首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Cotton is an important domesticated fiber used to manufacture a variety of products and industrial goods. During harvesting with cotton strippers and cotton pickers, it is contaminated with foreign matter from botanical and non-botanical sources which adversely affect the quality and consistency of cotton, and therefore reduces its market value. To improve the current grading done by the High Volume Instrument (HVI) and human inspectors, it was explored whether fluorescence imaging can be used for cotton foreign matter detection.

Results

Eight types of botanical foreign matter (bark, bract, brown leaf, green leaf, hull, seed coat, seed, stem), and four types of non-botanical foreign matter (paper, twine, plastic bale packaging, plastic bag) were subjected to a fluorescence spectroscopy analysis to determine their optimal excitation and emission wavelength range. Matrix 3D scans were performed in the excitation range from 300 nm to 500 nm, and emission range from 320 nm to 700 nm, and the results indicated the photo-excitable fluorescence in the aforementioned excitation range for all the selected foreign matter categories. Consequently, the blue and the UV LEDs were selected as the excitation sources. The blue LED light provided optimal excitation light for bark, brown leaf, bract, green leaf, hull, and stem, while the UV LED light provided optimal excitation light for paper, plastic bag, plastic packaging, seed, seed coat, and twine.

Conclusions

UV and blue light induces fluorescence in 12 types of botanical and non-botanical cotton foreign matter. An imaging apparatus with blue and UV light excitation sources, and a consumer grade SLR camera was successfully developed to capture and characterize fluorescent images of cotton foreign matter. Based on the results, fluorescent imaging could be a promising method for cotton foreign matter detection. Future studies will focus on the classification of cotton foreign matter categories and to further refine the image processing sequence.
  相似文献   

2.
Buschmann  C.  Langsdorf  G.  Lichtenthaler  H.K. 《Photosynthetica》2000,38(4):483-491
An overview is given on the fluorescence imaging of plants. Emphasis is laid upon multispectral fluorescence imaging in the maxima of the fluorescence emission bands of leaves, i.e., in the blue (440 nm), green (520 nm), red (690 nm), and far-red (740 nm) spectral regions. Details on the origin of these four fluorescence bands are presented including emitting substances and emitting sites within a leaf tissue. Blue-green fluorescence derives from ferulic acids covalently bound to cell walls, and the red and far-red fluorescence comes from chlorophyll (Chl) a in the chloroplasts of green mesophyll cells. The fluorescence intensities are influenced (1) by changes in the concentration of the emitting substances, (2) by the internal optics of leaves determining the penetration of excitation radiation and partial re-absorption of the emitted fluorescence, and (3) by the energy distribution between photosynthesis, heat production, and emission of Chl fluorescence. The set-up of the Karlsruhe multispectral fluorescence imaging system (FIS) is described from excitation with UV-pulses to the detection with an intensified CCD-camera. The possibilities of image processing (e.g., formation of fluorescence ratio images) are presented, and the ways of extraction of physiological and stress information from the ratio images are outlined. Examples for the interpretation of fluorescence images are given by demonstrating the information available for the detection of different developmental stages of plant material, of strain and stress of plants, and of herbicide treatment. This novel technique can be applied for near-distance screening or remote sensing.  相似文献   

3.
Greenhouse and field experiments were carried out to evaluate the potential of specific fluorescence emission parameters for the detection of a temporary water deficit in selected sugar beet (Beta vulgaris L.) genotypes. Changes in the plant physiology due to reduced water availability were recorded with a multiparameter fluorescence sensor in addition to destructive and non-invasive reference analysis. Our results show that an insufficient water supply is followed by only slight changes of the UV-excited blue fluorescence. However, significant alterations due to desiccation were detected in several chlorophyll fluorescence parameters measured after excitation with UV, green and red light. In the scope of our activities, the relevance of the green light source for the fluorescence excitation became evident and enabled to characterize cultivar-specific reactions during dehydration and re-watering period. A field experiment was conducted to validate the data collected in the greenhouse. As proven, several days of low water supply led to effects similar to those observed in the greenhouse study. Our results indicate that the far-red fluorescence, as well as the simple and complex fluorescence ratios having the chlorophyll fluorescence as basis, is the appropriate parameter to evaluate physiological responses of sugar beet plants exposed to a short-term, temporary water deficit.  相似文献   

4.
《Gene》1996,173(1):19-23
The green fluorescent protein (GFP) from the jellyfish, Aequorea victoria, has become a versatile reporter for monitoring gene expression and protein localization in a variety of cells and organisms. GFP emits bright green light (λmax = 510 nm) when excited with ultraviolet (UV) or blue light (λmax = 395 nm, minor peak at 470 nm). The chromophore in GFP is intrinsic to the primary structure of the protein, and fluorescence from GFP does not require additional gene products, substrates or other factors. GFP fluorescence is stable, species-independent and can be monitored noninvasively using the techniques of fluorescence microscopy and flow cytometry [Chalfie et al., Science 263 (1994) 802–805; Stearns, Curr. Biol. 5 (1995) 262–264]. The protein appears to undergo an autocatalytic reaction to create the fluorophore [Heim et al., Proc. Natl. Acad. Sci. USA 91 (1994) 12501–12504] in a process involving cyclization of a Tyr66 aa residue. Recently [Delagrave et al., Bio/Technology 13 (1995) 151–154], a combinatorial mutagenic strategy was targeted at aa 64 through 69, which spans the chromophore of A. victoria GFP, yielding a number of different mutants with redshifted fluorescence excitation spectra. One of these, RSGFP4, retains the characteristic green emission spectra (λmax = 505 nm), but has a single excitation peak (λmax = 490 nm). The fluorescence properties of RSGFP4 are similar to those of another naturally occurring GFP from the sea pansy, Renilla reniformis [Ward and Cormier, Photobiochem. Photobiol. 27 (1978) 389–396]. In the present study, we demonstrate by fluorescence microscopy that selective excitation of A. victoria GFP and RSGFP4 allows for spectral separation of each fluorescent signal, and provides the means to image these signals independently in a mixed population of bacteria or mammalian cells.  相似文献   

5.
Fluorescence emission spectra excited at 514 and 633 nm were measured at ?196 °C on dark-grown bean leaves which had been partially greened by a repetitive series of brief xenon flashes. Excitation at 514 nm resulted in a greater relative enrichment of the 730 nm emission band of Photosystem I than was obtained with 633 nm excitation. The difference spectrum between the 514 nm excited fluorescence and the 633 nm excited fluorescence was taken to be representative of a pure Photosystem I emission spectrum at ?196 °C. It was estimated from an extrapolation of low temperature emission spectra taken from a series of flashed leaves of different chlorophyll content that the emission from Photosystem II at 730 nm was 12% of the peak emission at 694 nm. Using this estimate, the pure Photosystem I emission spectrum was subtracted from the measured emission spectrum of a flashed leaf to give an emission spectrum representative of pure Photosystem II fluorescence at ?196 °C. Emission spectra were also measured on flashed leaves which had been illuminated for several hours in continuous light. Appreciable amounts of the light-harvesting chlorophyll a/b protein, which has a low temperature fluorescence emission maximum at 682 nm, accumulate during greening in continuous light. The emission spectra of Photosystem I and Photosystem II were subtracted from the measured emission spectrum of such a leaf to obtain the emission spectrum of the light-harvesting chlorophyll a/b protein at ?196 °C.  相似文献   

6.
Photosynthetic organs are often characterized by anthocyanins being accumulated either in the epidermal or in the mesophyll cells making these tissues to turn reddish-brown in colour. It has been hypothesized that these pigments protect underlying chloroplasts from light-stress because they absorb photons of the photosynthetically active waveband. However, the photoprotective role of anthocyanins has not been undoubtedly shown on a broad range of species. In this study, green and anthocyanic areas of leaves of Pelargonium × hortorum, the latter possessing variable levels of anthocyanins, were compared using pigment analysis and pulse amplitude modulated in vivo chlorophyll (Chl) fluorescence. Quenching analysis of the induction and dark relaxation curves of slow Chl fluorescence kinetics showed that at photoinhibitory conditions [by applying above-saturation light intensity of 1,600 ??mol(quantum) m?2 s?1 white light at low (4°C) temperature], anthocyanic areas were at least equally sensitive to photoinhibition as green leaf areas. In fact, the level of photoinhibition tended to be proportional to the level of anthocyanin accumulation suggesting that this characteristic was indicative of the photoinhibitory risk. The results of the present study clearly show that anthocyanins in leaf areas of Pelargonium do not afford a photoprotective advantage.  相似文献   

7.
We are interested in developing fluorescence methods for quantifying lateral variations in the dipole potential across cell surfaces. Previous work in this laboratory showed that the ratio of fluorescence intensities of the voltage-sensitive dye di-8-ANEPPS using excitation wavelengths at 420 and 520 nm correlates well with measurements of the dipole potential. In the present work we evaluate the use of di-8-ANEPPS and an emission ratiometric method for measuring dipole potentials, as Bullen and Saggau (Biophys. J. 65 (1999) 2272-2287) have done to follow changes in the membrane potential in the presence of an externally applied field. Emission ratiometric methods have distinct advantages over excitation methods when applied to fluorescence microscopy because only a single wavelength is needed for excitation. We found that unlike the excitation ratio, the emission ratio does not correlate with the dipole potential of vesicles made from different lipids. A difference in the behaviour of the emission ratio in saturated compared to unsaturated lipid vesicles was noted. Furthermore, the emission ratio did not respond in the same way as the excitation ratio when cholesterol, 6-ketocholestanol, 7-ketocholesterol, and phloretin were added to dimyristoylphosphatidylcholine (DMPC) vesicles. We attribute the lack of correlation between the emission ratio and the dipole potential to simultaneous changes in membrane fluidity caused by changes in membrane composition, which do not occur when the electric field is externally applied as in the work of Bullen and Saggau. Di-8-ANEPPS can, thus, only be used via an excitation ratiometric method to quantify the dipole potential.  相似文献   

8.
A newly developed laboratory fluorescence imaging system was used to obtain fluorescence images (FImage) of freshly excised cucumber (Cucumis sativus L.) leaves in spectral bands centered in the blue (F450), green (F550), red (F680), and far-red (F730) spectral regions that resulted from a broad-band (300-400 nm) excitation source centered at 360 nm. Means of relative fluorescence intensities (RFI) from these spectral fluorescence images were compared with spectral fluorescence emission data obtained from excitation wavelengths at 280 nm (280EX, 300-550 nm) and 380 nm (380EX, 400-800 nm) of dimethyl sulfoxide (DMSO) extracts from these leaves. All three fluorescence data types (FImage, 280EX, 380EX) were used to assess ultraviolet-B (UV-B, 280-320 nm) induced physiological changes and the possible use of N-[2-(2-oxo-1-imidazolidinyl) ethyl]-N′-phenylurea (EDU or ethylenediurea) as a chemical protectant against UV-B damage. Plants exhibited well known foliar growth and pigment responses to UV-B exposure (e.g., increased UV-B absorbing compounds and decreased leaf area, chlorophyll a content; and and lower chlorophyll a/b and chlorophyll/carotenoid pigment ratios). Since EDU alone had no effect on foliar variables, there was no evidence that EDU afforded protection against UV-B. Instead, EDU augmented some UV-B effects when provided in conjunction with UV-B irradiation (e.g., reductions in the chlorophyll/carotenoid ratio, total photosynthetic pigments, and chlorophyll b content).Relative fluorescence intensities (RFI) in the longer visible wavelengths (green, red, and far-red) were uncorrelated for comparisons between the FImage and 380EX data sets. However, blue and green RFI were significantly correlated (0.8r0.6; P ≤0.002) for comparisons between FImage and 280EX data sets. UV-B treatment caused an increase in blue RFI (e.g., F450) in both images and 280EX measurements. One explanation is that the UV-B excitation of both 280EX and FImage stimulates processes that produce excess blue fluorescence. The molecules that produce the excess blue fluorescence in both the 280EX and the Fimage data are different electron transfer agents that operate in parallel. For FImage, the UV excitation penetrates leaf surface layers to stimulate fluorescence from compounds in mesophyll and epidermal tissues (as occurs for the extracts of leaf discs), whereas emissions captured at longer, less energetic wavelengths, were primarily from the epidermal layer. UV-B irradiated leaves showed much greater heteorgeneity of RFI in both the green (F550FImag) and the red (F680FImag) bands than unirradiated leaves; this was true irrespective of EDU treatment.Although qualitative responses in individual bands differed between FImage and 380EX data, similar results were obtained in the detection of UV-B induced effects when the red/green and blue/far-red fluorescence ratios of these data were compared. The red/green ratio (either F680/F550FImage or F675/F525380EX) was lower for UV-B exposed plants in both images and 380EX data. UV-B exposure also significantly enhanced the blue/far-red ratio of images (F450/F740FImage) and the comparable 380EX ratio (F450/F730380EX) for the combined UV-B/EDU group. The far-red/red ratios were not useful in separating treatment effects in images or 380EX. Although comparable ratios were not available in 280EX data, the UV/blue ratio (F315/F420280EX) was substantially reduced by UV-B exposure and was inversely related to total photosynthetic pigment content. These findings suggest that the red/green ratio (FImage, 380EX) and the UV/blue ratio (280EX) may be as useful as the blue/far-red ratio (380EX) reported previously in detection of UV-B stress. Furthermore, the results support the validity of the imaging technique as a non-destructive diagnostic tool for assessing UV-B stress damage in plants.  相似文献   

9.
The transfer of excitation energy between phycobiliproteins in isolated phycobilisomes has been observed on a picosecond time scale. The photon density of the excitation pulse has been carefully varied so as to control the level of exciton interactions induced in the pigment bed. The 530 nm light pulse is absorbed predominantly by B-phycoerythrin, and the fluorescence of this component rises within the pulse duration and shows a mean 1/e decay time of 70 ps. The main emission band, centred at 672 nm, is due to allophycocyanin and is prominent because of the absence of energy transfer to chlorophyll. Energy transfer to this pigment from B-phycoerythrin via R-phycocyanin produces a risetime of 120 ps to the fluorescence maximum. The lifetime of the allophycocyanin fluorescence is found to be about 4 ns using excitation pulses of low photon densities (1013 photons · cm?2), but decreases to about 2 ns at higher photon densities. The relative quantum yield of the allophycocyanin fluorescence decreases almost 10 fold over the range of laser pulse intensities, 1013–1016 photons · cm?2. Fluorescence quenching by exciton-exciton annihilation is only observed in allophycocyanin and could be a consequence of the long lifetime of the single exciton in this pigment.  相似文献   

10.
The UV light (337 nm) induced blue-green fluorescence emission of green leaves is characterized at room temperature (298 K) by a maximum near 450 nm (blue region) and a shoulder near 525 nm (green region) and was here also studied at 77 K. At liquid nitrogen temperature (77 K) the blue (F450) and green fluorescence (F525) are much enhanced as is the red chlorophyll fluorescence near 735 nm. During development of green tobacco leaves the blue fluorescence F450 (77 K) is shifted towards longer wavelengths from about 410 nm to 450 nm. The isolated leaf epidermis of tobacco showed only slight fluorescence emission with a maximum near 410 nm. The green fluorescence F525 was found to mainly originate from the mesophyll of the leaf, its intensity increased when the epidermis was removed. The red chlorophyll fluorescence emission was also enhanced when the epidermis was stripped off; this considerably changed the blue/red fluorescence ratios F450/F690 and F450/F735. The epidermis, with its cell wall and UV-light-absorbing substances in its vacuole, plays the role of a barrier for the exciting UV-light. In contrast to intact and homogenized leaves, isolated intact chloroplasts and thylakoid membranes did not exhibit a blue-green fluorescence emission.  相似文献   

11.
A new fluorescence imaging system for monitoring the uptake of the PSII-herbicide diuron (OCMU) was tested in tobacco leaves. UV-laser-induced (Λexc = 355 nm) fluorescence images were collected for blue fluorescence F440 (Λem = 440 nm), green fluorescence F520 (Λem = 520 nm), red chlorophyll fluorescence F690 (Λem = 690 nm) and for far-red chlorophyll fluorescence F740 (Λem = 740 nm). Diuron-treated leaf parts exhibited a higher red and far-red chlorophyll fluorescence emission (F690 and F740) than untreated leaf halves, whereas the blue and green fluorescence, F440 and F520, remained unaffected. As a consequence, the fluorescence ratios blue/red (F440/F690) and blue/far-red (F440/F740) significantly decreased in diuron-treated leaf parts. The time course of diuron uptake into the leaf could be followed by fluorescence images taken 10 and 30 min after diuron application. The novel high resolution fluorescence imaging method supplies information on the herbicide uptake of each point of the leaf area. Its great advantage as compared to the point data fluorescence measurements applied so far is discussed.  相似文献   

12.
The fluorescence decays of barley chloroplasts have been measured by single-photon counting with tunable picosecond dye laser excitation. The fluorescence decays of dark-adapted chloroplasts are best fitted to a sum of three exponential lifetime components with lifetimes of 112, 380 and 2214 ps. The relative magnitude of each component is shown to be dependent on the excitation wavelength and collected emission wavelength. The excitation wavelength dependence is correlated with the Photosystem (PS) I and PS II action study of Ried [36] and with the measured pigment distributions in the photosynthetic unit [37,41]. Experiments varying the single excitation pulse intensity from 108 to 1012 photons/cm2 pulse show that our results are not distorted by singlet-singlet annihilation. Unflowed samples where the cloroplasts are under constant illumination show 2-fold increases in quantum yield of fluorescence primarily in the two longer lifetime components. Theoretical calculations of Shipman [31] on an isolated reaction center with a homogeneous antenna are discussed and the principles extended to discussion of the measured barley chloroplast fluorescence decay components in terms of photosynthetic unit light-harvesting array models and earlier experimental work. Our data support a photosynthetic unit model in which 70–90% of the photons absorbed are quenched by either PS I or efficiently quenching PS II in a process where the fluorescence lifetime is 100 ps. The origin of the intermediate 380 ps. component is probably due to excitation transfer to a PS II reaction center in a redox state which quenches less efficiently.  相似文献   

13.
H.J.M. Kramer  H. Kingma  T. Swarthoff  J. Amesz 《BBA》1982,681(3):359-364
Excitation spectra were measured at 4 K of bacteriochlorophyll a fluorescence in reaction center containing pigment-protein complexes obtained from the green photosynthetic bacterium Prosthecochloris aestuarii. Excitation spectra for the longest-wave emission (838 nm) showed bands of bacteriochlorophyll a, carotenoid, and of a pigment with absorption bands at 670, 438 and possibly near 420 nm, which is probably identical to an unidentified porphyrin described in the preceding paper (Swarthoff, T., Kramer, H.J.M. and Amesz, J. (1982) Biochim. Biophys. Acta 681, 354–358). At room temperature the longest-wave emission is stimulated by a magnetic field, which indicates that at least part of the emission is delayed fluorescence brought about by a reversal of the primary charge separation. Below about 150 K no stimulation was observed. The excitation spectra for short-wave emission (828 nm) were very similar to the absorption spectrum of the isolated antenna bacteriochlorophyll a-protein complex, and showed bands of bacteriochlorophyll a only. This indicates that two forms of the antenna protein exist that are spectroscopically similar: a soluble form that is released by treatment with guanidine hydrochloride and a bound form that remains attached to the reaction center complex. The bands of the antenna complexes were weak in the excitation spectra of the 838 nm fluorescence, which indicates that the efficiency of energy transfer to the reaction center complex is low.  相似文献   

14.
Pure and Na+‐doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X‐ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X‐ray diffractogram exhibits well‐resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium‐doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3, Na+ enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242–457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na+ is doped into Alq3. Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light‐emitting phosphors for organic light‐emitting diodes, flat panel displays, solid‐state lighting technology – a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this study a method was designed to assess non‐destructively the type of UV‐screening compounds present in the leaf epidermis. The method is based on the recording and calculation of the ratio of UV‐excitation spectra of chlorophyll fluorescence (FER) from the adaxial and abaxial sides of bifacial leaves, or from older and younger segments of monocotyledonous leaves. The logarithm of this ratio (logFER) matched the absorption spectrum of the UV‐absorbers present in the leaf, as confirmed by its overlap with the absorption spectrum of the methanolic extract of the leaf or of the isolated epidermis. By using the logFER approach, it was possible to demonstrate that the concentration but not the classes of compounds present in the epidermis that are responsible for UV‐screening is affected by the side and the age of the leaves. In contrast, measurements from the leaves of seven dicots and one monocot indicated large difference in the classes of these compounds between species. Finally, it was shown that the logFER in the UV is independent of the emission wavelength, and that the method can be used for quantitative measurements. This method expands to the spectral domain the use of ChlF for the estimation of the leaf epidermal transmittance.  相似文献   

16.
Green sulfur bacteria possess a complex photosynthetic machinery. The dominant light harvesting systems are chlorosomes, which consist of bacteriochlorophyll c, d or e oligomers with small amounts of protein. The chlorosomes are energetically coupled to the membrane-embedded iron sulfur-type reaction center via a bacteriochlorophyll a-containing baseplate protein and the Fenna-Matthews-Olson (FMO) antenna protein. The fluorescence yield and spectral properties of these photosynthetic complexes were investigated in intact cells of several species of green sulfur bacteria under physiological, anaerobic conditions. Surprisingly, green sulfur bacteria show a complex modulation of fluorescence yield upon illumination that is very similar to that observed in oxygenic phototrophs. Within a few seconds of illumination, the fluorescence reaches a maximum, which decreases within a minute of illumination to a lower steady state. Fluorescence spectroscopy reveals that the fluorescence yield during both processes is primarily modulated on the FMO-protein level, while the emission from chlorosomes remains mostly unchanged. The two most likely candidates that modulate bacteriochlorophyll fluorescence are (1) direct excitation quenching at the FMO-protein level and (2) indirect modulation of FMO-protein fluorescence by the reduction state of electron carriers that are part of the reaction center.  相似文献   

17.
Plants can protect against damaging ultraviolet (UV) radiation by accumulating UV-absorbing substances in the epidermis of the leaves. Sun and shade leaves of a free standing beech tree (Fagus sylvatica L.) were studied for the differences in UV-shielding of the epidermis by means of multi-colour fluorescence images taken with UV and blue excitation. The distribution of the fluorescence intensity was detected over intact leaves in the emission maxima in the blue at 440 nm (F440), in the green at 520 nm (F520), in the red at 690 nm (F690) and in the far red at 740 nm (F740). Images of the logarithmic ratio between F690 excited in the blue and the UV (log (BF690/UVF690)) were calculated representing the relative absorption of UV in the epidermis and thus the degree of UV-shielding. It was found that UV-shielding is stronger for sun leaves than for shade leaves and better for the upper (adaxial) leaf side than for the lower (abaxial) leaf side of both leaf types. Within one leaf the highest value for the ratio log (BF690/UVF690) and thus the highest UV-shielding was found at the leaf rim which in broad leaves contains young tissue.  相似文献   

18.
《BBA》2020,1861(2):148139
An aerial green alga, Prasiola crispa (Lightf.) Menegh, which is known to form large colonies in Antarctic habitats, is subject to severe environmental stresses due to low temperature, draught and strong sunlight in summer. A considerable light-absorption by long-wavelength chlorophylls (LWC) at around 710 nm, which seem to consist of chlorophyll a, was detected in thallus of P. crispa harvested at a terrestrial environment in Antarctica. Absorption level at 710 nm against that at 680 nm was correlated with fluorescence emission intensity at 713 nm at room temperature and the 77 K fluorescence emission band from LWC was found to be emitted at 735 nm. We demonstrated that the LWC efficiently transfer excitation energy to photosystem II (PSII) reaction center from measurements of action spectra of photosynthetic oxygen evolution and P700 photo-oxidation. The global quantum yield of PSII excitation in thallus by far-red light was shown to be as high as by orange light, and the excitation balance between PSII and PSI was almost same in the two light sources. It is thus proposed that the LWC increase the photosynthetic productivity in the lower parts of overlapping thalli and contribute to the predominance of alga in the severe environment.  相似文献   

19.
The blue, green and red fluorescence emission of green wheat ( Triticum aestivum L. var. Rector) and soybean leaves ( Glycine max L. var. Maple Arrow) as induced by UV light (nitrogen laser: 337 nm) was determined in a phytochamber and in plants grown in the field. The fluorescence emission spectra show a blue maximum near 450 nm, a green shoulder near 530 nm and the two red chlorophyll fluorescence maxima near 690 and 735 nm. The ratio of blue to red fluorescence, F450/F690, exhibited a clear correlation to the irradiance applied during the growth of the plants. In contrast, the chlorophyll fluorescence ratio, F690/F735, and the ratio of blue to green fluorescence, F450/F530, seem not to be or are only slightly influenced by the irradiance applied during plant growth. The blue fluorescence F450 only slightly decreased, whereas the red chlorophyll fluorescence decreased with increasing irradiance applied during growth of the plants. This, in turn, resulted in greatly increased values of the ratio, F450/F690, from 0.5 – 1.5 to 6.4 – 8.0. The decrease in the chlorophyll fluorescence with increasing irradiance seems to be caused by the accumulation of UV light absorbing substances in the epidermal layer which considerably reduces the UV laser light which passes through the epidermis and excites the chlorophyll fluorescence of the chloroplasts in the subepidermal mesophyll cells.  相似文献   

20.
Imaging, optical mapping, and optical multisite recording of transmembrane potential (Vm) are essential for studying excitable cells and systems. The naphthylstyryl voltage-sensitive dyes, including di-8-ANEPPS, shift both their fluorescence excitation and emission spectra upon changes in Vm. Accordingly, they have been used for monitoring Vm in nonratioing and both emission and excitation ratioing modes. Their changes in fluorescence are usually much less than 10% per 100 mV. Conventional ratioing increases sensitivity to between 3 and 15% per 100 mV. Low sensitivity limits the value of these dyes, especially when imaged with low light systems like confocal scanners. Here we demonstrate the improvement afforded by shifted excitation and emission ratioing (SEER) as applied to imaging membrane potential in flexor digitorum brevis muscle fibers of adult mice. SEER—the ratioing of two images of fluorescence, obtained with different excitation wavelengths in different emission bands—was implemented in two commercial confocal systems. A conventional pinhole scanner, affording optimal setting of emission bands but less than ideal excitation wavelengths, achieved a sensitivity of up to 27% per 100 mV, nearly doubling the value found by conventional ratioing of the same data. A better pair of excitation lights should increase the sensitivity further, to 35% per 100 mV. The maximum acquisition rate with this system was 1 kHz. A fast “slit scanner” increased the effective rate to 8 kHz, but sensitivity was lower. In its high-sensitivity implementation, the technique demonstrated progressive deterioration of action potentials upon fatiguing tetani induced by stimulation patterns at >40 Hz, thereby identifying action potential decay as a contributor to fatigue onset. Using the fast implementation, we could image for the first time an action potential simultaneously at multiple locations along the t-tubule system. These images resolved the radially varying lag associated with propagation at a finite velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号