首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasminogen activator in 117 specimen of 20 coronary and 29 pulmonary arteries occluded completely by thrombi or emboli within the adventitia and intima was studied using TODD's histochemical method. 39 cadavers were used, 1--18 hours post mortem from subjects aged from 45 to 88 years. In occluded arteries both coronary and pulmonary the plasminogen activator activity was decreased in comparison with normal and atherosclerotic patients. In coronary and pulmonary arterial thrombi a low grade focal activity of plasminogen activator was detected. It is assumed that the decrease of plasminogen activator in the occluded human arterial wall is due to the impaired oxygen supply of the vessel wall and to the consumption of the plasminogen activator for thrombus lysis. These mechanisms are likely to influence the plasminogen activator for a certain and prolonged time, since there were no changes of fibrinolysis within the vessel wall of arteria carotis in rats where an acute thrombosis was elicited by means of an electric current.  相似文献   

2.
Reactions between purified plasminogen and streptokinase, labelled with 131I and 125I respectively, were investigated by polyacrylamide-gel discontinuous electrophoresis. A molecular complex consisting of both 131I-labelled plasminogen and 125I-labelled streptokinase migrated between plasminogen and streptokinase. This complex contained bovine plasminogen activator activity. The relative quantities of 131I-labelled plasminogen and 125I-labelled streptokinase in this complex were markedly affected by reaction conditions. A fragment that retained 50% or more of the parent activator activity was released from the complex after exposure to mercaptoethanol. This subcomponent had an estimated molecular weight of 70000, and contained both 131I-labelled plasminogen and 125I-labelled streptokinase.  相似文献   

3.
The plasminogen activator of normal and atherosclerotic different arteries was studied with the histochemical method of Todd. An increase of plasminogen activator in atherosclerotic arteries of adventitia was found. The inhibition of plasmin fibrinolysis of intima-media and adventitia of normal and atherosclerotic different arteries was studied by means of the slide sandwich technique according to Noordhoek Hegt. In atherosclerotic arteries there was an increase of plasmin inhibitory activity of the intima-media layer in comparison with normal arteries. The mean plasmin inhibitory activity was higher in the vein wall of lower part of the body than in the higher one.  相似文献   

4.
Quantitation of plasminogen activators present in tissue may depend to a large extent on the extraction procedure used to solubilize the enzymes. Potassium thiocyanate solution is known to be an efficient solubilizer, but it can inhibit assay systems other than fibrin plates. An equally effective acetate-detergent extractant is reported here which can be used with the highly sensitive azocase inolytic assay procedure. The results indicate that a threefold increase in activator activity can be extracted from selected tissues relative to that previously reported for a phosphate-detergent extractant. The extraction medium contains 75 mM K acetate, 0.3 M NaCl, 0.1 M L-arginine, 10 mM EDTA, 0.25% Triton X-100, final pH 4.2.  相似文献   

5.
A direct solid phase chromogenic assay has been developed for the detection of plasmin (EC 3.4.21.7), generated by the interaction of a nitrocellulose-bound plasminogen activator, using the plasmin specific tripeptide substrate, H-D-valyl-leucyl-lysine - p-nitroaniline. para-Nitroaniline released by the cleavage of the lysine - p-nitroaniline bound by plasmin was derivatized to its diazonium salt and subsequently coupled to N-1-napthylethylenediamine in situ to form a diazoamino of an intense red color at the site of the plasminogen activator. This method was used to assay for the streptococcal plasminogen activator, streptokinase, not only in crude bacterial supernatants, but also to detect streptokinase secreted by individual bacterial colonies. In addition, this solid phase assay was used to identify monoclonal antibodies specific for streptokinase which could inhibit the activation of human plasminogen by streptokinase. This method also permitted simultaneous immunological and biochemical identification of the plasminogen activator, thus permitting unequivocal comparative observations. This assay is quantitative and sensitive to nanogram amounts of activator comparable to those obtained with soluble assays. This method may also be applicable for the detection of other plasminogen activators, such as tissue plasminogen activator, urokinase, and staphylokinase, and also for the detection of immobilized proteases which can cleave other substrates derivatized with p-nitroaniline. The reagents used in this assay are inexpensive and easy to prepare.  相似文献   

6.
The tissue activator was extracted with 2 M ammonium thiocyanate and purified by L-arginine methyl ester, concanavalin A and ion-exchange chromatographies, and Sephacryl S-200 gel filtration in buffers containing Triton X-100 and/or ammonium thiocyanate. The final preparations had specific activities of 25 000-40 000 IU/mg protein and were shown to be a single band with an apparent molecular weight of 54 00 by SDS-polyacrylamide gel electrophoresis with or without reducing agent. When subjected to isoelectric focusing, its major component had an isoelectric point of approx. 8.2 with minor components. (7.8-8.6). The purified tissue activator was a serine protease, dissimilar to urokinase in some respects including antigenicity, strong affinity to insoluble fibrin monomer and hydrolytic activities for synthetic substrates. The crude extract contained another plasminogen activator with antigen identity to urokinase, which constituted approx. 15% of the total activity in crude extract. These findings indicated that human kidney would produce at least two plasminogen activators, namely, the tissue activator as a major plasminogen activator and urokinase.  相似文献   

7.
In a blind, randomized study, two groups, each of seven rabbits, were treated with either a very low dose of human melanoma cell line-derived tissue-type plasminogen activator (t-PA) or isotonic saline. t-PA (0.067 mg/kg of body weight) was administered intraaortically, 20 percent being given as a 30-second "bolus" infusion just prior to the reperfusion of intimectomized central ear arteries and the rest as a continuous infusion during the next 2 hours. Arteriotomic bleeding times, accumulations of 32P-labeled platelets, patency, and sizes of thrombus deposits 2 hours after reperfusion were recorded. To confirm the presence of tissue plasminogen activator in plasma, fibrin-plate lysis assays of arterial plasma were performed immediately before and 1/2 hour and 2 hours after starting drug infusion. Arteriotomic bleeding times were similar in both groups. Transient "oozing" from wound edges occurred in 40 percent of rabbits treated with tissue plasminogen activator. Patency was significantly increased and thrombus deposits were smaller in the tissue plasminogen activator group. Plasma from animals treated with tissue plasminogen activator caused massive lysis of fibrin plates, whereas plasma from control animals caused little or no lysis. Platelet accumulations were very similar in both groups, indicating that occlusive thrombi mainly consisted of other elements than platelets (e.g., fibrin and red cells). Scanning electron microscopy showed normally adhering and aggregating platelets in both groups. This study shows that mild fibrinolytic stimulation with tissue plasminogen activator significantly improves patency in severely traumatized small-caliber arteries and indicates that such treatment may be one approach to prevent thrombosis at microvascular anastomotic sites.  相似文献   

8.
In contrast to rabbit blood plasma, in guinea pig and rat blood plasma activation of fibrinolysis by streptokinase is achieved after addition of human plasminogen or human plasma only. A simple experimental procedure for testing application forms of streptokinase in rats is described. Fibrinolysis in vivo is more effective after subsequent administration of human plasma and streptokinase in rats than after administration of a mixture of human plasma and streptokinase (activator).  相似文献   

9.
The effects of purified soluble fibrin and of fibrinogen fragments (fibrin mimic) on the activation of Lys-plasminogen (i.e. plasminogen residues 77-790) to plasmin by streptokinase.plasminogen activator complex and by tissue-type plasminogen activator were studied. Dissociation constants of both activators were estimated to lie in the range 90-160 nM (fibrin) and 16-60 nM (CNBr-cleavage fragments of fibrinogen). The kinetic mechanism for both types of activator comprised non-essential enzyme activation via a Rapid Equilibrium Ordered Bireactant sequence. In order to relate the fibrin affinity of plasminogen activators to their fibrinolytic potency, the rate of lysis of supported human plasma clots formed in the presence of unmodified or active-centre-acylated precursors of plasminogen activators was studied as a function of the concentration of enzyme derivative. The concentrations of unmodified enzyme giving 50% lysis/h in this assay were 0.9, 2.0 and 11.0 nM for tissue-type plasminogen activator, streptokinase.plasmin(ogen) and urokinase respectively. However, the potencies of active-centre-acylated derivatives of these enzymes suggested that acylated-tissue plasminogen activator and streptokinase.plasminogen complexes of comparable hydrolytic stability were of comparable potency. Both types of acyl-enzyme were significantly more potent than acyl-urokinases.  相似文献   

10.
11.
Several pathogenic bacteria secrete plasminogen activator proteins. Streptokinase (SKe) produced by Streptococcus equisimilis and staphylokinase secreted from Staphylococcus aureus are human plasminogen activators and streptokinase (SKu), produced by Streptococcus uberis, is a bovine plasminogen activator. Thus, the fusion proteins among these activators can explain the function of each domain of SKe. Replacement of the SKalpha domain with staphylokinase donated the staphylokinase-like activation activity to SKe, and the SKbetagamma domain played a role of nonproteolytic activation of plasminogen. Recombinant SKu also activated human plasminogen by staphylokinase-like activation mode. Because SKu has homology with SKe, the bovine plasminogen activation activities of SKe fragments were checked. SKebetagamma among them had activation activity with bovine plasminogen. This means that the C-terminal domain (gamma-domain) of streptokinase determines plasminogen species necessary for activation and converses the ability of substrate recognition to human species.  相似文献   

12.
Streptokinase (SK) and staphylokinase form cofactor-enzyme complexes that promote the degradation of fibrin thrombi by activating human plasminogen. The unique abilities of streptokinase to nonproteolytically activate plasminogen or to alter the interactions of plasmin with substrates and inhibitors may be the result of high affinity binding mediated by the streptokinase beta-domain. To examine this hypothesis, a chimeric streptokinase, SKbetaswap, was created by swapping the SK beta-domain with the homologous beta-domain of Streptococcus uberis Pg activator (SUPA or PauA, SK uberis), a streptokinase that cannot activate human plasminogen. SKbetaswap formed a tight complex with microplasminogen with an affinity comparable with streptokinase. The SKbetaswap-plasmin complex also activated human plasminogen with catalytic efficiencies (k(cat)/K(m) = 16.8 versus 15.2 microm(-1) min(-1)) comparable with streptokinase. However, SKbetaswap was incapable of nonproteolytic active site generation and activated plasminogen by a staphylokinase mechanism. When compared with streptokinase complexes, SKbetaswap-plasmin and SKbetaswap-microplasmin complexes had altered affinities for low molecular weight substrates. The SKbetaswap-plasmin complex also was less resistant than the streptokinase-plasmin complex to inhibition by alpha(2)-antiplasmin and was readily inhibited by soybean trypsin inhibitor. Thus, in addition to mediating high affinity binding to plasmin(ogen), the streptokinase beta-domain is required for nonproteolytic active site generation and specifically modulates the interactions of the complex with substrates and inhibitors.  相似文献   

13.
The level of plasminogen activator activity studied by histochemical method in the myocardial tissue of rats during experimental ischemia was decreased if compared with control animals. The maximal decrease was seen the next day after the occlusion of the coronary artery, particularly in the necrotic zone. Plasminogen activator activity level began to increase in 3 days. Histochemical data were confirmed biochemically.  相似文献   

14.
R C Wohl 《Biochemistry》1984,23(17):3799-3804
We have recently observed slow, non-Michaelis-Menten kinetics of activation of native cat plasminogen by catalytic concentrations of streptokinase. In order to understand the reasons for this phenomenon, we undertook to study the formation of the plasminogen-streptokinase activator complex under the same plasminogen activation conditions. The results obtained in this study show that the potential active site in both cat and human plasminogen is capable of binding strongly the specific substrates (S) p-nitrophenyl p-guanidinobenzoate (NPGB) and H-D-valyl-L-leucyl-L-lysyl-p-nitroanilide, through the active site is incapable of hydrolyzing these substrates. Binding studies support these and the following conclusions. Streptokinase binds to this zymogen-substrate complex to create the ternary plasminogen-S-streptokinase complex, which then slowly converts to an acylated plasminogen-streptokinase form. This acylation reaction is 550 times slower than acylation of the preformed plasminogen-streptokinase complex by NPGB. The same reaction also occurs with human plasminogen, though the acylation reaction is 10 times faster than when the cat zymogen is used. NPGB binds specifically to plasminogen but not to streptokinase. These studies proved that inhibition of cat plasminogen activation by streptokinase occurs at the level of activator complex formation. We conclude from our studies that streptokinase binding to both cat and human plasminogen occurs at the potential active site of the zymogen. Consequently, it is probable that plasminogen activation in vivo is inhibited by binding of active site specific inhibitors to plasminogen.  相似文献   

15.
Purified plasminogen activator from pig heart displays weak activity toward plasminogen, with or without detergents present. The activation rate is enhanced at least 50 times upon addition of low concentrations (1 μg/ml) of many proteins following their denaturation by acid, base, or heat. No native proteins, at concentrations up to 10 mg/ ml, enhanced plasminogen activator activity. The degree of enhancement by many denatured proteins was as great as that caused by the presence of a fibrin clot, and occurred at lower protein concentrations. Similar observations with activators from human vena cava and cadaver perfusate suggest that the effect is probably general to tissue activators. None of the denatured proteins examined enhanced the activity of urokinase, streptokinase, staphylokinase, or plasmin. Small proteins known to renature rapidly, such as RNAse, and highly ordered structural proteins, such as collagen and keratin, could not be converted to stimulators of plasminogen activators by treatment with acid or base. If, as appears likely, plasminogen activator can indeed recognize and be stimulated by misfolded proteins, a possible role in selective catabolism of damaged protein in general, not solely fibrin clots, is evident. If the nature of the stimulatory peptide grouping can be elucidated, plasminogen activator may also be a valuable tool both for study of protein denaturation and clarification of the clot stimulatory effect in fibrinolysis.  相似文献   

16.
Plasminogen receptors have been identified on the surface of a number of prokaryotic and eukaryotic cells. A receptor demonstrating high affinity for plasmin with minimal reactivity with the native zymogen Glu-plasminogen has been identified on the surface of certain group A streptococci. In this study the group A streptococcal plasmin receptor has been solubilized and purified to homogeneity. The isolated protein was an Mr approximately 41,000 molecule which retained its ability to bind plasmin following solubilization and affinity purification on a column of enzymatically inactivated human plasmin. The isolated plasmin receptor was compared functionally, antigenically, and physicochemically to the secreted plasminogen activator, streptokinase, produced by the same organism. The Mr approximately 41,000 surface plasmin receptor was shown to be functionally and antigenically distinct from the Mr approximately 48,000 streptokinase molecule produced by the same strain and lacked any plasminogen activator activity. The streptokinase molecule produced by this strain was shown to be closely related to the plasminogen activator protein secreted by other group A and C streptococci. This study represents the first report of the isolation of a plasmin receptor, either prokaryotic or eukaryotic, with functional activity.  相似文献   

17.
When human plasminogen and the bacterial protein streptokinase are mixed, a tight equimolar complex is formed in which an active center of well defined hydrolytic activity developes; this event precedes the cleavage of the plasminogen chain, i.e. the conversion to plasmin. Immediately after the formation of the complex, a series of proteolytic transformations occurs which, within a few minutes, results in at least two cleavages in the plasminogen, and at least five cleavages in the streptokinase peptide chains. None of the fragments so created seem to dissociate from the main body of the complex, but the activator activity, when measured by a rapid bovine clot-lysis system, undergoes a characteristic pattern of fluctuation coincident with the fragmentation of the two components. When the latter process is followed by sodium dodecyl sulfate gel electrophoresis, the state of fragmentation of the activator can be correlated with the measured activator activities. By manipulating the temperature, and by the introduction of inhibitors, it was possible to slow down, or temporarily arrest, the fragmentation at certain stages, allowing the identification in a number of cases of the predominant activator species, and the determination of a characteristic relative activator activity for it. By the use of such relative activities, it was possible to carry out a calculation, based on electrophoretic analysis alone, which predicted reasonably successfully the kinetics of activator fluctuation.  相似文献   

18.
The amidolytic plasmin activity of a mixture of tissue plasminogen activator (tPA) and plasminogen is enhanced by heparin at therapeutic concentrations. Heparin also increases the activity in mixtures of urokinase-type plasminogen activator (uPA) and plasminogen but has no effect on streptokinase or plasmin. Direct analyses of plasminogen activation by polyacrylamide gel electrophoresis demonstrate that heparin increases the activation of plasminogen by both tPA and uPA. Binding studies show that heparin binds to various components of the fibrinolytic system, with tight binding demonstrable with tPA, uPA, and Lys-plasminogen. The stimulation of tPA activity by fibrin, however, is diminished by heparin. The ability of heparin to promote plasmin generation is destroyed by incubation of the heparin with heparinase, whereas incubation with chondroitinase ABC or AC has no effect. Also, stimulation of plasmin formation is not observed with dextran sulfate or chondroitin sulfate A, B, or C. Analyses of heparin fractions after separation on columns of antithrombin III-Sepharose suggest that both the high-affinity and the low-affinity fractions, which have dramatically different anticoagulant activity, have similar activity toward the fibrinolytic components.  相似文献   

19.
The therapeutic properties of plasminogen activators are dictated by their mechanism of action. Unlike staphylokinase, a single domain protein, streptokinase, a 3-domain (alpha, beta, and gamma) molecule, nonproteolytically activates human (h)-plasminogen and protects plasmin from inactivation by alpha(2)-antiplasmin. Because a streptokinase-like mechanism was hypothesized to require the streptokinase gamma-domain, we examined the mechanism of action of a novel two-domain (alpha,beta) Streptococcus uberis plasminogen activator (SUPA). Under conditions that quench trace plasmin, SUPA nonproteolytically generated an active site in bovine (b)-plasminogen. SUPA also competitively inhibited the inactivation of plasmin by alpha(2)-antiplasmin. Still, the lag phase in active site generation and plasminogen activation by SUPA was at least 5-fold longer than that of streptokinase. Recombinant streptokinase gamma-domain bound to the b-plasminogen.SUPA complex and significantly reduced these lag phases. The SUPA-b.plasmin complex activated b-plasminogen with kinetic parameters comparable to those of streptokinase for h-plasminogen. The SUPA-b.plasmin complex also activated h-plasminogen but with a lower k(cat) (25-fold) and k(cat)/K(m) (7.9-fold) than SK. We conclude that a gamma-domain is not required for a streptokinase-like activation of b-plasminogen. However, the streptokinase gamma-domain enhances the rates of active site formation in b-plasminogen and this enhancing effect may be required for efficient activation of plasminogen from other species.  相似文献   

20.
A high-sensitive method is developed for determining the degree of plasmin-catalyzed fibrinogen hydrolysis by the released amino groups stained with trinitrobenzene sulphoacid. The method permits determining 0.02-0.08 casein units of plasmin. The method made it possible to establish that after streptokinase activation plasmin hydrolyzes equally fibrinogen and fibrin in solution and as gel. When a tissue activator is used, fibrin intensifies significantly the plasminogen activation. Inhibition of plasmin by an inhibitor produced from soya is considerably slowed down in fibrin gel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号