首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Rat brown adipocytes express mRNAs for Uncoupling Proteins (UCP) 1, 2 and 3 and the Peroxisome Proliferator Activated Receptors (PPAR) alpha and gamma. We have examined the effects of selective PPARalpha or -gamma activation on changes in UCP-1 and UCP-3 mRNA levels in cultured fetal rat brown adipocytes (FBA). Rosiglitazone (1.0 microM), a selective PPARgamma agonist, elicited 5- and 3-fold increases in UCP-1 and UCP-3, respectively. The PPARalpha ligand, Wy14643 (10.0 microM) increased UCP-3 tenfold, but decreased UCP-1. A synergistic effect on UCP-3 expression (30-fold increase; P < 0. 05) was observed when FBA were exposed to a combination of Wy14643 (10.0 microM) and rosiglitazone (10.0 microM). Thus, activation of PPARgamma increases UCP-1 and UCP-3 levels which are differentially regulated by PPARalpha. A synergistic interaction occurs between PPARalpha and PPARgamma in the regulation of UCP-3 in FBA, probably via co-activator recruitment, suppression of co-repressor proteins or through a direct interaction at the level of the PPRE.  相似文献   

2.
High expression of the peroxisome proliferator-activated receptor alpha (PPARalpha) differentiates brown fat from white, and is related to its high capacity of lipid oxidation. We analyzed the effects of PPARalpha activation on expression of the brown fat-specific uncoupling protein-1 (ucp-1) gene. Activators of PPARalpha increased UCP-1 mRNA levels severalfold both in primary brown adipocytes and in brown fat in vivo. Transient transfection assays indicated that the (-4551)UCP1-CAT construct, containing the 5'-regulatory region of the rat ucp-1 gene, was activated by PPARalpha co-transfection in a dose-dependent manner and this activation was potentiated by Wy 14,643 and retinoid X receptor alpha. The coactivators CBP and PPARgamma-coactivator-1 (PGC-1), which is highly expressed in brown fat, also enhanced the PPARalpha-dependent regulation of the ucp-1 gene. Deletion and point-mutation mapping analysis indicated that the PPARalpha-responsive element was located in the upstream enhancer region of the ucp-1 gene. This -2485/-2458 element bound PPARalpha and PPARgamma from brown fat nuclei. Moreover, this element behaved as a promiscuous responsive site to either PPARalpha or PPARgamma activation, and we propose that it mediates ucp-1 gene up-regulation associated with adipogenic differentiation (via PPARgamma) or in coordination with gene expression for the fatty acid oxidation machinery required for active thermogenesis (via PPARalpha).  相似文献   

3.
4.
5.
6.
7.
8.
9.
Most physiologically induced examples of recruitment of brown adipose tissue (BAT) occur as a consequence of chronic sympathetic stimulation (norepinephrine release within the tissue). However, in some physiological contexts (e.g., prenatal and prehibernation recruitment), this pathway is functionally contraindicated. Thus a nonsympathetically mediated mechanism of BAT recruitment must exist. Here we have tested whether a PPARgamma activation pathway could competently recruit BAT, independently of sympathetic stimulation. We continuously treated primary cultures of mouse brown (pre)adipocytes with the potent peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist rosiglitazone. In rosiglitazone-treated cultures, morphological signs of adipose differentiation and expression levels of the general adipogenic marker aP2 were manifested much earlier than in control cultures. Importantly, in the presence of the PPARgamma agonist the brown adipocyte phenotype was significantly enhanced: UCP1 was expressed even in the absence of norepinephrine, and PPARalpha expression and norepinephrine-induced PGC-1alpha mRNA levels were significantly increased. However, the augmented levels of PPARalpha could not explain the brown-fat promoting effect of rosiglitazone, as this effect was still evident in PPARalpha-null cells. In continuously rosiglitazone-treated brown adipocytes, mitochondriogenesis, an essential part of BAT recruitment, was significantly enhanced. Most importantly, these mitochondria were capable of thermogenesis, as rosiglitazone-treated brown adipocytes responded to the addition of norepinephrine with a large increase in oxygen consumption. This thermogenic response was not observable in rosiglitazone-treated brown adipocytes originating from UCP1-ablated mice; hence, it was UCP1 dependent. Thus the PPARgamma pathway represents an alternative, potent, and fully competent mechanism for BAT recruitment, which may be the cellular explanation for the enigmatic recruitment in prehibernation and prenatal states.  相似文献   

10.
11.
12.
13.
14.
Ligands of peroxisome proliferator-activated receptors (PPARs) come from a diverse group of chemicals that include pharmaceutical drugs, phthalate plasticizers, steroids, and pesticides. PPAR ligands exhibit a number of effects, including an ability to induce apoptosis in some systems. The mechanism(s) underlying the induction of apoptosis is not known. The current study examined the ability of Wy14643, a fibrate and PPARalpha agonist, and ciglitazone, a thiazolidinedione and PPARgamma agonist, to induce apoptosis as well as the production of oxidants in human Jurkat T cells that express all PPAR isoforms. Treatment with increasing doses of Wy14643 caused a substantial time-dependent increase in the overall oxidant status (as reflected by increased dichlorofluorescein fluorescence) of Jurkat cells without any change in viability except at the highest dose and longest time. Ciglitazone also caused a dose- and time-dependent increase in oxidant production. However, although the extent of this production was less than that seen with Wy14643, ciglitazone caused a dose- and time-dependent increase in apoptosis that could not be inhibited by antioxidants. Confocal micrographs of Jurkat cells loaded with dichlorofluorescein diacetate or dihydrorhodamine 123 and treated with Wy14643 or ciglitazone revealed a punctate pattern of fluorescence at early time points suggestive of a mitochondrial origin for these oxidants. Rotenone and antimycin A prevented Wy14643- but not ciglitazone-induced oxidant production. Other relatively specific PPARgamma agonists (15delta-PGJ2, and troglitazone), but not nonspecific agonists (bezafibrate and conjugated linoleic acid), were also able to induce oxidant production in Jurkat cells. These data, as well as the findings that oxidant production could be induced by Wy14643 in A549 cells that lack PPARalpha, and could not be blocked in Jurkat cells by the PPARalpha inhibitor MK886, indicate oxidant formation is unrelated to PPARalpha. These data also suggest that oxidant production induced by PPARalpha ligands originates in the mitochondria.  相似文献   

15.
16.
The three subtypes of peroxisome proliferator activated-receptors (PPARalpha, delta and gamma) control the storage and metabolism of fatty acids. Treatment of rats with the PPARalpha ligand ciprofibrate increases serum gastrin concentrations, and several lines of evidence suggest that non-amidated gastrins act as growth factors for the colonic mucosa. The aim of the present study was to investigate the expression of PPARs and the effect of PPAR ligands on gastrin production and cell proliferation in human colorectal carcinoma (CRC) cell lines. mRNAs for all three PPAR subtypes were detected by PCR in all CRC cell lines tested. The concentrations of progastrin, but not of glycine-extended or amidated gastrin, measured by radioimmunoassay in LIM 1899 conditioned media and cell extracts were significantly increased by treatment with the PPARalpha ligand clofibrate. Similar increases in progastrin were seen following treatment with the PPARalpha ligands ciprofibrate and fenofibrate, but not with bezafibrate, gemfibrozil or Wy 14643. The PPARgamma agonist rosiglitazone had no significant effect on progastrin production. The PPARalpha ligand clofibrate also stimulated proliferation of the LIM 1899 cell line. We conclude that some PPARalpha ligands increase progastrin production by the human CRC cell line LIM 1899, and that clofibrate increases proliferation of LIM 1899 cells. These studies have revealed a relationship between PPARs and gastrin, two regulatory molecules implicated in the pathogenesis of CRC.  相似文献   

17.
18.
19.
20.
In mice and other sensitive species, PPARalpha mediates the induction of mitochondrial, microsomal, and peroxisomal fatty acid oxidation, peroxisome proliferation, liver enlargement, and tumors by peroxisome proliferators. In order to identify PPARalpha-responsive human genes, HepG2 cells were engineered to express PPARalpha at concentrations similar to mouse liver. This resulted in the dramatic induction of mRNAs encoding the mitochondrial HMG-CoA synthase and increases in fatty acyl-CoA synthetase (3-8-fold) and carnitine palmitoyl-CoA transferase IA (2-4-fold) mRNAs that were dependent on PPARalpha expression and enhanced by exposure to the PPARalpha agonist Wy14643. A PPAR response element was identified in the proximal promoter of the human HMG-CoA synthase gene that is functional in its native context. These data suggest that humans retain a capacity for PPARalpha regulation of mitochondrial fatty acid oxidation and ketogenesis. Human liver is refractory to peroxisome proliferation, and increased expression of mRNAs for the peroxisomal fatty acyl-CoA oxidase, bifunctional enzyme, or thiolase, which accompanies peroxisome proliferation in responsive species, was not evident following Wy14643 treatment of cells expressing elevated levels of PPARalpha. Additionally, no significant differences were seen for the expression of apolipoprotein AI, AII, or CIII; medium chain acyl-CoA dehydrogenase; or stearoyl-CoA desaturase mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号