首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Axoplasm from freshly isolated Myxicola giant axons was mixed with small volumes of 'artificial axoplasm' containing 45Ca and either CaEGTA/EGTA or CaDTPA/DTPA buffers giving various nominal values of [Ca2+]. The axoplasm samples were centrifuged at 100 000 X g for 30 min to form a pellet and the percentage of 45Ca bound to the pellet was determined. The fraction of bound calcium rose with increasing values of [Ca2+] along an S-shaped curve. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was used to reveal the presence of mitochondrial Ca uptake. At physiological values of [Ca2+], around 100 nM, Ca uptake was insensitive to FCCP. As [Ca2+] was elevated, increasing sensitivity to FCCP was noted above [Ca2+] = 0.5 microM. At low values of [Ca2+], including the physiological range, Ca binding was significantly reduced by vanadate and quercetin, agents known to inhibit Ca uptake mediated by Ca2+-activated ATPase reactions. Inhibition of Ca binding by these agents was approximately 50% at physiological values of [Ca2+]. ATP depletion decreased the percentage of Ca binding by the pellet at physiological [Ca2+]. The results suggest that about 50% of the Ca buffering by particulate matter in axoplasm is via organelles requiring intact Ca2+-ATPase reaction at physiological values of [Ca2+].  相似文献   

2.
Ca2+ dependence of stimulated 45Ca efflux in skinned muscle fibers   总被引:7,自引:4,他引:3       下载免费PDF全文
Stimulation of sarcoplasmic reticulum Ca release by Mg reduction of caffeine was studied in situ, to characterize further the Ca2+ dependence observed previously with stimulation by Cl ion. 45Ca efflux and isometric force were measured simultaneously at 19 degrees C in frog skeletal muscle fibers skinned by microdissection; EGTA was added to chelate myofilament space Ca either before or after the stimulus. Both Mg2+ reduction (20 or 110 microM to 4 microM) and caffeine (5 mM) induced large force responses and 45Ca release, which were inhibited by pretreatment with 5 mM EGTA. In the case of Mg reduction, residual efflux stimulation was undetectable, and 45Ca efflux in EGTA at 4 microM Mg2+ was not significantly increased. Residual caffeine stimulation at 20 microM Mg2+ was substantial and was reduced further in increased EGTA (10 mM); at 600 microM Mg2+, residual stimulation in 5 mM EGTA was undetectable. Caffeine appears to initiate a small Ca2+-insensitive efflux that produces a large Ca2+-dependent efflux. Additional experiments suggested that caffeine also inhibited influx. The results suggest that stimulated efflux is mediated mainly or entirely by a channel controlled by an intrinsic Ca2+ receptor, which responds to local [Ca2+] in or near the channel. Receptor affinity for Ca2+ probably is influenced by Mg2+, but inhibition is weak unless local [Ca2+] is very low.  相似文献   

3.
Free diffusion coefficient of ionic calcium in cytoplasm   总被引:5,自引:0,他引:5  
The free diffusion coefficient of ionic Ca was measured in isolated samples of Myxicola axoplasm by following the migration of 45Ca. When precautions were taken to minimize the sequestration and chelation of 45Ca (i.e., using inhibitors, energy deprivation, and saturation of Ca chelation sites), a diffusion coefficient of 5.3 x 10(-6) cm2 s-1 was measured. The diffusion coefficient was not appreciably changed by lowering free calcium from 100 microM to approximately 10 microM or by increasing the diffusion time from ten to twenty minutes. In untreated cytoplasm taken directly from the giant axon of Myxicola, the migration of Ca was more complex and could not be described by a single diffusion coefficient. This result is interpreted to suggest that bulk movement of Ca-buffers may occur in untreated Myxicola axoplasm, a system that contains few microtubules.  相似文献   

4.
Vesicular preparations of sarcolemma isolated from rat myocardium possessed high ATPase (4.32 +/0 0.57 micromole/min per mg), adenylate cyclase (121 +/- 11 pmole/min per mg) and creatine kinase (1.74 +/- 0.35 micromole/min per mg) activities and a Na-Ca exchange activity specific for sodium. The ATPase activity was inhibited by digitoxigenin by 50-70% and was not changed by ouabain, EGTA, ionophore A23187 and oligomycin, thus showing the absence of mitochondrial and sarcoplasmic reticulum contaminations in the sarcolemmal preparations. The preparations consisted mostly of closed inside-out vesicles. The preparation was used to study the mechanism of Ca2+ penetration across the sarcolemmal membrane. For this purpose the vesicles were load with 45Ca2+, which relatively slowly diffused from the medium into the vesicles, and which was bound to the binding sites inside the vesicles (n = 20.5 +/- 4.6 nmoles per mg of protein, Kd approximately equal to 1.8 +/- 0.21 mM). The transmembrane movement of Ca2+ was demonstrated by the following findings: 1) the ionophore A23187 only insignificantly increased the total vesicular Ca2+ content, but strongly accelerated Ca2+ efflux from the vesicles along its concentration gradient; 2) gramicidin and osmotic shock caused a similar acceleration of Ca2+ efflux. Ca2+ efflux from these vesicles along Ca2+ concentration gradient was studied under conditions, when the extravesicular Ca2+ content was lowered due to its binding to EGTA and by dilution. The gradient of Ca2+ concentration was from 2.0 mM inside to approximately 0.1 micro M outside. The rate of 45Ca2+ efflux depended hyperbolically on the intravesicular Ca2+ efflux from the vesicles was inhibited by Mn2+, Co2+ and verapamil when they acted from the inside of the vesicles. An increase in ionophore A23187 concentration increased the efflux of Ca2+ hyperbolically and enhanced only the maximal rate of the efflux. It is concluded that the passive permeability of Ca2+ across the sarcolemmal membrane along its concentration gradient is controlled by Ca2+ binding to the membrane.  相似文献   

5.
The amount of Ca2+ bound to the Ca2+,Mg2+-dependent ATPase of deoxycholic acid-treated sarcoplasmic reticulum was measured during ATP hydrolysis by the double-membrane filtration method [Yamaguchi, M. & Tonomura, Y. (1979), J. Biochem. 86, 509--523]. The maximal amount of phosphorylated intermediate (EP) was adopted as the amount of active site of the ATPase. In the absence of ATP, 2 mol of Ca2+ bound cooperatively to 1 mol of active site with high affinity and were removed rapidly by addition of EGTA. AMPPNP did not affect the Ca2+ binding to the ATPase in the presence of MgCl2. Under the conditions where most EP and ADP sensitive at steady state (58 microM Ca2+, 50 microM EGTA, and 20 mM MgCl2 at pH 7.0 and 0 degrees C), bound Ca2+ increased by 0.6--0.7 mol per mol active site upon addition of ATP. The time course of decrease in the amount of bound 45Ca2+ on addition of unlabeled Ca2+ + EGTA was biphasic, and 70% of bound 45Ca2+ was slowly displaced with a rate constant similar to that of EP decomposition. Similar results were obtained for the enzyme treated with N-ethylmaleimide, which inhibits the step of conversion of ADP-sensitive EP to the ADP-insensitive one. Under the conditions where most EP was ADP insensitive at steady state (58 microM Ca2+, 30 microM EGTA, and 20 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ increased slightly, then decreased slowly by 1 mol per mol of EP formed after addition of ATP. Under the conditions where about a half of EP was ADP sensitive (58 microM Ca2+, 25 microM EGTA, and 1 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ did not change upon addition of ATP. These findings suggest that the Ca2+ bound to the enzyme becomes unremovable by EGTA upon formation of ADP-sensitive EP and is released upon its conversion to ADP-insensitive EP.  相似文献   

6.
Replacing extracellular Na+ with choline transiently increased cytoplasmic free Ca2+ ([Ca2+]i) more than 5-fold in coronary endothelial cells. Removing external Na+ stimulated 45Ca2+ efflux approximately 4-fold and influx approximately 1.7-fold. The stimulation of efflux was independent of extracellular Ca2+ and the osmotic Na+ substitute. The release of stored Ca2+, rather than Ca2+ influx via Na(+)-Ca2+ exchange, probably causes the increase in [Ca2+]i and 45Ca2+ efflux. Cadmium or decreasing external, not intracellular, pH transiently increased [Ca2+]i. Cd2+ and some other divalent metals also stimulated 45Ca2+ efflux. The potency order of the metals that stimulated efflux was Cd2+ greater than CO2+ greater than Ni2+ greater than Fe2+ greater than Mn2+. Incubating the cells with Zn2+ prior to assaying efflux in the absence of Zn2+ strongly inhibited the stimulation of 45Ca2+ efflux by Cd2+, pH 6, and the removal of external Na+ without affecting the stimulation of efflux by ATP. These findings support the hypothesis that certain trace metals or decreasing external Na+ or pH trigger the release of stored Ca2+ by stimulating a cell surface "receptor."  相似文献   

7.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

8.
Properties of calcium binding by Myxicola axoplasmic protein   总被引:1,自引:0,他引:1  
The 45Ca2+ binding properties of axoplasmic protein from the Myxicola giant axon have been investigated using a centrifugal/concentration-dialysis technique. Scatchard plot analysis of these binding data suggest that Ca2+ is attached to a site with an equilibrium dissociation constant of 7.7 +/- 0.5 microM and a capacity of 4.4 +/- 0.2 mumol/g axoplasmic protein (n = 11). Addition of other cations--Cd2+, Mn2+, Al3+, Cu2+, Ba2+, and Zn2(+)--at concentrations up to 10 microM did not displace 0.2 microM 45Ca2+ from its binding site, probably because of buffering of these cations by amino acid residues within the protein solutions. The protein could be stored at 4 degrees C for up to 16 days with no appreciable change in the number of calcium sites. Ca2+ binding equilibrium took place in less than 30 min of incubation. Increasing the incubation temperature from 4 degrees C to 37 degree C reduced the number of Ca2+ sites. The binding capacity was reduced by one-half when the protein was dialyzed with 4 M urea or high ionic strength KCl (2 M). Calcium binding was examined as a function of pH. When the protein was dialyzed overnight at different pH values and all the binding was done at pH 7.0, the apparent number of Ca2+ sites decreased as the pH of the dialysis medium was increased. When the protein was dialyzed overnight at pH 7.0 and the binding was done at different pH values, the apparent binding capacity increased as pH increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The tyrosine kinase inhibitor genistein (5-200 microM) suppressed Ca(2+)-dependent fMLP (1 microM) and ATP (100 microM)-induced release of the lysosomal enzyme, beta-glucuronidase from neutrophil-like HL-60 granulocytes. Agonist-induced Ca2+ mobilization resulted from the release of intracellular Ca2+ stores and the influx of extracellular Ca2+. Genistein (200 microM) suppressed fMLP (1 microM) and ATP (100 microM)-induced Ca2+ mobilization, by 30-40%. Ca2+ release from intracellular stores was unaffected by genistein, however, genistein abolished agonist-induced Ca2+ (Mn2+) influx. Consistent with these findings, genistein (200 microM) or removal of extracellular Ca2+ (EGTA 1 mM), inhibited Ca(2+)-dependent agonist-induced beta-glucuronidase release by similar extents (about 50%). In the absence of extracellular Ca2+, genistein had a small additional inhibitory effect on fMLP and ATP-induced beta-glucuronidase release, suggesting an additional inhibitory site of action. Genistein also abolished store-operated (thapsigargin-induced) Ca2+ (Mn2+) influx. Neither fMLP nor ATP increased the rate of Mn2+ influx induced by thapsigargin (0.5 microM). These data indicate that agonist-induced Ca2+ influx and store-operated Ca2+ influx occur via the same genistein-sensitive pathway. Activation of this pathway supports approximately 50% of lysosomal enzyme release induced by either fMLP or ATP from HL-60 granulocytes.  相似文献   

10.
The interaction of metal ions with the sea urchin extraembryonic coat protein hyalin was investigated. Hyalin, immobilized on nitrocellulose membrane, bound Ca2+ and this interaction was disrupted by ruthenium red and selective metal ions. The divalent cations Cd2+ and Mn2+, when present at a concentration of 30 microM, displaced hyalin-bound Ca2+. In competition assays, 1 mM Cd2+ or 3 mM Mn2+ were effective competitors with Ca2+ for binding to hyalin. Cobalt, at a concentration of 30 microM, was unable to displace protein-bound Ca2+, but was effective in competition assays at a concentration of at least 10 mM. Magnesium and the monovalent cation Cs+ were unable to disrupt Ca2(+)-hyalin interaction. Interestingly, Cd2+, Mn2+, and Co2+ mimicked the biological effects of Ca2+ on the hyalin self-association reaction. These results clearly demonstrate that the Ca2(+)-binding sites on hyalin can selectively accommodate other divalent cations in a biologically active configuration.  相似文献   

11.
A possible interaction between Cd2+ and Ca2+ as a component in Cd2+-induced insulin release was investigated in beta cells isolated from obese hyperglycemic mice. The glucose stimulated Cd2+ uptake was dependent on the concentration of sugar. This uptake was sigmoidal with a Km for glucose of about 5 mM and was suppressed by both 50 microM of the voltage-activated Ca2+ channel blocker D-600 and 12 mM Mg2+. In the presence of 8 mM glucose 5 microM Cd2+ evoked a prompt and sustained stimulatory response, corresponding to about 3-fold of the insulin release obtained in the absence of the ion. Whereas 5 microM Cd2+ was without effect on the glucose-stimulated 45Ca efflux in the presence of extracellular Ca2+, 40 microM inhibited it. At a concentration of 5 microM, Cd2+ had no effect on the resting membrane potential or the depolarization evoked by either glucose or K+. In the absence of extracellular Ca2+ there was only a modest stimulation of 45Ca efflux by 5 microM Cd2+. Studies of the ambient free Ca2+ concentration maintained by permeabilized cells also indicate that 5 microM Cd2+ do not mobilize intracellularly bound Ca2+ to any great extent. On the contrary, at this concentration, Cd2+ even suppressed inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release. The present study suggests that Cd2+ stimulates insulin release by a direct mechanism which does not involve an increase in cytoplasmic free Ca2+ concentration.  相似文献   

12.
The effects of various divalent cations on the Ca2+ uptake by microsomes from bovine aortic smooth muscle were studied. High concentrations (1 mM) of Co2+, Zn2+, Mn2+, Fe2+, and Ni2+ inhibited neither the Ca2+ uptake by the microsomes nor the formation of the phosphorylated intermediate (E approximately P) of the Ca2+,Mg2+-ATPase of the microsomes. The cadmium ion, however, inhibited both the Ca2+ uptake and the E approximately P formation by the microsomes. Dixon plot analysis indicated Cd2+ inhibited (Ki = 135 microM) the Ca2+ dependent E approximately P formation in a non-competitive manner. The inhibitory effect of Cd2+ was lessened by cysteine or dithiothreitol. The strontium ion inhibited the Ca2+ uptake competitively, while the E approximately P formation increased on the addition of Sr2+ at low Ca2+ concentrations. At a low Ca2+ concentration (1 microM), Sr2+ was taken up by the aortic microsomes in the presence of 1 mM ATP. It is thus suggested that Sr2+ replaces Ca2+ at the Ca2+ binding site on the ATPase.  相似文献   

13.
A radioisotope flux-rapid-quench-Millipore filtration method is described for determining the effects of Ca2+, adenine nucleotides, and Mg2+ on the Ca2+ release behaviour of "heavy" sarcoplasmic reticulum (SR) vesicles. Rapid 45Ca2+ efflux from passively loaded vesicles was blocked by the addition of Mg2+ and ruthenium red. At pH 7 and 10(-9) M Ca2+, vesicles released 45Ca2+ with a low rate (k = 0.1 s-1). An increase in external Ca2+ concentration to 4 microM or the addition of 5 mM ATP or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) (AMP-PCP) resulted in intermediate 45Ca2+ release rates. The maximal release rate was observed in media containing 4 microM Ca2+ and 5 mM AMP-PCP and had a first-order rate constant of 30-100 s-1. Mg2+ partially inhibited Ca2+- and nucleotide-induced 45Ca2+ efflux. In the absence of AMP-PCP, 45Ca2+ release was fully inhibited at 5 mM Mg2+ or 5 mM Ca2+. The composition of the release media was systematically varied, and the flux data were expressed in the form of Hill equations. The apparent n values of activation of Ca2+ release by ATP and AMP-PCP were 1.6-1.9. The Hill coefficient of Ca2+ activation (n = 0.8-2.1) was dependent on nucleotide and Mg2+ concentrations, whereas the one of Mg2+ inhibition (n = 1.1-1.6) varied with external Ca2+ concentration. These results suggest that heavy SR vesicles contain a "Ca2+ release channel" which is capable of conducting Ca2+ at rates comparable with those found in intact muscle. Ca2+, AMP-PCP (ATP), and Mg2+ appear to act at noninteracting or interacting sites of the channel.  相似文献   

14.
Sarcoplasmic reticulum vesicles were preloaded with either 45Ca2+ or unlabeled Ca2+. The unidirectional Ca2+ efflux and influx, together with Ca2+-dependent ATP hydrolysis and phosphorylation of the membrane-bound (Ca2+, Mg2+)-ATPase, were determined in the presence of ATP and ADP. The Ca2+ efflux depended on ATP (or ADP or both). It also required the external Ca2+. The Ca2+ concentration dependence of the efflux was similar to the Ca2+ concentration dependences of Ca2+ influx, Ca2+-dependent ATP hydrolysis, and phosphoenzyme formation. The rate of the efflux was approximately in proportion to the concentration of the phosphoenzyme up to 10 microM Ca2+. These results and other findings indicate that the Ca2+ efflux represents the Ca2+-Ca2+ exchange (between the external medium and the internal medium) mediated by the phosphoenzyme. In the range of 0.6-5.2 microM Mg2+, no appreciable Ca2+-Ca2+ exchange was detected although phosphoenzyme formation occurred to a large extent. Elevation of Mg2+ in the range 5.2 microM-4.8 mM caused a remarkable activation of the exchange, whereas the amount of the phosphoenzyme only approximately doubled. The kinetic analysis shows that this activation results largely from the Mg2+-induced acceleration of an exchange between the bound Ca2+ of the phosphoenzyme and the free Ca2+ in the internal medium. It is concluded that Mg2+ is essential for the exposure of the bound Ca2+ of the phosphoenzyme to the internal medium.  相似文献   

15.
Reaction of the purified Ca2+-ATPase of sarcoplasmic reticulum at 0 degrees C at low [gamma-32P]ATP (0.1 to 0.67 microM) and enzyme (0.025 to 0.24 microM) concentration in the presence of 0.11 to 30 mM Ca2+ without added Mg2+ has resulted in the formation of phosphorylated intermediate (EP:maximal level of EP = 0.45 mol/mol of enzyme) at a very slow rate. Under these conditions, the reaction steps in which EP decomposition takes place are completely prevented. This has permitted us to study the EP formation reaction and its reversal specifically, with a considerably improved time resolution. An apparent rate constant of EP formation (Vf) increases in parallel with the concentration of Ca . ATP, but not with those of Mg . ATP, or of protonated or fully ionized free ATP. This suggests that Ca . ATP is the substrate under these conditions. If Co2+ or Mn2+ are in excess over the other ions during the reaction, Vf varies in parallel with [Co . ATP] or [Mn . ATP]. Thus, it appears that either Ca2+, Co2+, or Mn2+ can be complexed with ATP to form the effective substrate. An apparent rate constant of the back reaction of EP initiated by addition of ADP to EP (Vr) increases in proportion to [ADP] or [H . ADP], but is inhibited by increasing concentrations of the ADP complex with Ca2+ or Mg2+, indicating that free ADP or protonated ADP, or both, are actual substrates for the back reaction of EP. These results suggest a new type of site to which the metal moiety of metal . ATP complex remains bound after the release of ADP from the enzyme. An acid-stable phosphorylated intermediate (EP) produced in the presence of high Ca2+ concentrations (e.g. 0.11 mM) without added Mg2+ does not decompose spontaneously, and the major portion (approximately 90%) of this EP (EPD+) reacts with ADP to form ATP (ADP-sensitive). Upon chelating Ca2+ with ethylene glycol bis(beta-amino-ethyl ether)N,N,N',N'-tetraacetic acid (EGTA), EPD+ is converted to another form of EP (EPD-), which is unreactive with ADP (or ADP-insensitive). Addition of Mg2+, after initiation of the reaction leading to EPD- by EGTA, results in rapid production of Pi from a portion of EPD- with KMg approximately equal to 3.3 x 10(3) M-1. The fraction of EPD- that is Mg2+-sensitive (EPD-,M+) increases with reaction time at a much slower rate than the Mg2+-insensitive portion of EPD- (EPD-,M-). These results suggest that the enzyme reaction involves the sequential formation of at least three forms of acid-stable EP, viz. in the order of formation, EPD+, EPD-,M-, and EPD-,M+. The equilibrium between EPD+ and EPD-,M- is shifted by higher [K+] and [Ca2+] towards EPD+.  相似文献   

16.
Electrothermal atomic-absorption spectroscopy was employed for measuring manganese in beta-cell-rich pancreatic islets isolated from ob/ob mice. The efflux from preloaded islets was estimated from the amounts remaining after 30 min of subsequent test incubations in the absence of Mn2+. An increase in the extracellular Mg2+ concentration promoted the Mn2+ efflux and removal of Na+ from a Ca2+-deficient medium had the opposite effect. Addition of 25 mM-K+ failed to affect Mn2+ outflow as did 3-isobutyl-1-methylxanthine and dibutyryl cyclic AMP. Whereas tolbutamide caused retention of manganese, the ionophore Br-X537A promoted an efflux. D-Glucose was equally potent in retaining the islet manganese when the external Ca2+ concentration ranged from 15 microM to 6.30 mM. Subcellular-fractionation experiments indicated a glucose-stimulated incorporation of manganese into all fractions except the microsomes. The effect was most pronounced in the mitochondrial fraction, being as high as 164%. The glucose-induced uptake of intracellular 45Ca was abolished in the presence of 0.25 mM-Mn2+. When added to medium containing 2.5 mM-Mn2+, glucose even tended to decrease 45Ca2+ uptake. The inhibitory effect of Mn2+ was apparent also from a diminished uptake of 45Ca into all subcellular fractions. The efflux of 45Ca2+ was markedly influenced by Mn2+ as manifested in a prominent stimulation followed by inhibition. In addition to demonstrating marked interactions between fluxes of Mn2+ and Ca2+, the present studies support the view that the glucose inhibition of the efflux of bivalent cations from pancreatic beta-cells is accounted for by their accumulation in the mitochondria.  相似文献   

17.
Ionic gradients imposed by choline Cl replacement of K methanesulfonate (Mes) at constant [K][Cl] product stimulate 45Ca efflux from skinned muscle fibers; a small, sustained Ca2+-insensitive efflux component, observed in EGTA, appears to grade a much larger Ca2+-dependent component responsible for contractile activation and is likely to reflect intermediate steps in excitation-contraction coupling. The present studies examined ATP-related effects on the Ca2+-insensitive stimulation. 45Ca efflux was measured on segments of frog semitendinosus muscle skinned by microdissection, with isometric force monitored continuously. The Ca2+-insensitive component was potentiated by quercetin, a flavonoid thought to inhibit the sarcoplasmic reticulum (SR) Ca pump by stabilizing a phosphorylated intermediate. Quercetin increased the stimulated net 45Ca release in the absence of EGTA, as expected from inhibition of reaccumulation, but its effectiveness in EGTA indicated potentiation of unidirectional efflux as such. Quercetin also increased unstimulated (control) 45Ca efflux in EGTA, to a smaller extent; potentiation appeared to be a function of efflux, with stimulation above control loss increased approximately 2.6-fold. ATP removal before stimulation, which led to rigor force and increased stiffness, prevented all quercetin effects in EGTA. ATP removal by itself inhibited ionic stimulation of the Ca2+-insensitive component, with little residual increase above the parallel control loss. Addition of the nonhydrolyzable ATP analogue AMP-PCP ([adenylyl-beta,gamma-methylene]diphosphate) (0.8 mM) after ATP removal gave similar results to ATP-free solution, which suggests that adenine nucleotide binding alone does not support stimulation by choline Cl. These results imply a fundamental role for ATP in the excitation of skinned fibers by imposed diffusion potentials; they also suggest that ATP regulates the SR Ca efflux channel, in a manner that could provide the positive feedback in Ca2+-dependent Ca release.  相似文献   

18.
Cd2+ and other divalent metals mobilized cell Ca2+ in human skin fibroblasts. The divalent metals produced a large spike in cytosolic free Ca2+ and strikingly increased net Ca2+ efflux similarly to bradykinin. One-tenth microM Cd2+ half-maximally increased 45Ca2+ efflux. The potency order of the Ca2+ mobilizing metals was: Cd2+ greater than Co2+ greater than Ni2+ greater than Fe2+ greater than Mn2+. Cd2+ probably acts at an extracellular site because loading the cells with a heavy metal chelator only slightly inhibited Cd2+-evoked 45Ca2+ efflux. Cd2+ increased [3H]inositol polyphosphates; [3H]inositol trisphosphate increased 4-fold in 15 s. Zn2+ reversibly blocked 45Ca2+ efflux evoked by Cd2+ but not that produced by bradykinin. Zn2+ competitively (Ki = approximately 0.4 microM) inhibited net Ca2+ efflux produced by Cd2+. Cd2+ also evoked Ca2+ mobilization in umbilical artery muscle, endothelial, and neuroblastoma cells, and the divalent cation agonist and antagonist specificities were similar to those in the fibroblasts. The divalent metals appear to trigger Ca2+ mobilization via a reversible interaction with an external site on the cell surface, which may be considered a "Cd2+ receptor."  相似文献   

19.
External ATP induces [3H] dopamine [( 3H]DA) release in rat pheochromocytoma cells (PC-12 cells). The ATP-induced release is a saturable process with half-effective concentration of EC50 = 80 microM. ADP is a poor secretagogue of [3H]DA (one-sixth of ATP) and AMP is devoid of secretory capabilities. Adenosine and the non-hydrolyzable analogues of ATP, AppNHp and AppCp are ineffective as inducers of [3H]DA, release, or as inhibitors of the ATP-induced [3H]DA release. The most potent antagonist of ATP-induced release is Coomassie Blue (IC50 = 25 microM), compared to ADP beta S (IC50 = 500 microM). The overall rank order of potency is ATP greater than ADP much greater than AMP greater than adenosine, which is characteristic of the P2-purinergic receptor. ATP-induced secretion is absolutely Ca2+ dependent, indicating an exocytotic process and is independent of Mg2+ (up to 2 mM) suggesting that the active species is not ATP4-. (a) The ATP-induced 45Ca2+ influx into the cells is in good correlation to ATP induction of release (IC50 = 80 and 90 microM, respectively) and is carried over to ADP which has a diminished ability to induce both release and 45Ca2+ influx. (b) Divalent cations (Ba2+ greater than Sr2+ greater than Ln3+ greater than Mn2+) replace Ca2+ and support ATP-induced release similar to their effectiveness in supporting bradykinin- and K+ (50 mM)-induced release in PC-12 cells (Weiss, C., Sela, D., and Atlas, D. (1990) Neurosci. Lett. 119, 241-245). Combined together the absolute requirement of [Ca2+]ex for release, inhibition of release by Gd3+ (IC50 = 100 microM), Ni2+, and Co2+ (IC50 = 1 mM), and support of release by Ba2+, Sr2+, and Mn2+, we suggest that ATP induces Ca2+ entry via ligand-operated Ca2+ channels as previously suggested for ATP in smooth muscle cells (Benham, C.D., Bolton, T.B., Byren, N.G., and Large, W.A. (1987) J. Physiol. (Lond.) 387, 473-488). No significant inhibition by 1 microM verapamil, 10 microM nifedipine, or 2 mM Cd2+ argues against ATP activation of voltage-dependent Ca2+ channels as similarly shown for ATP-induced [3H]noradrenaline release (Inoue, K., Nakazawa, K., Fujimoro, K., and Takanaka, A. (1989) Neurosci. Lett. 106, 294-299). Thus, the widely distributed ATP receptor might play an essential role in Ca2+ homeostasis of the cell by introducing Ca2+ into the cell via specific ligand-gated Ca2+ channels.  相似文献   

20.
Ca2+ release from sarcoplasmic reticulum membranes, activated by alkaline pH occurs only when EGTA is present in the release medium. Addition of very low concentrations of Ca2+ to the medium inhibits Ca2+ release. The concentration of free Ca2+ required for 50% inhibition ranges from between 5 and 20 nM in different experiments and/or membrane preparations, irrespective of whether the free Ca2+ concentration is controlled by EGTA or CDTA. Other divalent cations such as Mn2+, Ba2+, Cu2+, Cd2+ and Mg2+ also exert an inhibitory effect on Ca2+ release, with higher or lower potency than that of Ca2+. The inactivation of Ca2+ release by Ca2+ is reversible. We suggest the involvement of high-affinity Ca2+-binding sites in the control of Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号