首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Previously, we have molecularly cloned proviral DNA of a polycythemia-inducing strain of the spleen focus-forming virus (SFFVp). In this paper, we report that unintegrated proviral DNA of the anemia-inducing strain of SFFV (SFFVA) has been molecularly cloned into pBR322. This molecularly cloned DNA retains the biological activity of SFFVA, as infectious SFFV can be recovered from the DNA clone by marker rescue using a previously described two-stage cotransfection assay (Linemeyer et al., J. Virol. 35:710-721, 1980). The recovered SFFV retains an important property of the initial SFFVA which distinguishes SFFVA from SFFVP, namely, the ability of SFFVA to cause proliferation of erythroid cells in which hemoglobin synthesis is erythropoietin dependent. By utilizing a marker rescue technique, the splenomegaly and anemia characteristic of SFFVA-induced disease have been traced to a DNA fragment of SFFVA containing sequences coding for the env gene product. gp52. The results suggest that the differences in pathogenicity between SFFVP disease and SFFVA disease are an intrinsic property of the env gene products of these two variants of Friend virus, and future studies with the molecular clones of each strain should allow us to map regions of each env gene responsible for common and distinctive features of the erythroproliferative diseases induced by each virus.  相似文献   

2.
S W Chung  L Wolff    S Ruscetti 《Journal of virology》1987,61(5):1661-1664
Two different strains of Friend spleen focus-forming virus, SFFVP and SFFVA, are known to cause a rapid erythroleukemia. The SFFVP-infected cells can proliferate and differentiate maximally without the addition of the erythroid-specific hormone erythropoietin, whereas the SFFVA-infected cells require erythropoietin for differentiation and for maximum proliferation. We previously reported that a recombinant virus containing sequences from the 3' half of the SFFVP envelope gene and the SFFVP long terminal repeat on an SFFVA background has all of the biological and biochemical characteristics of SFFVP. We are now presenting data on a new recombinant virus to show that only the 3' half of the SFFVP envelope gene is responsible for the differences observed between the two strains.  相似文献   

3.
Previous studies in our laboratory and others have been consistent with the hypothesis that the envelope (env) gene of the spleen focus-forming virus (SFFV) is the only gene essential for the induction of acute erythroleukemia. However, no studies have been carried out with the SFFV env gene in the complete absence of other SFFV sequences. To accomplish this goal, we isolated the sequences that encode the envelope glycoprotein, gp52, of SFFVA and expressed them in a Moloney murine leukemia virus-based double-expression vector containing the neomycin resistance gene. The method used to produce retrovirus stocks in tissue culture cells affected the expression of the gp52 gene in the vector and the subsequent pathogenicity of the vector in mice. Highly pathogenic virus stocks were obtained by cotransfection of vector and helper virus DNAs into fibroblasts, followed by virus replication and spread through the cell population. Mice infected with this stock developed a rapid erythroid disease that was indistinguishable from that induced by the entire SFFV genome, and the virus stock transformed erythroid cells in vitro. Spleen cells from the diseased mice expressed the SFFV env gene product but not the SFFV gag gene product. As expected, mice given the virus containing the SFFV env gene in the reverse orientation did not express the SFFV env gene product or develop erythroleukemia. This study, therefore, demonstrated (i) that double-expression retroviral vectors can be used under specific conditions to produce viruses expressing high levels of a particular gene and (ii) that incorporation of the SFFV env gene into such a vector in the absence of other SFFV sequences results in a retrovirus which is as pathogenic as the original SFFV.  相似文献   

4.
Erythroid cells from mice infected with the polycythemia-inducing strain of Friend spleen focus-forming virus (SFFVP), unlike normal erythroid cells, can proliferate and differentiate in apparent absence of the erythroid hormone erythropoietin (Epo). The unique envelope glycoprotein encoded by SFFV has been shown to be responsible for this biological effect. The recent isolation of an Epo-dependent erythroleukemia cell line, HCD-57, derived from a mouse infected at birth with Friend murine leukemia virus, afforded us the opportunity to study the direct effect of SFFVP on a homogeneous population of factor-dependent cells. The introduction of SFFVP in complex with various helper viruses into these Epo-dependent cells efficiently and reproducibly gave rise to lines which expressed high levels of SFFV and were factor independent. SFFV appears to be unique in its ability to abrogate the factor dependence of Epo-dependent HCD-57 cells, since infection of these cells with retroviruses carrying a variety of different oncogenes had no effect. The induction of Epo independence by SFFV does not appear to involve a classical autocrine mechanism, since there is no evidence that the factor-independent cells synthesize or secrete Epo or depend on it for their growth. However, the SFFV-infected, factor-independent cells had significantly fewer receptors available for binding Epo than their factor-dependent counterparts had, raising the possibility that the induction of factor independence by the virus may be due to the interaction of an SFFV-encoded protein with the Epo receptor.  相似文献   

5.
The proliferation and differentiation of erythroid cells is a highly regulated process that is controlled primarily at the level of interaction of erythropoietin (Epo) with its specific cell surface receptor (EpoR). However, this process is deregulated in mice infected with the Friend spleen focus-forming virus (SFFV). Unlike normal erythroid cells, erythroid cells from SFFV-infected mice are able to proliferate and differentiate in the absence of Epo, resulting in erythroid hyperplasia and leukemia. Over the past 20 years, studies have been carried out to identify the viral genes responsible for the pathogenicity of SFFV and to understand how expression of these genes leads to the deregulation of erythropoiesis in infected animals. The studies have revealed that SFFV encodes a unique envelope glycoprotein which interacts specifically with the EpoR at the cell surface, resulting in activation of the receptor and subsequent activation of erythroid signal transduction pathways. This leads to the proliferation and differentiation of erythroid precursor cells in the absence of Epo. Although the precise mechanism by which the viral protein activates the EpoR is not yet known, it has been proposed that it causes dimerization of the receptor, resulting in constitutive activation of Epo signal transduction pathways. While interaction of the SFFV envelope glycoprotein with the EpoR leads to Epo-independent erythroid hyperplasia, this is not sufficient to transform these cells. Transformation requires the viral activation of the cellular gene Sfpi-1, whose product is thought to block erythroid cell differentiation. By understanding how SFFV can deregulate erythropoiesis, we may gain insights into the causes and treatment of related diseases in man.  相似文献   

6.
The Friend spleen focus-forming virus (SFFV) is an envelope gene recombinant between the ecotropic Friend murine leukemia virus and the endogenous xenotropic mink cell focus-forming retroviral sequences. We synthesized an octadecanucleotide complementary to the 3' end of the SFFV env gene designed for discriminating the SFFV proviruses from the xenotropic mink cell focus-forming virus and ecotropic exogenous or endogenous viral sequences. Under appropriate hybridization conditions this probe allowed the identification, in addition to few endogenous DNA fragments, of multiple SFFV proviruses integrated in the genome of Friend malignant cells. Therefore this probe should be of interest in further characterizing the SFFV integration sites and possibly the SFFV ancestor gene.  相似文献   

7.
Y Wang  S C Kayman  J P Li    A Pinter 《Journal of virology》1993,67(3):1322-1327
Recent evidence suggests that interactions between spleen focus-forming virus (SFFV) env products and the erythropoietin receptor (EpoR) are responsible for viral pathogenicity. Infection of factor-dependent cell lines expressing epoR (the cloned gene for EpoR) with SFFVP is mitogenic, generating cell lines that are no longer dependent on added growth factor, and an immunoprecipitable complex between EpoR and immature env protein in the endoplasmic reticulum has been identified. The dependence of these in vitro activities on env protein processing and their relationship to pathogenicity of SFFV were explored by using glycosylation site mutants of SFFV env. Mutants carrying Asn-->Asp mutations at each of the two consensus signals for N-linked glycosylation in the N-terminal domain of SFFVAP-L env (gs1 and gs2), the gs1-2- double mutant, and the gs0 quadruple mutant (mutated at all four signals utilized for N-linked glycosylation in SFFVAP-L env) were made. The primary translation products (gp52) of single-site mutant envs were processed into more highly glycosylated forms, and the corresponding viruses induced splenomegaly in susceptible mice, whereas the gs1-2- and gs0 proteins were not processed, and these viruses were not pathogenic. Unprocessed env proteins of both pathogenic and nonpathogenic mutants coprecipitated with EpoR. In the BaF3 cell assay for epoR-dependent mitogenicity, the pathogenic single mutants induced factor-independent growth efficiently whereas the nonpathogenic gs1-2- and gs0 mutants did not. These data demonstrate that the ability of gp52 to form complexes with EpoR in the endoplasmic reticulum is not sufficient for either mitogenicity in cell culture or induction of splenomegaly in mice while supporting the hypothesis that pathogenicity and mitogenicity of SFFV both result from an interaction between EpoR and SFFV env protein.  相似文献   

8.
9.
Friend spleen focus-forming virus (SFFV) codes for a transport-defective envelope glycoprotein designated gp52, which is responsible for the leukemogenic properties of the virus. gp52 is a monotopic integral membrane protein anchored in the membrane by a stretch of hydrophobic amino acid residues located near the carboxy terminus of the molecule. We have constructed a mutant SFFV envelope gene in which the sequences that code for the hydrophobic membrane-spanning domain have been deleted, and we expressed this gene by using recombinant vaccinia virus vectors or retroviral vectors. The mutant SFFV envelope gene was found to encode a truncated glycoprotein (gp52t) which was also transport defective; a majority of gp52t remained cell associated, while a small proportion of the molecules underwent oligosaccharide processing. The processed form of gp52t was secreted from the cells. Retroviral vectors carrying the mutant SFFV envelope gene were found to be nonpathogenic in adult mice. These results indicate that the hydrophobic membrane-spanning region of gp52 is required for pathogenicity of SFFV and suggest that these sequences may play a role in signal transduction. The results also indicate that the transport defect of SFFV gp52 is due to structural features of the ectodomain of the molecule.  相似文献   

10.
Friend murine spleen focus-forming virus (SFFV) encodes a glycoprotein designated gp52, which is responsible for the leukemogenic properties of the virus. gp52 lacks a cytoplasmic domain and is defective in its transport to the cell surface. We constructed a chimeric envelope gene which codes for a molecule with an external domain derived from the SFFV envelope gene and membrane-spanning and cytoplasmic domains derived from the Friend murine leukemia virus envelope gene. Like gp52, the chimeric protein was defective in its transport to the cell surface, indicating that the absence of a cytoplasmic tail is not responsible for the defective intracellular transport of SFFV gp52. However, unlike wild-type SFFV, the chimeric SFFV genome failed to induce erythroleukemia in adult mice. The results indicate that the altered membrane-spanning domain, lack of a detectable cytoplasmic tail in gp52, or both factors are prerequisites for the erythroleukemia-inducing properties of SFFV but are not responsible for the block in intracellular transport of the glycoprotein.  相似文献   

11.
Friend murine leukemia virus (F-MuLV) is a highly leukemogenic replication-competent murine retrovirus. Both the F-MuLV envelope gene and the long terminal repeat (LTR) contribute to its pathogenic phenotype (A. Oliff, K. Signorelli, and L. Collins, J. Virol. 51:788-794, 1984). To determine whether the F-MuLV gag and pol genes also possess sequences that affect leukemogenicity, we generated recombinant viruses between the F-MuLV gag and pol genes and two other murine retroviruses, amphotrophic clone 4070 (Ampho) and Friend mink cell focus-inducing virus (Fr-MCF). The F-MuLV gag and pol genes were molecularly cloned on a 5.8-kilobase-pair DNA fragment. This 5.8-kilobase-pair F-MuLV DNA was joined to the Ampho envelope gene and LTR creating a hybrid viral DNA, F/A E+L. A second hybrid viral DNA, F/Fr ENV, was made by joining the 5.8-kilobase-pair F-MuLV DNA to the Fr-MCF envelope gene plus the F-MuLV LTR. F/A E+L and F/Fr ENV DNAs generated recombinant viruses upon transfection into NIH 3T3 cells. F/A E+L virus (F-MuLV gag and pol, Ampho env and LTR) induced leukemia in 20% of NIH Swiss mice after 6 months. Ampho-infected mice did not develop leukemia. F/Fr ENV virus (F-MuLV gag and pol, Fr-MCV env, F-MuLV LTR) induced leukemia in 46% of mice after 3 months. Recombinant viruses containing the Ampho gag and pol, Fr-MCF env, and F-MuLV LTR caused leukemia in 38% of mice after 6 months. We conclude that the F-MuLV gag and pol genes contain sequences that contribute to the pathogenicity of murine retroviruses. These sequences can convert a nonpathogenic virus into a leukemia-causing virus or increase the pathogenicity of viruses that are already leukemogenic.  相似文献   

12.
Radiation leukemia viruses (RadLVs) are a group of murine leukemia viruses which are induced by radiation and cause T-cell leukemia. Viral clones isolated from the BL/VL3 lymphoid cell line derived from a thymoma show variable tropism and leukemogenic potential. We have constructed chimeric viruses by in vitro recombination between two viruses, a RadLV that is thymotropic and an endogenous ecotropic virus that is nonthymotropic. We show here that, in contrast to thymotropism determinants identified previously, which lie in the long terminal repeat (LTR), it is the envelope region that is responsible for the thymotropism of BL/VL3 RadLV. The nonthymotropic virus which we have rendered thymotropic by transfer of the env region of RadLV in the present study has been shown previously to become thymotropic when the LTR of another thymotropic virus is inserted in its genome. Thus, the LTR and envelope gene may be involved in complementary action to lead to thymotropism.  相似文献   

13.
If the env gene of spleen focus-forming virus (SFFV) is replaced by a cDNA encoding a constitutively active form of the erythropoietin receptor, EPO-R(R129C), the resultant recombinant virus, SFFVcEPO-R, induces transient thrombocytosis and erythrocytosis in infected mice. Clonogenic progenitor cell assays of cells from the bone marrow and spleens of these infected mice suggest that EPO-R(R129C) can stimulate proliferation of committed megakaryocytic and erythroid progenitors as well as nonerythroid multipotent progenitors. From the spleens of SFFVcEPO-R-infected mice, eight multiphenotypic immortal cell lines were isolated and characterized. These included primitive erythroid, lymphoid, and monocytic cells. Some expressed proteins characteristic of more than one lineage. All cell lines resulting from SFFVcEPO-R infection contained a mutant form of the p53 gene. However, in contrast to infection by SFFV, activation of PU.1 gene expression, by retroviral integration, was not observed. One cell line had integrated a provirus upstream of the fli-1 gene, in a location typically seen in erythroleukemic cells generated by Friend murine leukemia virus infection. This event led to increased expression of fli-1 in this cell line. Thus, infection by SFFVcEPO-R can induce proliferation and lead to transformation of nonerythroid as well as very immature erythroid progenitor cells. The sites of proviral integration in clonal cell lines are distinct from those in SFFV-derived lines.  相似文献   

14.
The erythroleukemia-inducing Friend spleen focus-forming virus (SFFV) encodes a unique envelope protein, gp55, which interacts with the erythropoietin (Epo) receptor complex, causing proliferation and differentiation of erythroid cells in the absence of Epo. Susceptibility to SFFV-induced erythroleukemia is conferred by the Fv-2 gene, which encodes a short form of the receptor tyrosine kinase Stk/Ron (sf-Stk) only in susceptible strains of mice. We recently demonstrated that sf-Stk becomes activated by forming a strong interaction with SFFV gp55. To examine the biological consequences of activated sf-Stk on erythroid cell growth, we prepared retroviral vectors which express sf-Stk, either in conjunction with gp55 or alone in a constitutively activated mutant form, and tested them for their ability to induce Epo-independent erythroid colonies ex vivo and disease in mice. Our data indicate that both gp55-activated sf-Stk and the constitutively activated mutant of sf-Stk induce erythroid cells from Fv-2-susceptible and Fv-2-resistant (sf-Stk null) mice to form Epo-independent colonies. Mutational analysis of sf-Stk indicated that a functional kinase domain and 8 of its 12 tyrosine residues are required for the induction of Epo-independent colonies. Further studies demonstrated that coexpression of SFFV gp55 with sf-Stk significantly extends the half-life of the kinase. When injected into Fv-2-resistant mice, neither the gp55-activated sf-Stk nor the constitutively activated mutant caused erythroleukemia. Surprisingly, both Fv-2-susceptible and -resistant mice injected with the gp55-sf-Stk vector developed clinical signs not previously associated with SFFV-induced disease. We conclude that sf-Stk, activated by either point mutation or interaction with SFFV gp55, is sufficient to induce Epo-independent erythroid colonies from both Fv-2-susceptible and -resistant mice but is unable to cause erythroleukemia in Fv-2-resistant mice.  相似文献   

15.
Friend virus complex (FV), which comprises replication-competent Friend murine leukemia virus (FMuLV) plus replication-defective spleen focus-forming virus (SFFV), induces a multistage erythroleukemia. We have examined the role of replication-competent helper virus in the early and late stages of FV disease by replacing FMuLV, the native helper, with Akv, the endogenous ecotropic MuLV of AKR mice. SFFVP/FRE, an established fibroblast line nonproductively infected with the polycythemic strain of SFFV, was superinfected with FMuLV or with Akv. Although supernatants from these cells showed similar titers in the XC plaque assay, supernatants from Akv-infected SFFVP/FRE cells showed 100- to 5,000-fold less activity than did those from FMuLV-infected cells with respect to spleen focus induction in vivo. Since virions isolated from these two supernatants contained similar ratios of SFFV to helper virus genomic RNA, it did not appear that the difference was due to a relative inability of Akv to package SFFV. Although FMuLV- and Akv-rescued SFFV are equally infectious in a mouse fibroblast cell line (NIH 3T3), FMuLV-rescued SFFV was far more efficient in inducing erythroid bursts in cultured primary bone marrow cells. Adding Akv to preparations of FMuLV-rescued SFFV did not significantly interfere with burst induction. Helper-free SFFV induced 50- to 500-fold more spleen foci when coinjected with FMuLV than it did with Akv. Helper virus also affected mortality rates that reflect the late stage of the disease. When FMuLV- or Akv-rescued SFFV was injected into NIH Swiss mice at dosage levels adjusted to give equal numbers of spleen foci, all mice receiving FMuLV-rescued SFFV developed splenomegaly and died, whereas no mice receiving Akv-rescued SFFV died or developed detectable splenomegaly. When FMuLV was coinjected with Akv-rescued SFFV, the mortality rate rose from 0 to 100%. Injection of helper-free SFFV alone did not induce mortality, but coinjection of helper-free SFFV with FMuLV resulted in 100% mortality. Thus, the helper virus used to rescue SFFV plays at least a quantitatively important role in the early stage of FV disease and a crucial role in the late stage of the disease in vivo.  相似文献   

16.
N Watanabe  M Nishi  Y Ikawa    H Amanuma 《Journal of virology》1990,64(6):2678-2686
To determine the biological significance of the 585-base-pair deletion in the env gene of Friend spleen focus-forming virus (SFFV) encoding a leukemogenic glycoprotein (gp55), we examined the pathogenicity of a constructed mutant SFFV (SFFVDF). In the SFFVDF genome, the env deletion was filled in with the corresponding env sequence of Friend mink cell focus-forming virus, whereas the 6-base-pair duplication and the single base insertion near the 3' terminus of SFFV env remained intact. SFFVDF was nonpathogenic in adult mice. During passage of SFFVDF through newborn mice, we recovered various pathogenic variant SFFVs. Molecular analyses of variant SFFV genome DNAs revealed the presence of a distinct deletion in each env gene, which was similar but not identical to that in the wild-type SFFV env. Starting with the SFFVDF genome DNA, other mutant SFFV genome DNAs were constructed in which the sequence coding for the gp70/p15E proteolytic cleavage site present in the SFFVDF genome was modified by oligonucleotide-directed site-specific mutagenesis to prevent the cleavage. These mutant SFFVs were also nonpathogenic. These results indicate that for the pathogenic activity of gp55, a certain env deletion is necessary which causes production of a gp70-p15E fusion protein with an absence of at least the N-terminal one-third of the p15E-coding region.  相似文献   

17.
A biologically active molecular clone of BALB/Moloney mink cell focus-forming (Mo-MCF) proviral DNA has been reconstructed in vitro. It contains the 5' half of BALB/Moloney murine leukemia virus (Mo-MuLV) DNA and the 3' half of BALB/Mo-MCF DNA. The complete nucleotide sequence of the env gene and the 3' long terminal repeat (LTR) of the cloned Mo-MCF DNA has been determined and compared with the sequence of the corresponding region of parental Mo-MuLV DNA. The substitution in the Mo-MCF DNA encompasses 1,159 base pairs, beginning in the carboxyl terminus of the pol gene and extending to the middle of the env gene. The Mo-MCF env gene product is predicted to be 29 amino acids shorter than the parental Mo-MuLV env gene product. The portion of the env gene encoding the p15E peptide is identical in both viral DNAs. There is an additional A residue in the Mo-MCF viral DNA in a region just preceding the 3' LTR. The nucleotide sequence of the 3' LTR of Mo-MCF DNA is similar to that of the 5' LTR of BALB/Mo-MuLV DNA with the exception of two single base substitutions. We conclude that the sequence substitution in the env gene is responsible for the dual-tropic properties of Mo-MCF viruses.  相似文献   

18.
To study the intracellular transport and biological properties of the human immunodeficiency virus type 1 (HIV-1) transmembrane glycoprotein (TM; gp41), we constructed a truncated envelope gene in which the majority of the coding sequences for the surface glycoprotein (SU; gp120) were deleted. Transient expression of this truncated env gene in primate cells resulted in the biosynthesis of two proteins with M(r)s of 52,000 and 41,000, respectively. Immunofluorescence studies with antibodies to the HIV-1 TM protein indicated that the intracellular and surface localization of these proteins were indistinguishable from those of the native HIV-1 gp120-gp41 complex. These results indicate that the oligosaccharide processing and cell surface transport of the HIV-1 TM protein were not dependent on the presence of the receptor binding subunit, gp120. Syncytium formation was readily detected upon expression of the deleted HIV-1 env gene into COS and CD4+ HeLa cell lines, suggesting that in the absence of gp120, the TM protein retained biological activity. This observation was confirmed by infection of primate and mouse cell lines with a recombinant vaccinia virus (vvgp41) expressing the truncated HIV-1 env gene. These results strongly suggest that (i) the two biological activities of the HIV-1 envelope glycoprotein can occur independently and (ii) the association of the two glycoprotein subunits may restrict the fusion activity of the transmembrane component to CD4+ cells.  相似文献   

19.
The Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein, gp55, which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). SFFV gp55 has been shown to interact with the Epo receptor complex, causing constitutive activation of various signal-transducing molecules. When injected into adult mice, SFFV induces a rapid erythroleukemia, with susceptibility being determined by the host gene Fv-2, which was recently shown to be identical to the gene encoding the receptor tyrosine kinase Stk/Ron. Susceptible, but not resistant, mice encode not only full-length Stk but also a truncated form of the kinase, sf-Stk, which may mediate the biological effects of SFFV infection. To determine whether expression of SFFV gp55 leads to the activation of sf-Stk, we expressed sf-Stk, with or without SFFV gp55, in hematopoietic cells expressing the Epo receptor. Our data indicate that sf-Stk interacts with SFFV gp55 as well as gp55(P), the biologically active form of the viral glycoprotein, forming disulfide-linked complexes. This covalent interaction, as well as noncovalent interactions with SFFV gp55, results in constitutive tyrosine phosphorylation of sf-Stk and its association with multiple tyrosine-phosphorylated signal-transducing molecules. In contrast, neither Epo stimulation in the absence of SFFV gp55 expression nor expression of a mutant of SFFV that cannot interact with sf-Stk was able to induce tyrosine phosphorylation of sf-Stk or its association with any signal-transducing molecules. Covalent interaction of sf-Stk with SFFV gp55 and constitutive tyrosine phosphorylation of sf-Stk can also be detected in an erythroleukemia cell line derived from an SFFV-infected mouse. Our results suggest that SFFV gp55 may mediate its biological effects in vivo by interacting with and activating a truncated form of the receptor tyrosine kinase Stk.  相似文献   

20.
The gp52 envelope glycoprotein of Friend spleen focus-forming virus (SFFV) is a recombinant molecule derived from Friend murine leukemia virus (MuLV) by various deletions, insertions, and substitutions. The SFFV gp52 glycoprotein, unlike MuLV envelope glycoproteins, is defective in transport to the cell surface. Only 3-5% of gp52 eventually reaches the cell surface as a processed form (gp65). Although gp52 lacks cytoplasmic tail residues found in MuLV glycoproteins, we have previously shown that this deletion is not responsible for its defective transport. In order to investigate the basis for the defective transport of gp52, we have examined the folding and assembly of gp52 molecules into oligomeric molecules. CV-1 cells infected with vaccinia virus recombinants expressing SFFV gp52 were pulse labeled and the cell extracts were fractionated by velocity centrifugation through sucrose gradients. Immediately after a 10-min pulse, gp52 was detected as a monomer in the upper part of the sucrose gradient (fractions 12 and 14) and it remained as such after a 2-h chase period. However, the processed form, gp65, was found in a lower part of the gradient (fraction 8) after a 2-h chase. The position of gp65 was found to correspond to the position of trimeric influenza hemagglutinin which was analyzed on a parallel sucrose gradient, suggesting that gp65 also exists as a trimer in this fraction. These results indicate that changes in the external domain of gp52 result in improper folding of the glycoprotein molecule, and suggest that this lack of oligomerization is responsible for the defective transport of the molecules. Only those molecules that do form oligomeric structures are transported to the Golgi complex and undergo further oligosaccharide processing, and transport to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号