首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable transfected human p53 (mt/mt) B lymphoma Namalwa variant lines showing differential expression of the Bax-alpha protein were derived under hygromycin selection. Overexpression of Bax-alpha in these variant cells accelerates cell death induced by short or continuous treatments with various concentrations of camptothecin, etoposide, vinblastine and shows no accelerating cell death activity in cis-platinum and paclitaxel-treated cells. Activation of apoptosis and oligonucleosome-sized DNA fragmentation was observed in the variant lines with more pronounced effect in cells containing high level of Bax-alpha protein. These results suggest that increased cell death mediated by anticancer drugs correlates with Bax-alpha level of expression and that Bax-alpha sensitizes Namalwa cells treated at low drug concentrations. The extent of DNA synthesis inhibition following DNA topoisomerase inhibitor treatments was similar in control and all transfected Namalwa cells suggesting that Bax-alpha acts downstream of DNA topoisomerase-mediated DNA strand breaks. To define further the relation between Bax-alpha expression and apoptosis activation, kinetics of caspase activation was measured in drug-treated cells. Caspase activities were measured using specific fluorogenic peptide derivatives DABCYL-YVADAPV-EDANS and Ac-DEVD-AMC, substrates of the caspase 1-like and caspase 3-like families, respectively. In control and Bax-alpha transfected Namalwa cells no increase in caspase 1-like activity was detected following camptothecin and etoposide treatments. In contrast, a significant difference in Ac-DEVD-AMC hydrolysis activity was observed in Bax-alpha transfected Namalwa cells compared to that of control Namalwa cells after camptothecin and etoposide treatment. Increased caspase 3-like activity correlated also with poly(ADPribosyl) polymerase cleavage. Taken together, these results suggest that Bax-alpha sensitize B lymphoma cells to series of anticancer drugs and accelerates the activation of apoptotic protease cascade.  相似文献   

2.
3.
4.
5.
Activation of caspases is the key event of apoptosis and new methods are needed to assay this event, particularly in situ, in individual cells. To measure in situ caspases activation in the present study we employed fam-VAD-fmk and fam-VEID-fmk, the fluorochrome (fam)-labeled inhibitors of caspases (FLICA), which through the fluoromethylketone (fmk) moiety bind to active center of the activated enzymes. The peptide moiety of these inhibitors defines their specificity; VAD is generic to most caspases and VEID is caspase-6 specific. The frequencies of cells showing caspases activation were compared with those showing DNA fragmentation (detected by the TUNEL assay) in the same cultures. Apoptosis of HL-60 cells was induced by DNA topoisomerase I inhibitor camptothecin (CPT) or tumor necrosis factor-alpha combined with cycloheximide (TNF-alpha + CHX). The cells that bound FLICA had morphological changes typical of apoptosis. The intensity of their fluorescence was measured by laser scanning cytometry. Maximal rate of activation of the caspases, measured by the increase in frequency of the cells that bound fam-VAD-fmk, occurred between 30 and 90 min after the administration of TNF-alpha + CHX and between 2 and 4 h after the administration of CPT. In the CPT-treated cultures about 30% fewer cells bound fam-VEID-fmk than fam-VAD-fmk which suggests that the activation of caspase-6 was delayed or was not induced in some cells. A strong overall correlation between the cytometric assays of the apoptotic index based on the detection of caspases activation by the FLICA and the TUNEL assay was observed. The data indicate that FLICA offers a rapid and convenient method of assessing caspase's activation in individual cells and can also be used to estimate the frequency of apoptosis.  相似文献   

6.
7.
8.
Intracellular polyamine homeostasis is important for the regulation of cell proliferation and apoptosis and is necessary for the balanced growth of cells and tissues. Polyamines have been shown to play a role in the regulation of apoptosis in many cell types, including IEC-6 cells, but the mechanism is not clear. In this study, we analyzed the mechanism by which polyamines regulate the process of apoptosis in response to tumor necrosis factor-alpha (TNF-alpha). TNF-alpha or cycloheximide (CHX) alone did not induce apoptosis in IEC-6 cells. Significant apoptosis was observed when CHX was given along with TNF-alpha, as indicated by a significant increase in the detachment of cells, caspase-3 activity, and DNA fragmentation. Polyamine depletion by treatment with alpha-difluoromethylornithine significantly reduced the level of apoptosis, as judged by DNA fragmentation and the caspase-3 activity of attached cells. Apoptosis in IEC-6 cells was accompanied by the activation of upstream caspases-6, -8, and -9 and NH2-terminal c-Jun kinase (JNK). Inhibition of JNK activation prevented caspase-9 activation. Polyamine depletion prevented the activation of JNK and of caspases-6, -8, -9, and -3. SP-600125, a specific inhibitor of JNK activation, prevented cytochrome c release from mitochondria, JNK activation, DNA fragmentation, and caspase-9 activation in response to TNF-alpha/CHX. In conclusion, we have shown that polyamine depletion delays and decreases TNF-alpha-induced apoptosis in IEC-6 cells and that apoptosis is accompanied by the release of cytochrome c, the activation of JNK, and of upstream caspases as well as caspase-3. Polyamine depletion prevented JNK activation, which may confer protection against apoptosis by modulation of upstream caspase-9 activation.  相似文献   

9.
Goff AK  Smith LC 《Theriogenology》1998,49(5):1021-1030
The objective of this study was to determine if treatment of endometrial cells with progesterone or progesterone plus estradiol would improve the development of bovine embryos to the blastocyst stage during co-culture. After IVF, bovine embryos were cultured with oviduct epithelial cells for 3 d. In Experiment 1 the embryos were cultured with a) oviduct epithelial cells; b) endometrial epithelial cells (EEC); c) EEC with 10 ng/ml progesterone (EEC + P); or d) EEC with 10 ng/ml progesterone and 10 pg/ml estradiol (EEC + PE) for 6 d. In Experiment 2 the embryos were cultured with a) oviduct epithelial cells; b) endometrial stromal cells (ESC); c) ESC with 10 ng/ml progesterone (ESC + P); or d) ESC with 10 ng/ml progesterone and 10 pg/ml estradiol (ESC + PE) for 6 d. Results from Experiment 1 showed that endometrial epithelial cells supported development to the blastocyst stage as effectively as the oviduct cells; however, the size of the blastocysts was smaller for the endometrial cells. There was no effect of steroid hormone treatment on development to the blastocyst stage or on the size of the blastocysts. Results from Experiment 2 showed that stromal cells supported development to the blastocyst stage as effectively as oviduct cells. The hatching rate was lower when the embryos were co-cultured with stromal cells than oviduct epithelial cells; but there was no effect of steroid treatment. These data show that untreated endometrial epithelial cells are as effective as oviduct cells in maintaining embryo development to the blastocyst stage. However, embryo development was not improved by steroid treatment of the cells.  相似文献   

10.
Almost all ovarian follicles undergo atresia during follicular development. However, the number of corpora lutea roughly equals the number of preovulatory follicles in the ovary. Because apoptosis is the cellular mechanism behind follicle and luteal cell demise, this suggests a change in apoptosis susceptibility during the periovulatory period. Sex steroids are important regulators of follicular cell survival and apoptosis. The aim of the present work was to study the role of progesterone receptor-mediated effects in the regulation of granulosa cell apoptosis. The levels of internucleosomal DNA fragmentation were evaluated in rat granulosa cells before and after induction of the nuclear progesterone receptor, using hCG treatment to eCG-primed rats to mimic the naturally occurring LH surge. Granulosa cells isolated from hCG-treated rats showed a several-fold increase in the expression of progesterone receptor mRNA and a 47% decrease (P < 0.01) in DNA fragmentation after 24 h incubation in serum-free medium compared to granulosa cells isolated from rats treated with eCG only. The effect of hCG treatment in vivo was dose-dependently reversed in vitro by addition of antiprogestins (Org 31710 or RU 486) to the culture medium, demonstrated by increased DNA fragmentation as well as increased caspase-3 activity. Addition of antiprogestins to granulosa cells isolated from immature or eCG-treated rats did not result in increased DNA fragmentation. The results suggest that progesterone receptor-mediated effects are involved in regulating the susceptibility to apoptosis in LH receptor-stimulated preovulatory rat granulosa cells.  相似文献   

11.
Apoptosis is a complex process involving a variety of mechanisms and it has been shown to be a response of cells to various chemical agents including chemotherapeutic ones. We aimed to induce DNA breaks and apoptosis in cultured endometrial stromal cells by mitomycin C (MMC), a chemotherapeutic agent, and also we aimed to observe the effects of beta-carotene and folic acid on MMC-induced apoptosis. Cultured endometrial stromal cells were exposed to MMC for 48 and 72 hours and in order to reverse MMC effects, we added beta-carotene and folic acid to the cultures. DNA fragmentation was observed in all cells. Apoptotic cell ratios and caspase-3 activity were observed to be dependent on exposure time. Ultrastructural examinations revealed positive effects of beta-carotene and folic acid, however they were not sufficient enough to prevent apoptosis in all cells. Beta-carotene profoundy reduced caspase-3 activity whereas folic acid did not seem to have a similar effect. As apoptosis involves several mechanisms, in a cell in which all these mechanisms are triggered, we think that antioxidants and DNA repair agents alone are not enough to reverse all of them.  相似文献   

12.
During early pregnancy in ruminants, the embryo not only prevents prostaglandin F2alpha release, but it also modifies protein synthesis in the endometrium. This is accomplished by the secretion of interferon-tau (IFN-tau) from the embryo. The objective of this study was to identify and characterize specific proteins secreted from endometrial epithelial cells in response to IFN-tau that could be important for endometrial function and/or embryo development. The epithelial cells were prepared and cultured to confluence and then incubated with or without 100 ng/ml IFN-tau. At the end of the incubation, the proteins in the medium were analyzed by two-dimensional PAGE. The result showed that two major protein spots were induced by IFN-tau. One has a molecular mass of approximately 12 kDa and an isoelectric point (pI) of 6.7; the other has a molecular mass of 76 kDa and pI of 4.8. Protein sequence analysis showed that the 12-kDa protein contained a partial amino acid sequence that corresponded to macrophage migration inhibitory factor (MIF). To determine whether MIF is expressed in endometrial cells, isolated stromal or epithelial cells were incubated with or without 100 ng/ml IFN-tau for 0, 3, 6, 12, 24, and 48 h. After incubation, the MIF protein in cells was examined by Western blotting analysis, and the steady-state mRNA for MIF was examined by Northern analysis. Results showed that MIF protein and mRNA were present in the epithelial cells but not the stromal cells. The presence of MIF in the luminal epithelium of endometrial tissue was confirmed by immunohistochemistry. However, there was no effect of IFN-tau on MIF expression in the epithelial cells. The concentration of MIF in the medium was quantified by Western blotting analysis to determine if IFN-tau altered MIF protein secretion from the epithelial cells. The results showed that IFN-tau significantly stimulated the secretion of MIF protein from the cells. These data show that MIF is expressed in the epithelial, but not the stromal, cells of the endometrium and that MIF secretion from the epithelial cells is stimulated by IFN-tau. It is therefore likely that MIF plays a role in early embryo development, and further characterization of MIF expression and its regulation in the endometrium will add significantly to our understanding of early embryo-uterine interactions.  相似文献   

13.
Neutrophils release soluble Fas ligand (sFasL), which can induce apoptosis in certain Fas-bearing cell types (Liles WC, Kiener PA, Ledbetter JA, Aruffo A, and Klebanoff SJ. J Exp Med 184: 429-440, 1996). We hypothesized that neutrophils could induce alveolar epithelial apoptosis via release of sFasL. A549 pulmonary adenocarcinoma cells expressed surface Fas and underwent cell death (10 +/- 7% viability) and DNA fragmentation (354 +/- 98% of control cells) when incubated with agonistic CD95/Fas monoclonal antibody (P < 0.05). Coincubation with human neutrophils induced significant A549 cell death at 48 (51 +/- 9% viability; P < 0.05) and 72 h (25 +/- 10%; P < 0.05) and increased DNA fragmentation (178 +/- 42% of control cells; P < 0.05), with morphological characteristics of apoptosis. The addition of antioxidants did not inhibit apoptosis. sFasL concentrations were maximally increased in coculture medium at 24 h (4.9 +/- 0.7 ng/ml; P < 0.05). Neutrophil-induced A549 cell apoptosis was blocked by inhibitory anti-Fas (42 +/- 6% of control cells; P < 0.05) and anti-FasL monoclonal antibodies (29 +/- 3%; P < 0.05). Human neutrophils and Fas similarly affected murine primary alveolar epithelial cell bilayers, and caspase activation occurred in response to Fas exposure. We conclude that neutrophils undergoing spontaneous apoptosis induce A549 cell death and DNA fragmentation, independent of the oxidative burst, that is mediated by sFasL.  相似文献   

14.
Cells of the human promyelocytic HL-60 line, when treated with a variety of antitumor agents in the presence of the protein synthesis inhibitor cycloheximide (CHX), or with CHX alone, rapidly undergo apoptosis (“active cell death”). It is presumed, therefore, that such cells are “primed” to apoptosis in that no new protein synthesis is required for induction of their death. We have studied apoptosis of HL-60 cells triggered by the DNA topoisomerase I inhibitor camptothecin (CAM) in the absence and presence of CHX and apoptosis induced by CHX alone. Two different flcw cytometric methods were used, each allowing us to relate the apoptosis-associated DNA degradation to the cell cycle position. Apoptosis induced by CAM was limited to S phase cells, e.g., at a CAM concentration of 0.15 μM, nearly 90% of the S phase cells underwent apoptosis after 4 h. In contrast, apoptosis triggered by CHX was indiscriminate, affecting all phases of the cycle: ~40% of the cells from each phase the cycle underwent apoptosis at 5 μM CHX concentration. When CAM and CHX were added together, the pattern of apoptosis resembled that of cycloheximide alone, namely, cells in all phases of the cycle in similar proportion were affected. Thus, CHX, while itself inducing apoptosis of a fraction of cells, protected the S phase cells against apoptosis triggered by CAM. Because CHX (5 μM) did not significantly affect the rate of cell progression through S phase, the observed protective effect was most likely directly related to inhibition of protein synthesis, rather than to its possible indirect effect on DNA replication. Furthermore, whereas apoptosis (DNA degradation) triggered by CAM was prevented by the serine protease inhibitor N-tosyl-L-lysylchloromethyl ketone (TLCK), this process was actually potentiated by this inhibitor when induced by CHX. The present data indicate differences in mechanism of apoptosis triggered by CAM (and perhaps other antitumor drugs) as compared with CHX. Apoptosis caused by CHX may be unique in that it may not involve new protein synthesis. These data are compatible with the assumption that the loss of a hypothetical, rapidly turning over suppressor of apoptosis may be the trigger of apoptosis of HL-60 cells treated with CHX, whereas de novo protein synthesis is required when apoptosis is triggered by other agents. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Y Nakajima  K Aoshiba  S Yasui  A Nagai 《Life sciences》1999,64(26):2489-2496
Oxidants play an important role in the pathogenesis of various airway diseases. Oxidants have been shown to induce two distinct types of cell death, i.e., apoptosis and necrosis. However, whether oxidants induce apoptosis in airway epithelial cells remains unclear. To address this question, we evaluated the effect of H2O2 exposure on bovine tracheal epithelial cells cultured under different conditions. When tracheal epithelial cells were isolated and exposed to H2O2 in suspension cultures, they underwent apoptosis as demonstrated by characteristic ultrastructural changes and DNA fragmentation. Interestingly, apoptosis occurred in single cells but not in aggregated cells. In addition, apoptosis was seen in many ciliated and in fewer mucous cells. When tracheal epithelial cells were allowed to attach to the substrate and grow, they became resistant to apoptosis induced by H2O2. These results suggest that H2O2 can induce apoptosis in airway epithelial cells.  相似文献   

16.
Progesterone is suggested to be a suppressor of apoptosis in bovine luteal cells. Fas antigen (Fas) is a cell surface receptor that triggers apoptosis in sensitive cells. Furthermore, apoptosis is known to be controlled by the bcl-2 gene/protein family and caspases. This study was undertaken to determine whether intraluteal progesterone (P4) is involved in Fas L-mediated luteal cell death in the bovine corpus luteum (CL) in vitro. Moreover, we studied whether an antagonist of P4 influences gene expression of the bcl-2 family and caspase-3 and the activity of caspase-3 in the bovine CL. Luteal cells obtained from the cows in the midluteal phase of the estrous cycle (Days 8-12 of the cycle) were exposed to a specific P4 antagonist (onapristone [OP], 10(-4) M) with or without 100 ng/ml Fas L. Although Fas L alone did not show a cytotoxic effect, treatment of the cells with OP alone or in combination with Fas L resulted in killing of 30% and 45% of the cells, respectively (P <0.05). DNA fragmentation was observed in the cells treated with Fas L in the presence of OP. The inhibition of P4 action by OP increased the expression of Fas mRNA (P <0.01); however, it did not affect bax or bcl-2 mRNA expression (P >0.05). Moreover, OP stimulated expression of caspase-3 mRNA (P <0.01). The overall results indirectly show that intraluteal P4 suppresses apoptosis in bovine luteal cells through the inhibition of Fas and caspase-3 mRNA expression and inhibition of caspase-3 activation.  相似文献   

17.
Hypoxia promotes luteal cell death in bovine corpus luteum   总被引:1,自引:0,他引:1  
Low oxygen caused by a decreasing blood supply is known to induce various responses of cells, including apoptosis. The present study was conducted to examine whether low-oxygen conditions (hypoxia) induce luteal cell apoptosis in cattle. Bovine midluteal cells incubated under hypoxia (3% O(2)) showed significantly more cell death than did those incubated under normoxia (20% O(2)) at 24 and 48 h of culture, and had significantly lower progesterone (P4) levels starting at 8 h. Characteristic features of apoptosis, such as shrunken nuclei and DNA fragmentation, were observed in cells cultured under hypoxia for 48 h. Hypoxia increased the mRNA expressions of BNIP3 and caspase 3 at 24 and 48 h of culture. Hypoxia had no significant effect on the expressions of BCL2 and BAX mRNA. Hypoxia also increased BNIP3 protein, and activated caspase-3. Treatment of P4 attenuated cell death, caspase-3 mRNA expression, and caspase-3 activity under hypoxia. Overall results of the present study indicate that hypoxia induces luteal cell apoptosis by enhancing the expression of proapoptotic protein, BNIP3, and by activating caspase-3, and that the induction of apoptosis by hypoxia is partially caused by a decrease in P4 production. Because hypoxia suppresses P4 synthesis in bovine luteal cells, we suggest that oxygen deficiency caused by a decreasing blood supply in bovine corpus luteum is one of the major factors contributing to both functional and structural luteolysis.  相似文献   

18.
Progesterone secretion is required for the growth and differentiation of endometrial stromal cells to form decidual cells. For many cells where a growth factor supports cell growth and proliferation, withdrawal of the growth factor initiates apoptosis. This study determined the time course and tissue location of apoptosis in deciduomal tissue after withdrawal of progesterone or injection of the antiprogestin, RU-486. Total DNA was isolated from decidual tissues at intervals after experimental treatments and separated electrophoretically. Internucleosomal DNA fragmentation characteristic of apoptosis was measured by quantitating levels of the 200 bp fragment. Apoptotic cells in tissue sections were detected by direct immunoperoxidase detection of digoxigenin-labeled DNA. Decidual apoptosis reached maximal levels at 12 h after withdrawal of progesterone or injection of RU-486. Increased concentrations of apoptotic cells were observed at the periphery of the growing deciduoma and in the antimesometrial deciduoma near the luminal epithelium after both treatments. These results suggest the withdrawal of progestin initiates apoptosis in cells at the early stages of decidualization.  相似文献   

19.
Ceramide increases steroid hormone production in MA-10 Leydig cells.   总被引:1,自引:0,他引:1  
Ceramide is known to have major roles in the control of cell proliferation, differentiation, and apoptosis. Recent studies also have shown that ceramide affects steroid production by JEG-3 choriocarcinoma cells, acutely dispersed rat Leydig cells, and ovarian granulosa cells, but the mechanism by which this occurs is unknown. Because ceramide induces apoptosis in many different cell types, we hypothesized that ceramide might affect steroidogenesis and/or induce apoptosis in MA-10 murine Leydig cells. To test this, MA-10 cells were incubated with either the water soluble C2-ceramide, (N-acetyl-sphingosine, 0.01-10 cm); bacterial sphingomyelinase (1-100 mU/ml); or C2-dihydroceramide (N-acetyl-sphinganine, 0.1-10 microM). The data show that N-acetyl-sphingosine significantly increased basal (0.87 +/- 0.2 vs. 0.42 +/- 0.09 ng/mg cell protein, P < 0.01) and human chorionic gonadotropin (hCG) stimulated progesterone (P) synthesis (204 +/- 12 vs. 120 +/- 5 ng/mg cell protein, P < 0.001); as did sphingomyelinase (basal P = 0.83 +/- 0.1 ng/mg cell protein, P < 0.01; hCG stimulated P = 173 +/- 7 ng/mg cell protein, P < 0.001). C2-dihydroceramide also increased basal P synthesis but was less effective than ceramide on a molar basis. Neither sphingomyelinase (100 mU/ml) nor ceramide (10 microM) had any effect on cAMP production or human chorionic gonadotropin binding; and neither induced any signs of apoptosis (FragEL DNA fragmentation assay and electron microscopy). Cells incubated with anti-Fas (300 ng/ml) demonstrated DNA fragmentation, nuclear condensation, and frequent apoptotic bodies, but had no change in P synthesis. These data show that ceramide significantly increases MA-10 Leydig cell P synthesis but does not induce apoptosis. The mechanism by which ceramide increases steroid hormone synthesis remains unknown but does not appear to be linked to the induction of apoptosis in MA-10 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号