactions with PI3-kinase was reversed by inhibitors of this kinase. Furthermore, PI3-kinase inhibitors virtually abolished ZO-1 localization at the surfaces of cells that express rab3B, but not rab3A, whereas these inhibitors had no effect on rab3B-dependent norepinephrine secretion. Our results indicate that rab3B can influence junctional protein targeting and secretion by distinct mechanisms.  相似文献   

6.
PC12 cells, a cell line derived from a rat pheochromocytoma, have both regulated and constitutive secretory pathways. Regulated secretion occurs via large dense core granules, which are related to chromaffin granules and are abundant in these cells. In addition, PC12 cells also contain small electron-lucent vesicles, whose numbers increase in response to nerve growth factor and which may be related to cholinergic synaptic vesicles. These could characterize a second regulated secretory pathway. We have investigated the trafficking of protein markers for both these organelles. We have purified and characterized the large dense core granules from these cells using sequential velocity and equilibrium gradients. We demonstrate the copurification of the major PC12 soluble regulated secretory protein (secretogranin II) with this organelle. As a marker for the synaptic vesicle-like organelles in this system, we have used the integral membrane glycoprotein p38 or synaptophysin. We show that the p38-enriched fraction of PC12 cells comigrates with rat brain synaptic vesicles on an equilibrium gradient. We also demonstrate that p38 purifies away from the dense core granules; less than 5% of this protein is found in our dense granule fraction. Finally we show that p38 does not pass through the dense granule fraction in pulse-chase experiments. These results rule out the possibility of p38 reaching the small clear vesicles via mature dense granules and imply that these cells may have two independently derived regulated pathways.  相似文献   

7.
Differentiation-dependent sensitivity to apoptogenic factors in PC12 cells   总被引:3,自引:0,他引:3  
We have investigated the role of the mitochondrial pathway during cell death following serum and nerve growth factor (NGF)/dibutyryl cyclic AMP (Bt(2)cAMP) withdrawal in undifferentiated or NGF/Bt(2)cAMP-differentiated PC12 cells, respectively. Holocytochrome c, Smac/DIABLO, and Omi/HtrA2 are released rapidly following trophic factor deprivation in PC12 cells. Bcl-2 and Akt inhibited this release. The protection, however, persisted longer in differentiated PC12 cells. In differentiated, but not undifferentiated cells, Bcl-2 and Akt also inhibited apoptosis downstream of holocytochrome c release. Thus, undifferentiated PC12 cells showed marked sensitivity to induction of apoptosis by microinjected cytochrome c even in the presence of NGF, Bcl-2, or Akt. In contrast, in differentiated cells these factors suppressed cell death. Consistent with these observations, in vitro processing of procaspase 9 in response to cytochrome c was observed in extracts from undifferentiated but not differentiated cells expressing Akt or Bcl-2. Endogenous caspase 9 was cleaved during cell death, whereas dominant negative caspase 9 inhibited cell death. The results from determining the role of inhibitors of apoptosis (IAPs) suggest that acquisition of inhibition by IAPs is part of the differentiation program. Ubiquitin-DeltaN-AVPI Smac/DIABLO induced cell death in differentiated cells only. c-IAP-2 is unregulated in differentiated cells, whereas X-linked IAP levels decreased in these cells coincident with cell death. Moreover, expressing X-linked IAP rendered undifferentiated cells resistant to microinjected cytochrome c. Overall, the inhibitory regulation, of cell death at the level of release of mitochondrial apoptogenic factors and at post-mitochondrial activation of caspase 9 observed in differentiated PC12 cells, is reduced or absent in the undifferentiated counterparts.  相似文献   

8.
Glut4-containing vesicles represent a regulated recycling compartment in insulin-sensitive fat and skeletal muscle cells, the nature and origin of which are not fully understood. In addition to Glut4 itself, these vesicles compartmentalize a number of proteins, at least one of which, insulin-responsive aminopeptidase, or IRAP, is completely colocalized with Glut4 in insulin-sensitive tissues. However, unlike Glut4, IRAP is expressed in a variety of other tissues and cell lines. Here, we explored the intracellular localization of IRAP in the rat pheochromocytoma cell line PC12. We found that this protein is present in a distinct population of slowly recycling light vesicles. By gradient centrifugations, immunoadsorption and double immunofluorescent staining, these vesicles are different from transferrin-containing endosomes, small synaptic vesicles and secretory granules and may thus represent a novel compartment in PC12 cells. Glut4-GFP chimera transiently expressed in PC12 cells is targeted to IRAP-containing vesicles indicating that cotargeting of Glut4 and IRAP is not specific for adipocytes and myocytes, but is faithful in a foreign cell type. We suggest that PC12 cells may possess a novel type of a vesicular carrier that may represent the homolog of Glut4-vesicles.  相似文献   

9.
Here, to study lipid-protein interactions that contribute to the biogenesis of regulated secretory vesicles, we have developed new approaches by which to label proteins in vivo, using photoactivatable cholesterol and glycerophospholipids. We identify synaptophysin as a major specifically cholesterol-binding protein in PC12 cells and brain synaptic vesicles. Limited cholesterol depletion, which has little effect on total endocytic activity, blocks the biogenesis of synaptic-like microvesicles (SLMVs) from the plasma membrane. We propose that specific interactions between cholesterol and SLMV membrane proteins, such as synaptophysin, contribute to both the segregation of SLMV membrane constituents from plasma-membrane constituents, and the induction of synaptic-vesicle curvature.  相似文献   

10.
NGF诱导PC12细胞分化的研究   总被引:17,自引:0,他引:17  
动物实验表明,生理浓度的乙醇在脑发育过程中,不但可以影响神经细胞的数量,还可协同增强NGF诱导PC12细胞形态和功能上的分化,分化的PC12细胞具有与交感神经元相似的性状特征。用100mmol/L乙醇和50ng/mlNGF联合诱导可建立PC12细胞分化模型,为以神经细胞为研究对象的实验提供一种获得神经细胞的方法。  相似文献   

11.
R E Leube  B Wiedenmann  W W Franke 《Cell》1989,59(3):433-446
Diverse nonneuroendocrine (non-NE) cells were forced to express synaptophysin (SY), the major and typical transmembrane glycoprotein of small (30-80 nm) neurotransmitter vesicles of NE cells, using microinjection of RNA synthesized in vitro from cDNA or transient and stable transfections with cDNA brought under SV40 promoter control. The glycoprotein synthesized in non-NE cells is indistinguishable from SY of NE cells and is integrated with similar, if not identical, orientation in the membranes of a specific, novel type of small cytoplasmic vesicle that structurally resembles synaptic vesicles and in which SY is the only major protein detected. A non-N-glycosylated form of SY generated by site-directed mutagenesis showed the same behavior and specific distribution in small vesicles. The results show that the information contained in this protein alone is sufficient to secure its sorting into a special type of vesicle in a heterotypic context, i.e., in the absence of other NE-specific components.  相似文献   

12.
Oxidative stress or signaling is widely implicated in apoptosis, ischemia and mitogenesis. Previously, our group reported that the hydrogen peroxide (H2O2)-dependent activation of phospholipase D2 (PLD2) in PC12 cells is involved in anti-apoptotic effect. However, the precise mechanism of PLD2 activation by H2O2 was not revealed. To find H2O2-dependent PLD2-regulating proteins, we immunoprecipitated PLD2 from PC12 cells and found that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) coimmunoprecipitated with PLD2 upon H2O2 treatment. This interaction was found to be direct by in vitro reconstitution of purified GAPDH and PLD2. In vitro studies also indicated that PLD2-associated GAPDH was modified on its reactive cysteine residues. Koningic acid, an alkylator of GAPDH on catalytic cysteine residue, also increased interaction between the two proteins in vitro and enhanced PLD2 activity in PC12 cells. Blocking H2O2-dependent modification of GAPDH with 3-aminobenzamide resulted in the inhibition of the GAPDH/PLD2 interaction and attenuated H2O2-induced PLD2 activation in PC12 cells. From the results, we suggest that H2O2 modifies GAPDH on its catalytic cysteine residue not only to inactivate the dehydrogenase activity of GAPDH but also to endow GAPDH with the ability to bind PLD2 and the resulting association is involved in the regulation of PLD2 activity by H2O2.  相似文献   

13.
Excessive brain Mn can produce toxicity with symptoms resembling parkinsonism. This syndrome, called "manganism," correlates with loss of dopamine in the striatum and cell death in the striatum and globus pallidus. A common hypothesis is that cell damage in Mn toxicity is caused by oxidation of important cell components by Mn3+. Determination of the amount of Mn3+ present, under a range of conditions, in neuronal cells and brain mitochondria represents an important step in evaluating the "damage through oxidation by Mn3+ hypothesis." In an earlier paper we used X-ray absorption near-edge structure (XANES) spectroscopy to determine the amount of Mn2+ and Mn3+ in brain mitochondria under a range of conditions. Here we extend the study to investigate the evidence for formation of Mn3+ through oxidation of Mn2+ by ROS in PC12 cells and in PC12 cells induced with nerve growth factor (NGF) to display a phenotype more like that of neurons. Although the results suggest that very small amounts of Mn3+ might be present at low Mn levels, probably in Mn superoxide dismutase, Mn3+ is not stabilized by complex formation in these cells and therefore does not accumulate to detectable amounts.  相似文献   

14.
Rab3A is a small GTPase implicated in the docking of secretory vesicles in neuroendocrine cells. A putative downstream target for Rab3A, rabphilin-3A, is located exclusively on secretory vesicle membranes. It contains near its C terminus two C2 domains that bind Ca2+ in a phospholipid-dependent manner and an N-terminal, Rab3A-binding domain that includes a Cys-rich region. We have determined that the Cys-rich domain binds two Zn2+ ions and is necessary but not sufficient for efficient binding of rabphilin to Rab3A. A minimal Rab3A-binding domain consists of residues 45 to 170 of rabphilin. HA1-tagged Rab3A and a green fluorescent protein (GFP)-rabphilin fusion were used to examine the roles of Rab3A and of rabphilin domains in the subcellular localization of these proteins. A Rab3A mutant (T54A) that does not bind rabphifin in vitro colocalized with the GFP-rabphilin fusion, indicating that Rab3A targeting is independent of its interaction with rabphilin. Deletion of the C2 domains of rabphilin reduced membrane association of GFP-rabphilin but did not cause mistargeting of the membrane-associated fraction. However, disruption of the zinc fingers, which drastically reduced Rab3A binding, did not reduce membrane association. These results suggest that the C2 domains are required for efficient membrane attachment of rabphilin in PC12 cells and that Rab3A binding may act to target the protein to the correct membrane.  相似文献   

15.
16.
The salvage anabolism of uracil to pyrimidine ribonucleosides and ribonucleotides was investigated in PC12 cells. Pyrimidine base phosphoribosyl transferase is absent in PC12 cells. As a consequence any uracil or cytosine salvage must be a 5-phosphoribosyl 1-pyrophosphate-independent process. When PC12 cell extracts were incubated with ribose 1-phosphate, ATP and uracil they can readily catalyze the synthesis of uracil nucleotides, through a salvage pathway in which the ribose moiety of ribose 1-phosphate is transferred to uracil via uridine phosphorylase (acting anabolically), with subsequent uridine phosphorylation. This pathway is similar to that previously described by us in rat liver and brain extracts (Cappiello et al., Biochim. Biophys. Acta 1425 (1998) 273; Mascia et al., Biochim. Biophys. Acta 1472 (1999) 93). We show using intact PC12 cells that they can readily take up uracil from the external medium. The analysis of intracellular metabolites reveals that uracil taken up is salvaged into uracil nucleotides, with uridine as an intermediate. We propose that the ribose 1-phosphate-dependent uracil salvage shown by our in vitro studies, using tissues or cellular extracts, might also be operative in intact cells. Our results must be taken into consideration for the comprehension of novel chemotherapeutics' influence on pyrimidine neuronal metabolism.  相似文献   

17.
Extracellular ATP triggers catecholamine secretion from PC12 cells by activating ionotropic purine receptors. Repeated stimulation by ATP leads to habituation of the secretory response. In this paper, we use amperometric detection to monitor the habituation of PC12 cells to multiple stimulations of ATP or its agonist. Cells habituate to 30 microm ATP slower than they do to 300 or 600 microm ATP. Modifying external Mg2+ affects the response of cells to 30 microm ATP, but does not affect habituation, suggesting that habituation does not necessarily correspond to either stimulus intensity or cellular response. Mg2+ affects the initial response of PC12 cells to 2MeSATP in a manner similar to ATP. Increasing external [Mg2+] to 3.0 mm, however, eliminates habituation to 2MeSATP. This habituation can be partially restored by costimulation with 100 microm UTP. Background application of UTP increases habituation to both ATP and 2MeSATP. This suggests that ATP-sensitive metabotropic (P2Y) receptors play a role in the habituation process. Finally, although Ca2+ influx through voltage-operated calcium channels does not appear to contribute to secretion during ATP stimulation, blocking these channels with nicardipine increases habituation. This suggests a role for voltage-operated calcium channels in the habituation process.  相似文献   

18.
The calcium (Ca(2+)) regulation of neurotransmitter release is poorly understood. Here we investigated several aspects of this process in PC12 cells. We first showed that osmotic shock by 1 m sucrose stimulated rapid release of neurotransmitters from intact PC12 cells, indicating that most of the vesicles were docked at the plasma membrane. Second, we further investigated the mechanism of rescue of botulinum neurotoxin E inhibition of release by recombinant SNAP-25 COOH-terminal coil, which is known to be required in the triggering stage. We confirmed here that Ca(2+) was required simultaneously with the SNAP-25 peptide, with no significant increase in release if either the peptide or Ca(2+) was present during the priming stage as well as the triggering, suggesting that SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) complex assembly was involved in the final Ca(2+)-triggered event. Using this rescue system, we also identified a series of acidic surface SNAP-25 residues that rescued better than wild-type when mutated, due to broadened Ca(2+) sensitivity, suggesting that this charged patch may interact electrostatically with a negative regulator of membrane fusion. Finally, we showed that the previously demonstrated stimulation of exocytosis in this system by calmodulin required calcium binding, since calmodulin mutants defective in Ca(2+)-binding were not able to enhance release.  相似文献   

19.
Vesicular catecholamine release has been measured amperometrically from undifferentiated rat PC12 cells using carbon fiber microelectrodes. During superfusion with high K(+) saline, vesicular release was detected from approximately 50% of 200 cells investigated. On repeated stimulation the releasable pool of vesicles is rapidly depleted, while vesicle contents remains constant. Vesicular catecholamine release is not restored within 1 h after depletion of the releasable pool. Although the distribution of the cube root of vesicle contents of many cells is apparently Gaussian, maximum likelihood analysis of single cell data demonstrates double Gaussian distributions with median vesicle contents of 141 and 293 zeptomole. It is concluded that the releasable pool of vesicles in PC12 cells is heterogeneous. In the presence of l-DOPA mean vesicle contents increases, but cessation of release cannot be prevented, indicating that the number of releasable vesicles in PC12 cells is limited by a slow rate of vesicle cycling.  相似文献   

20.
The postmitochondrial fraction (S10) contains the cellular components essential for translation, and a high-salt wash (HSW) of the ribosomes is enriched in eukaryotic initiation factors. This report describes the preparation of a cell-free translation system utilizing an S10 extract from PC12 cells. The products synthesized from either firefly luciferase mRNA or PC12 cell poly(A) RNAs in the PC12-S10 extract were increased by the addition of the HSW from PC12 cells. Increases in the translation of luciferase mRNA by the addition of PC12-HSW were dose-dependent and also dependent on the time of incubation. The translation of human epidermal growth factor receptor (hEGFR) mRNA could also be detected in the PC12-S10 extract translation system by immunoprecipitation.N-linked glycosylation of the translation products also was observed. The efficiency of translation was altered by the addition of Mg2+ or K+, and optimization of the concentrations of these ions was necessary for each mRNA. The translation system made from PC12 cells, then, is capable of the synthesis of proteins of relatively high molecular weight and should be useful for analyzing mechanisms of translational control during proliferation and differentiation of cells from a neuronal lineage. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号