共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytochrome cM is a new c-class photosynthetic haem protein whose physiological role is still unknown. It has been proposed previously that cytochrome cM can replace cytochrome c6 and plastocyanin in transferring electrons between the two membrane complexes cytochrome b6-f and photosystem I in organisms growing under stress conditions. The experimental evidence herein provided allows us to discard such a hypothesis. We report a procedure to overexpress cytochrome cM from the cyanobacterium Synechocystis sp. PCC 6803 in Escherichia coli cells in mg quantities. This has allowed us to perform a comparative laser flash-induced kinetic analysis of photosystem I reduction by the three metalloproteins from Synechocystis. The bimolecular rate constant for the overall reaction is up to 100 times lower with cytochrome cM than with cytochrome c6 or plastocyanin. In addition, the redox potential value and surface electrostatic potential distribution of cytochrome cM are quite different from those of cytochrome c6 and plastocyanin. These findings strongly indicate that cytochrome cM cannot be recognised by and interact with the same redox partners as the other two metalloproteins. 相似文献
2.
Stefania Viola Julien Sellés Benjamin Bailleul Pierre Joliot Francis-André Wollman 《BBA》2021,1862(9):148449
Many cyanobacteria species can use both plastocyanin and cytochrome c6 as lumenal electron carriers to shuttle electrons from the cytochrome b6f to either photosystem I or the respiratory cytochrome c oxidase. In Synechocystis sp. PCC6803 placed in darkness, about 60% of the active PSI centres are bound to a reduced electron donor which is responsible for the fast re-reduction of P700 in vivo after a single charge separation. Here, we show that both cytochrome c6 and plastocyanin can bind to PSI in the dark and participate to the fast phase of P700 reduction, but the fraction of pre-bound PSI is smaller in the case of cytochrome c6 than with plastocyanin. Because of the inter-connection of respiration and photosynthesis in cyanobacteria, the inhibition of the cytochrome c oxidase results in the over-reduction of the photosynthetic electron transfer chain in the dark that translates into a lag in the kinetics of P700 oxidation at the onset of light. We show that this is true both with plastocyanin and cytochrome c6, indicating that the partitioning of electron transport between respiration and photosynthesis is regulated in the same way independently of which of the two lumenal electron carriers is present, although the mechanisms of such regulation are yet to be understood. 相似文献
3.
Transformation in the cyanobacterium Synechocystis sp. 6803 总被引:4,自引:0,他引:4
4.
I V Elanskaia M V Bibikova S L Bogdanova T A Koksharova S R Agamalova 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1985,(8):19-21
Three cryptic plasmids have been isolated from cyanobacterium Synechocystis sp. 6803::pSS2 (1.4 Md), pSS3 (36 Md), pSS4 (60 Md). Plasmid DNA was isolated in Cs-Cl-EB density gradient and analyzed by gel electrophoresis and electron microscopy by gel electrophoresis and electron microscopy techniques. The restriction map is constructed for plasmid pSS2 having the cleavage sites for Sau3a, HincII, HindIII, MspI restriction endonucleases. The plasmid may be used to construct the recombinant vector DNAs capable of autonomous replication in cyanobacterium Synechocystis sp. 6803. cells. 相似文献
5.
Posttranslational regulation of nitrate assimilation in the cyanobacterium Synechocystis sp. strain PCC 6803 下载免费PDF全文
Posttranslational regulation of nitrate assimilation was studied in the cyanobacterium Synechocystis sp. strain PCC 6803. The ABC-type nitrate and nitrite bispecific transporter encoded by the nrtABCD genes was completely inhibited by ammonium as in Synechococcus elongatus strain PCC 7942. Nitrate reductase was insensitive to ammonium, while it is inhibited in the Synechococcus strain. Nitrite reductase was also insensitive to ammonium. The inhibition of nitrate and nitrite transport required the PII protein (glnB gene product) and the C-terminal domain of NrtC, one of the two ATP-binding subunits of the transporter, as in the Synechococcus strain. Mutants expressing the PII derivatives in which Ala or Glu is substituted for the conserved Ser49, which has been shown to be the phosphorylation site in the Synechococcus strain, showed ammonium-promoted inhibition of nitrate uptake like that of the wild-type strain. The S49A and S49E substitutions in GlnB did not affect the regulation of the nitrate and nitrite transporter in Synechococcus either. These results indicated that the presence or absence of negative electric charge at the 49th position does not affect the activity of the PII protein to regulate the cyanobacterial ABC-type nitrate and nitrite transporter according to the cellular nitrogen status. This finding suggested that the permanent inhibition of nitrate assimilation by an S49A derivative of PII, as was previously reported for Synechococcus elongatus strain PCC 7942, is likely to have resulted from inhibition of nitrate reductase rather than the nitrate and nitrite transporter. 相似文献
6.
An oligonucleotide directed against a highly conserved region of aa3-type cytochrome c oxidases was used to clone the cox genes from the cyanobacterium Synechocystis sp. PCC6803. Several overlapping clones were obtained that contained the coxB, coxA, and coxC genes, transcribed in the same direction in that order, coding for subunits II, I, and III, respectively. The deduced protein sequences of the three subunits showed high sequence similarity with the corresponding subunits of all known aa3-type cytochrome c oxidases. A 1.94-kb HindII fragment containing most of coxA and about half of coxC was deleted and replaced by a cassette coding for kanamycin resistance. Mutant cells that were homozygous for the deleted cox locus were obtained. They were viable under photoautotrophic and photoheterotrophic conditions, but contained no cytochrome c oxidase activity. Nevertheless, these mutant cells showed almost normal respiration, defined as cyanide-inhibitable O2 uptake by whole cells in the dark. It is concluded, therefore, that aa3-type cytochrome c oxidase is not the only terminal respiratory oxidase in Synechocystis sp. PCC6803.Abbreviations CM
cytoplasmic membrane
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- HQNO
2-heptyl-4-hydroxyquinoline N-oxide
- ICM
intracytoplasmic membranes
- SU
subunit
- TES
(N-tris(hydroxymethyl)methyl)-2-aminoethane sulfonic acid 相似文献
7.
Cytochrome c6, the product of the petJ gene, is a photosynthetic electron carrier in cyanobacteria, which transfers electrons to photosystem I and which is synthesised under conditions of copper deficiency to functionally replace plastocyanin. The photosystem I photochemical activity (energy storage, photoinduced P700 redox changes) was examined in a petJ-null mutant of Synechocystis PCC 6803. Surprisingly, photosystem I activity in the petJ-null mutant grown in the absence of copper was not much affected. However, in a medium with a low inorganic carbon concentration and with NH4+ ion as nitrogen source, the mutant displayed growth inhibition. Analysis showed that, especially in the latter, the isiAB operon, encoding flavodoxin and CP43', an additional chlorophyll a antenna, was strongly expressed in the mutant. These proteins are involved in photosystem I function and organisation and are proposed to assist in prevention of overoxidation of photosystem I at its lumenal side and overreduction at its stromal side. 相似文献
8.
The cytM gene for cytochrome cM was previously found in Synechocystis sp. PCC 6803. Northern blotting analysis revealed that the cytM gene was scarcely expressed under normal growth conditions but its expression was enhanced when cells were exposed to low temperature or high-intensity light. By contrast, the expression of the genes for cytochrome c6 and plastocyanin was suppressed at low temperature or under high-intensity light. These observations suggest that plastocyanin and/or cytochrome c6, which are dominant under non-stressed conditions, are replaced by cytochrome cM under the stress conditions. 相似文献
9.
10.
11.
12.
Durán RV Hervás M De La Rosa MA Navarro JA 《The Journal of biological chemistry》2004,279(8):7229-7233
In cyanobacteria, cytochrome c6 and plastocyanin are able to replace each other as redox carriers in the photosynthetic and respiratory electron transport chains with the synthesis of one or another protein being regulated by the copper concentration in the culture medium. However, the presence of a third unidentified electron carrier has been suggested. To address this point, we have constructed two deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803, each variant lacking either the petE or petJ gene, which respectively codes for the copper or heme protein. The photoautotrophic and heterotrophic growth rate of the two mutants in copper-free and copper-supplemented medium as well as their photosystem I reduction kinetics in vivo were compared with those of wild-type cells. The two mutant strains grow at equivalent rates and show similar in vivo photosystem I reduction kinetics as wild-type cells when cultured in media that allow the expression of just one of the two electron donor proteins, but their ability to grow and reduce photosystem I is much lower when neither cytochrome c6 nor plastocyanin is expressed. These findings indicate that the normal functioning of the cyanobacterial photosynthetic and respiratory chains obligatorily depends on the presence of either cytochrome c6 or plastocyanin. 相似文献
13.
14.
Accumulation of poly-beta-hydroxybutyrate (PHB) by photoautotrophic microorganisms makes it possible to reduce the production cost of PHB. The Synechocystis sp. PCC6803 cells grown in BG11 medium under balanced, nitrogen-starved or phosphorus-starved conditions were observed by transmission electron microscope. Many electron-transparent granules in the nitrogen-starved cells had a diameter up to 0.8 micron. In contrast, the number of granules in the normally cultured cells decreased obviously and only zero to three much smaller granules were in each cell. These granules were similar to those in bacteria capable of synthesizing PHB. They were proved to be PHB by gas chromatography after subjecting the cells to methanolysis. Effects of glucose as carbon source and light intensity on PHB accumulation in Synechocystis sp. PCC6803 under nitrogen-starved cultivation were further studied. Glucose and illumination promoted cell growth but did not favor PHB synthesis. After 7 days of growth under nitrogen-starved photoautotrophic conditions, the intracellular level of PHB was up to 4.1% of cellular dry weight and the PHB concentration in the culture broth was 27 mg/l. 相似文献
15.
The unicellular cyanobacterium Synechocystis sp PCC 6803 is capable of synthesizing two different Photosystem-I electron acceptors, ferredoxin and flavodoxin. Under normal growth conditions a [2Fe-2S] ferredoxin was recovered and purified to homogeneity. The complete amino-acid sequence of this protein was established. The isoelectric point (pI = 3.48), midpoint redox potential (Em = -0.412 V) and stability under denaturing conditions were also determined. This ferredoxin exhibits an unusual electrophoretic behavior, resulting in a very low apparent molecular mass between 2 and 3.5 kDa, even in the presence of high concentrations of urea. However, a molecular mass of 10,232 Da (apo-ferredoxin) is calculated from the sequence. Free thiol assays indicate the presence of a disulfide bridge in this protein. A small amount of ferredoxin was also found in another fraction during the purification procedure. The amino-acid sequence and properties of this minor ferredoxin were similar to those of the major ferredoxin. However, its solubility in ammonium sulfate and its reactivity with antibodies directed against spinach ferredoxin were different. Traces of flavodoxin were also recovered from the same fraction. The amount of flavodoxin was dramatically increased under iron-deficient growth conditions. An acidic isoelectric point was measured (pI = 3.76), close to that of ferredoxin. The midpoint redox potentials of flavodoxin are Em1 = -0.433 V and Em2 = -0.238 V at pH 7.8. Sequence comparison based on the 42 N-terminal amino acids indicates that Synechocystis 6803 flavodoxin most likely belongs to the long-chain class, despite an apparent molecular mass of 15 kDa determined by SDS-PAGE. 相似文献
16.
Synechocystis sp. PCC 6803 is a unicellular motile cyanobacterium that shows positive and negative phototaxis on agar plates under lateral illumination. Recent studies on the molecular mechanisms of the phototactic motility of Synechocystis have revealed that a number of genes are responsible for its pilus-dependent motility and phototaxis. Here we describe what is known about these genes. We also discuss the novel spectral properties of the phytochrome-like photoreceptor PixJ1 in Synechocystis, that is essential for positive phototaxis and which has revealed the existence of a new group of chromophore-binding proteins in cyanobacteria. 相似文献
17.
Raksajit W Mäenpää P Incharoensakdi A 《Journal of biochemistry and molecular biology》2006,39(4):394-399
The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent K(m) of 92 +/- 10 microM and V(max) of 0.33 +/- 0.05 nmol/min/mg protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system. 相似文献
18.
We generated cytochrome c oxidase (CtaI)-defective cells of the cyanobacterium Synechocystis sp. PCC 6803 in order to investigate the physiological function of the CtaI-mediated respiratory electron transport pathway. When they were salt stressed, CtaI-defective cells showed a substantial decrease in photosynthesis due to reduction of the photochemical efficiency of Photosystem II and of the chlorophyll in the reaction center of the photo-oxidizable form of Photosystem I. These findings demostrate that CtaI-mediated electron transport is important for resistance to salt stress. 相似文献
19.
Martin Hagemann Dortje Golldack John Biggins Norbert Erdmann 《FEMS microbiology letters》1993,113(2):205-209
Abstract We have isolated a Bradyrhizobium japonicum USDA 438 (serogroup 123) mutant which has the ability to form nodules on serogroup 123 nodulation-restricting plant introduction genotypes and soybeans containing the Rj4 allele. The identity of the mutant was confirmed by using a serocluster 123-specific DNA probe, restriction fragment length polymorphism analysis, and serogroup-specific fluorescent antibodies. While the mutant contains Tn 5 inserted into a cryptic, non nod gene-containing locus, site-directed mutagenesis and complementation studies indicated that the transposon is not responsible for host-range extension. The mutant and the wild-type parent had the same chromatographic profiles of [14 C]acetate-labelled extracellular B. japonicum nod factors. 相似文献
20.
Aurelio Serrano Patricia Giménez Siegfried Scherer Peter Böger 《Archives of microbiology》1990,153(6):614-618
The in situ location of the electron carrier protein cytochrome C
553 (cyt c
553) has been investigated in both vegetative cells and heterocysts of the cyanobacterium Anabaena variabilis ATCC 29413 using the antibody-gold technique, carried out as a post-ernbedding immunoelectron microscopy procedure. When using a rabbit polyclonal anti-cyt c
553 specific antiserum an intense labelling, associated mainly with the cell periphery (cytoplasmic membrane and periplasmic area), was seen in both heterocysts and vegetative cells. The selective release of most of the cellular cyt c
553 during a Tris-EDTA treatment confirms a periplasmic localization of this protein in A. variabilis. The results indicate that most of cyt c
553 is located in the periplasmic space. The roles ascribed to this protein in both respiration and photosynthesis in cyanobacteria are discussed.Abbreviations Cyt c
553
cytochrome c
553
- PBS
phosphate buffered saline (20 mM sodium phosphate, 0.9% NaCl, pH 7.4)
- PMSF
phenylmethylsulfonyl fluoride
Recipient of a Research Fellowship of the Alexander von Humboldt Foundation (Bonn, FRG) for a leave to the University of Konstanz. 相似文献