首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamine and glucose as energy substrates for Ehrlich ascites tumour cells   总被引:4,自引:0,他引:4  
Energy metabolism of freshly harvested Ehrlich ascites tumour cells in the presence of 5 mM glucose and/or 0.5 mM glutamine was studied. The rate of oxygen utilization was not altered by the addition of 0.5 mM glutamine; 5 mM glucose induced an inhibition of respiration. In the presence of both glucose and glutamine, the Crabtree effect decreased. In these conditions, the rates of oxygen uptake, the CO2 evolution and the changes in the redox states of cytochromes indicate that glucose is preferred by Ehrlich ascites tumour cells as energy substrate. Glucose decreased the rate of glutamine utilization by 34%. On the other hand, glutaminolysis did not inhibit glycolysis.  相似文献   

2.
Inorganic phosphate concentrations and the values of energy charge were determined in the cytosolic and mitochondrial compartments of Ehrlich ascites tumour cells incubated with 5 mM glucose and/or 0.5 mM glutamine. The initial value of inorganic phosphate concentration in the cytosolic compartment decreased in the three incubation conditions assayed; this decrease was greater when glucose was present in the incubation medium. Mitochondrial inorganic phosphate concentration diminished in incubations with only glucose and raised in incubations with only glutamine.  相似文献   

3.
This is the first study to examine PER.C6 cell glucose/energy and glutamine metabolism with fed-batch cultures at controlled low glutamine, low glucose, and simultaneous low glucose and low glutamine levels. PER.C6(TM) cell metabolism was investigated in serum-free suspension bioreactors at two-liter scale. Control of glucose and/or glutamine concentrations had a significant effect on cellular metabolism leading to an increased efficiency of nutrient utilization, altered byproduct synthesis, while having no effect on cell growth rate. Cultivating cells at a controlled glutamine concentration of 0.25 mM reduced q(Gln) and q(NH(4)(+)) by approximately 30%, q(Ala) 85%, and q(NEAA) 50%. The fed-batch control of glutamine also reduced the overall accumulation of ammonium ion by approximately 50% by minimizing the spontaneous chemical degradation of glutamine. No major impact upon glucose/energy metabolism was observed. Cultivating cells at a glucose concentration of 0.5 mM reduced q(Glc) about 50% and eliminated lactate accumulation. Cells exhibited a fully oxidative metabolism with Y(O(2)/Glc) of approximately 6 mol/mol. However, despite no increase in q(Gln), an increased ammonium ion accumulation and Y(NH(4)(+)/Gln) were also observed. Effective control of lactate and ammonium ion accumulation by PER.C6 cells was achieved using fed-batch with simultaneously controlled glucose and glutamine. A fully oxidative glucose metabolism and a complete elimination of lactate production were obtained. The q(Gln) value was again reduced and, despite an increased q(NH(4)(+)) compared with batch culture, ammonium ion levels were typically lower than corresponding ones in batch cultures, and the accumulation of non-essential amino acids (NEAA) was reduced about 50%. In conclusion, this study shows that PER.C6 cell metabolism can be confined to a state with improved efficiencies of nutrient utilization by cultivating cells in fed-batch at millimolar controlled levels of glucose and glutamine. In addition, PER.C6 cells fall into a minority category of mammalian cell lines for which glutamine plays a minor role in energy metabolism.  相似文献   

4.
A slight but significant short-term incorporation (15 and 60 min) of glucose-carbon into DNA and RNA was detected in Ehrlich ascites tumour cells incubated in the presence of labelled glucose (5 mM). Glutamine (0.5 mM) increased the incorporation of glucose but did not modify the glycolytic flux.  相似文献   

5.
1. In the presence of near-physiological glutamine concentrations, exposure of perfused rat liver to hypotonic perfusion media switched glutamine balance across the liver from net release to net uptake. This was due to both stimulation of flux through glutaminase and inhibition of flux through glutamine synthetase. Conversely, during exposure to hypertonic media, net glutamine release from the liver increased due to inhibition of glutaminase flux and slight stimulation of flux through glutamine synthetase. The effect of perfusate osmolarity on glutaminase flux was observed at an NH4Cl concentration (0.5 mM) sufficient for near-maximal ammonia stimulation of glutaminase. This indicates the involvement of different mechanisms of glutaminase flux control by extracellular osmolarity changes and ammonia. The effects of anisotonicity on flux through glutamine-metabolizing enzymes were fully reversible. Glutamine (0.6 mM) stimulated urea synthesis from NH4Cl (0.5 mM) during hypotonic and normotonic conditions. 2. Exposure to hypotonic and hypertonic media led, after initial liver-cell swelling and shrinkage, respectively to volume-regulatory K+ fluxes which largely restored the initial liver-cell volume despite the continuing osmotic challenge. Even after completion of cell-volume regulatory K+ fluxes, the effects of perfusate osmolarity on hepatic glutamine metabolism persisted. This indicates that in anisotonicity the liver cell is left in an altered metabolic state, even after completion of volume-regulatory responses. 3. During perfusion with isotonic media, addition of glutamine (3 mM) led to an increase of liver mass by about 4% within 2 min, which was accompanied by a net K+ uptake by the liver. Thereafter, the new steady state of increased liver mass was maintained throughout glutamine infusion. When the liver mass had reached this new steady state, a net release of K+ from the liver of about 3 mumol/g liver was observed during the following 10 min. Withdrawal of glutamine was followed by a slow reuptake of K+ and the liver mass returned to its initial value. Following exposure to glutamine (3 mM), the intracellular glutamine concentration (as calculated from glutamine tissue levels, taking into account the extracellular space determined with the [3H]inulin technique) rose from about 1 mM to 30-35 mM within about 12 min, indicating a 10-12-fold concentrative uptake of glutamine into the liver cells and an osmotic challenge for the hepatocyte. When intracellular glutamine had reached its steady-state concentration, net K+ efflux from the liver was also terminated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The regulation of glutamine synthetase activity by positive and negative effectors of enzyme activity singularly and in combinations was studied by using a homogeneous enzyme preparation from Bacillus licheniformis A5. Phosphorylribosyl pyrophosphate at concentrations greater than 2mM stimulated glutamine synthetase activity by approximately 70%. The concentration of phosphorylribosyl pyrophosphate required for half-maximal stimulation of enzyme activity was 0.4 mM. Results obtained from studies of fractional inhibition of glutamine synthetase activity were consistent with the presence of one allosteric site for glutamine binding (apparent I0.5, 2.2mM) per active enzyme unit at a glutamate concentration of 50 mM. At a glutamate concentration of 30 mM or less, the data were consistent with the enzyme containing two binding sites for glutamine (one of which was an allosteric site with an apparent I0.5 of 0.4 mM). Bases on an analysis of the response of glutamine synthetase activity to positive and negative effectors in vitro and to the intracellular concentration of these effectors in vivo, the primary modulators of glutamine synthetase activity in B. licheniformis A5 appear to be glutamine and alanine (apparent I0.5, 5.2mM).  相似文献   

7.
ATPase activities were measured in 10 mM MgCl2, 5 mM ATP, 1 mM ADP, and 1 microM FCCP with submitochondrial particles from bovine heart that had been stimulated by delta mu H+-forming substrates and with particles whose natural inhibitor protein was partially removed by heating. The activities were not linear with time. With both particles, the rate of ATP hydrolysis in the 7-fold greater than that in the steady state. Pre-steady-state and steady-state kinetic studies showed that the decrease of ATPase activity was due to the binding of ADP in a high-affinity site of the enzyme (K0.5 of 10 microM). Inhibition of ATP hydrolysis was accompanied by the binding of approximately 1 mol of ADP/mol of particulate F1; 10 microM ADP gave half-maximal binding. ADP could be replaced by IDP, but with an affinity 50-fold lower (K0.5 of 0.5 mM). Maximal inhibition by ADP and IDP was achieved in less than 5 s. Inhibition was enhanced by uncouplers. Even in the presence of pyruvate kinase and phosphoenolpyruvate, the rates of hydrolysis were about 2.5-fold higher in the first seconds of reaction than in the steady state. This decrease of ATPase activity also correlated with the binding of nearly 1 mol of ADP/mol of F1. This inhibitory ADP remained bound to the enzyme after several thousand turnovers. Apparently, it is possible to observe maximal rates of hydrolysis only in the first few catalytic cycles of the enzyme.  相似文献   

8.
Ornithine induced more than 36-fold the ornithine decarboxylase activity in confined Ehrlich ascites tumour cells after 3.5 h of continuous perifusion with 0.5 mM ornithine; arginine and glutamine also induced the activity 3- and 4-fold, respectively. The addition of cycloheximide or actinomycin D antibiotics to the perifusion medium confirmed that the regulation of the enzyme synthesis takes place at the level of translation. Perifusion in the presence of 0.5. mM ornithine and 55, 25, and 10 μM histamine suppressed the induction by 91, 53, and 35%, respectively. Similar results were obtained in the presence of serotonin. Histidine also showed inhibitory effect but 5 mM histidine was required to produce 21% inhibition; other basic amino acids were ineffective.  相似文献   

9.
Summary The metabolism by coronary microvascular endothelial cells (CMEC) of the heart typical substrates palmitate and lactate was compared to that of glucose and glutamine. Confluent cultures of CMEC were used. Palmitate oxidation was saturable and independent of the exogenous albumin concentration. Palmitate, 300 M, lactate, 1 mM, and glutamine, 0.5 mM, were oxidized to 35, 46, and 56 nmol CO2/h × mg protein. These oxidation rates were decreased by 80, 66, and 48% in presence of 5 mM glucose. The largest energy yield was obtained by glycolytic breakdown of glucose. Glucose, 5 mM, was degraded to lactate by 99%, and oxidized in the Krebs cycle by only 0.04%. 1% was catabolized via the hexose monophosphate pathway. The rate of glucose oxidation in the Krebs cycle could be 30-fold increased by the uncoupler 2,4-dinitrophenol, 30 µM. At concentrations lower than 1 mM the amount of glucose oxidized in the Krebs cycle also grew, indicating existence of the Crabtree effect. The energy demand of CMEC seems to be of the same order as that of the arrested heart.  相似文献   

10.
L Plesner 《FEBS letters》1984,172(2):149-154
When glucose was added to fasted human leukocytes in a final concentration of 0.5-5 mM there was a phase of glycogen synthesis followed by a phase of glycogen breakdown. The duration of the phase of net glycogen synthesis increased with increasing concentrations of glucose applied, but the net rate of glycogen synthesis was inversely related to this figure and decreased from approx. 7 nmol/10(7) cells per min at 0.5 mM glucose to an average of 4 nmol/10(7) cells per min at 5 mM glucose.  相似文献   

11.
The growth of two lymphocyte cell lines, a hybridoma cell line and a human cutaneous T cell lymphoma (HuT78), was studied in fed-batch culture, and unstructured models of growth developed. A criteria was established to insure that the growth rate varied by less than a specified tolerance throughout the culture period. Glutamine and serum were growth-limiting nutrients for both cell lines with half-maximal growth rates at 0. 53 mM glutamine and 0. 55%(v/v) serum for the hybridoma cells and 0. 21 mM glutamine and 1. 5% serum for the HuT-78 cells. Over the range of glucose concentrations from 5. 5 mM to 28 mM, the specific growth rate of hybridoma cells was independent of glucose concentration, whereas glucose concentrations above 5. 5 mM inhibited HuT-78 growth. For both cell lines, the growth rate was significantly inhibited by the addition of ammonium, although the hybridoma cell line was more affected by ammonia than was the HuT-78 cell line. Growth of HuT-78 cells increased in the presence of interleukin-2. Unstructured models for the hybridoma cells were similar to other models presented in the literature. Applications of these models to adoptive immunotherapy are discussed.  相似文献   

12.
Activation of lymphocytes and macrophages by the implantation of tumour cells (107 cells per rat) into the left flank of rats increased the conversion of glucose to lactate and of glutamine to glutamate and aspartate and the decarboxylation of [U-14C]-glucose and [U-14C]-glutamine in incubated cells. In addition, the amount of GLUT1 was increased in macrophages. The effect of insulin treatment on glucose and glutamine metabolism of lymphocytes and macrophages activated by Walker 256 tumour implantation was also examined. For this purpose, insulin was injected subcutaneously (4 U/100 g b.w. daily) after the fourth day of tumour implantation and the rats were killed 10 days afterwards. Insulin treatment fully reverted the changes due to tumour implantation in the metabolism of glucose and glutamine in lymphocytes and of glucose in macrophages.  相似文献   

13.
Under conditions of energy impairment, CNS tissue can utilize substrates other than glucose to maintain energy metabolism. Retinas produce large amounts of lactate, although it has not been shown that lactate can be utilized by retina to prevent the cell damage associated with hypoglycemia. To investigate this, intact, isolated retinas were subjected to aglycemic conditions in the presence or absence of 20 mM lactate. Retinas incubated in the absence of glucose for 60 min showed a threefold elevation in tissue aspartate and 60% decreases in tissue glutamate and glutamine, demonstrating a mobilization of carbon from glutamine and glutamate to the tricarboxylic acid cycle. Lactate prevented these changes in tissue amino acids, indicating metabolism of lactate with sparing of tissue glutamate and glutamine. Tissue ATP was 20 and 66% of control values with zero glucose or zero glucose plus lactate, respectively. Consistent with previous findings, incubation of retinas in the absence of glucose caused acute swelling of retinal neurons and release of GABA into the medium at 60 min. These acute toxic affects caused by the absence of glucose were completely prevented by the presence of lactate. At 24 h of recovery following 60 min of zero glucose, many pyknotic profiles were observed and lactate dehydrogenase (LDH) release into the medium was elevated sevenfold, indicating the extent of cell death. In contrast, no elevation in LDH was found and histology appeared normal in retinas exposed to zero glucose in the presence of lactate. alpha-Cyano-4-hydroxy cinnamate (4-CIN; 0.5 mM), an inhibitor of the monocarboxylic acid transporter and mitochondrial pyruvate carrier, blocked the ability of lactate to maintain ATP and protect retinas from aglycemia but had no effect on ATP or toxicity per se. Derangements in tissue aspartate, glutamate, and glutamine, which were prevented by lactate during zero glucose incubation, were again observed with lactate plus zero glucose in the presence of 4-CIN. However, 0.5 mM 4-CIN alone in the presence of glucose produced similar increases in aspartate and decreases in glutamate and glutamine as observed with zero glucose while having only modest inhibitory effects on [U-(14)C]lactate uptake, suggesting the mitochondrial pyruvate carrier as the main site of action. The above findings show that lactate is readily utilized by the chick retina during glucose deprivation to prevent derangements in tissue amino acids and ATP and retinal neuronal cell death.  相似文献   

14.
The rates of [U-14C]glutamine oxidation to 14CO2 were determined under a variety of experimental conditions using whole homogenates and dissociated cells from rat brain. The pattern of glutamine oxidation by homogenates differed from that by dissociated brain cells in several respects. The rates of glutamine oxidation by dissociated brain cells showed saturation kinetics with an apparent Km of 0.30 mM. Lineweaver-Burk plots of glutamine oxidation by homogenates revealed two linear segments with two apparent Km values (0.58 mM and 3.0 mM). In the presence of aminooxyacetate, however, the Lineweaver-Burk plots for homogenates were linear with a single Km of 0.47 mM. The oxidation of glutamine by homogenates was inhibited by both rotenone and antimycin A (80-85%), as were glutamate and glucose oxidation, suggesting that a significant amount of glutamine is oxidized via the tricarboxylic acid cycle. In the presence of aminooxyacetate, glutamine oxidation was inhibited less than 40%, whereas the oxidation of glutamate was inhibited 75%; in contrast, glucose oxidation was enhanced 50%. The rates of glutamine oxidation by homogenates were highest in the presence of high levels of potassium (50 mM) and low levels of sodium (2.5 mM). Varying ionic composition, however, had little or no effect on the rates of glutamine oxidation by dissociated brain cells. Measurements of glutamine oxidation by homogenates prepared from 2-, 10-, 15-, 25-, and 90-day-old rats revealed little or no age-dependent difference. In contrast, the oxidation by dissociated brain cells from 2-day-old animals was significantly less than that obtained for animals 10 days or older (7.76 vs. 15.6 nmol/h/mg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Acetate and the long chain free fatty acid palmitate provoked a decrease in the rates of glutamine utilization and glutamate production in Ehrlich ascites tumor cells incubated with 0.5 mM glutamine. There was a cumulative effect with glucose on glutamine metabolism.  相似文献   

16.
The proliferation of mesangial cells (MC) in the presence of glutamine (0–20 mM) was determined in both low (5 mM) and high (25 mM) glucose-containing medium. Glutamine in a high glucose (HG) environment increased cell proliferation in a dose-dependent manner. Inhibition of glutamine:fructose 6-phosphate amidotransferase (GFAT) and of phosphodiesterase significantly reduced glutamine-induced proliferation. Supraphysiologic levels of glutamine increase MC proliferation in a HG milieu via GFAT and cAMP-dependent pathways, suggesting that glutamine could pose a risk for diabetic nephropathy.  相似文献   

17.
Abstract— Mammalian cortical synaptosomes incubated in the presence of glucose (2.5 MM) plus glutamine (0.5 mM) showed a 30% increase in transmitter amino acid content over controls with glucose alone and a doubling of glutamate release induced by Veratrine or high K+. Double-label experiments, i.e. [U-14C]glucose with [3H]glutamine, and single-label experiments, i.e. [U-14C]glucose or [U-14C]-glutamine showed that stimulus-released glutamate was derived principally (80%) from glutamine. Released glutamine-derived glutamate was of higher (x 2) specific radioactivity than its tissue equivalent. Glutamine alone (0.5–0.75 mM) was much less effective than equivalent amounts of glucose alone, in stimulating respiration and maintaining tissue K+ levels.  相似文献   

18.
Embryonic chick pigment epithelial cells in culture require glucose as their major energy source for long-term growth, pigment formation, and colony organization. Cell number increases with glucose concentration at least up to 5.0 mM. Cells can be grown with glutamine as the major energy source but produce comparable cell numbers for only the first 3 days in culture, after which they cease growing. However, they are able to metabolize glutamine at a two to sixfoid higher rate than cells grown in the presence of glucose as measured by CO2 release and by incorporation into protein. In cells grown in the presence of both glucose and glutamine, basal ATP levels were 31.1 nmoles/mg protein; P-creatine averaged 15.2 nmoles/mg protein and showed marked variability between experimental groups. During starvation, P-creatine levels fell while ATP levels remained relatively constant. Glucose was required for the recovery of P-creatine to prestarvation levels when measured 5 min after refeeding. Because of these marked changes in P-creatine concentration as a function of nutritional status, the ATP/P-creatine ratio becomes a useful measure of the energy state of the cell.  相似文献   

19.
Human diploid fibroblasts utilize both glucose and glutamine as energy sources. The utilization of glutamine by fibroblasts is regulated by glucose, and vice versa. This conclusion is supported by the following observations: (1) essentially identical growth rates were observed in Eagle's minimum essential medium (MEM)3 in which the glucose concentration was either 5.5 mM or was maintained between 25 and 40 micrometer, (2) the total glutamine utilization by fibroblasts increase at least 30% in medium with 25 micrometer to 70 micrometer glucose compared to medium with 5.5 mM glucose, while the rate of glutamine-1 or 5-14C oxidation to CO2 increased 5-fold as the glucose concentration was decreased to zero, (3) 2 mM glutamine inhibited glucose-6-14C oxidation by 88% and stimulated glucose-1-14C by 77% in log phase cells and (4) glutamine oxidation in normal medium contributed approximately 30% of the energy requirement of human diploid fibroblasts.  相似文献   

20.
Glucose deprivation has been shown to increase the invasive and metastatic potential of tumour cells. In the present study, we determined whether the enhanced tumour cell invasiveness resulting from glucose deprivation is linked to increased activity of enzymes required for extracellular matrix degradation. Results of in vitro invasion assays revealed that the invasiveness of human MDA-MB-231 and MCF-7 breast carcinoma cells and MCF-10A1 normal breast cells was, respectively, 3.9-, 2.9-, and 2.1-fold higher when they were incubated under glucose-deprivation (0.2 mM glucose) than when incubated under physiological blood glucose levels (5 mM). This effect of glucose deprivation on invasion correlated with increased urokinase plasminogen activator (uPA) and plasmin activity. Glucose deprivation did not increase the levels of gelatinase and plasminogen activator inhibitor-1 secretion, or the expression of cell-associated uPA receptor. To determine whether the increased invasiveness resulting from glucose deprivation is causally linked to increased uPA activity, invasion assays were conducted using MDA-MB-231 cells incubated in 0.2 mM or 5 mM glucose in the presence of a neutralising anti-uPA antibody. Results revealed that the anti-uPA antibody significantly inhibited invasion in a dose-dependent manner and to a much greater extent in cells incubated in 0.2 mM glucose than in cells incubated in 5 mM glucose. These results suggest that low glucose levels in malignant cancers increase tumour cell invasiveness by stimulating uPA and plasmin activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号