首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we discovered that human glutathione transferase (hGST) A1-1 could be site-specifically acylated on a tyrosine residue (Y9) to form ester products using thiolesters of glutathione (GS-thiolesters) as acylating reagents. Out of a total of 20 GS-thiolester reagents tested, 15 (75%) are accepted by hGST A1-1 and thus this is a very versatile reaction. The present investigation was aimed at obtaining a more stable product, an amide bond, between the acyl group and the protein, in order to further increase the value of the reaction. Three lysine mutants (Y9K, A216K, and Y9F/A216K) were therefore prepared and screened against a panel of 18 GS-thiolesters. The Y9K mutant did not react with any of the reagents. The double mutant Y9F/A216K reacted with only one reagent, but in contrast, the A216K mutant could be acylated at the introduced lysine 216 with eight (44%) of the GS-thiolesters. The reaction can take place in the presence of glutathione and even in a crude cell lysate for five (28%) of the reagents. Through the screening process we obtained some basic rules relating to reagent requirements. We have thus produced a mutant (A216K) that can be rapidly and site-specifically modified at a lysine residue to form a stable amide linkage with a range of acyl groups. One of the successful reagents is a fluorophore that potentially can be used in downstream protein purification and protein fusion applications.  相似文献   

2.
We have previously developed a labeling scheme that can be used to site-specifically link human glutathione transferases (hGSTs) from the alpha class to chemical entities such as fluorophores and aldehydes. The reagents are in-house synthesized derivatives of glutathione (GS-derivatives). We have focused on a lysine mutant of hGST A1:A216K. In this study, we wanted to utilize these findings and improve on protein purification schemes that are using GSTs as fusion partners. We have used random mutagenesis to scramble the hydrophobic binding site of A216K through mutations at position M208 and isolated a library of 11 A216K/M208X mutants. All mutants were easily expressed and purified and retained all or parts of the catalytic properties of the parent GST. The mutants were stable over several days at room temperature. The A216K/M208X mutants could be site-specifically labeled using our designed fluorescent reagents. Furthermore, reaction with an aldehyde-containing reagent termed GS-Al results in site-specific introduction of an orthogonal handle for subsequent conjugation with aldehyde-reactive probes. Labeling with coumarin results in a fluorescent protein-conjugate that can bind glutathione (GSH) derivatives for subsequent affinity purification. The K(d) for S-hexyl-GSH of coumarin-labeled A216K was measured to be 2.5 microM. The candidate proteins A216K and A216K/M208F could be purified in high yield in a one-step procedure through affinity chromatography (Glutathione Sepharose 4B). The proteins can readily be perceived as improved GST fusion partners.  相似文献   

3.
The bacterial expression and purification of human pi class glutathione S-transferase (hGST P1-1) as a hexahistidine-tagged polypeptide was performed. The expression plasmid for hGST P1-1 was constructed by ligation of the cDNA which codes for the protein into the expression vector pET-15b. The expressed protein was purified by either glutathione or metal (Co(2+)) affinity column chromatography, which produced the pure and fully active enzyme in one step with a yield of more than 30 mg/liter culture. The activity of the purified protein was 130 units mg(-1) from the GSH affinity column and 112 units mg(-1) from the Co(2+) affinity column chromatography. The purity of the protein was assessed by electrospray ionization mass spectrometry and size-exclusion chromatography. It showed that the real molecular weight of the hexahistidine-tagged hGST P1-1 polypeptide chain agreed with the calculated value and that the purified protein eluted as an apparent homodimer on the gel filtration column. Our expression system allows the expression and purification of active hexahistidine-tagged hGST P1-1 in high yield with no need of removal of the hexahistidine tag and gives pure protein in one purification step allowing further study of this enzyme.  相似文献   

4.
Mosebi S  Sayed Y  Burke J  Dirr HW 《Biochemistry》2003,42(51):15326-15332
The C-terminal region in class alpha glutathione transferases (GSTs) modulates the catalytic and nonsubstrate ligand binding functions of these enzymes. Except for mouse GST A1-1 (mGST A1-1), the structures of class alpha GSTs have a bulky aliphatic side chain topologically equivalent to Ile219 in human GST A1-1 (hGST A1-1). In mGST A1-1, the corresponding residue is an alanine. To investigate the role of Ile219 in determining the conformational dynamics of the C-terminal region in hGST A1-1, the residue was replaced by alanine. The substitution had no effect on the global structure of hGST A1-1 but did reduce the conformational stability of the C-terminal region of the protein. This region could be stabilized by ligands bound at the active site. The catalytic behavior of hGST A1-1 was significantly compromised by the I219A mutation as demonstrated by reduced enzyme activity, increased K(m) for the substrates glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB), and reduced catalytic efficiencies. Inhibition studies also indicated that the binding affinities for product and substrate analogues were dramatically decreased. The affinity of the mutant for GSH was, however, only slightly increased, indicating that the G-site was unaltered by the mutation. The binding affinity and stoichiometry for the anionic dye 8-anilino-1-naphthalene sulfonate (ANS) was also not significantly affected by the I219A mutation. However, the lower DeltaC(p) for ANS binding to the mutant (-0.34 kJ/mol per K compared with -0.84 kJ/mol per K for the wild-type protein) suggests that ANS binding to the mutant results in the burial of less hydrophobic surface area. Fluorescence data also indicates that ANS bound to the mutant is more prone to quenching by water. Overall, the data from this study, together with the structural details of the C-terminal region in mGST A1-1, show that Ile219 is an important structural determinant of the stability and dynamics of the C-terminal region of hGST A1-1.  相似文献   

5.
Benzyl isothiocyanate (BITC), present in cruciferous vegetables, is an efficient substrate of human glutathione S-transferase P1-1 (hGST P1-1). BITC also acts as an affinity label of hGST P1-1 in the absence of glutathione, yielding an enzyme inactive toward BITC as substrate. As monitored by using BITC as substrate, the dependence of k of inactivation (K(I)) of hGST P1-1 on [BITC] is hyperbolic, with K(I) = 66 +/- 7 microM. The enzyme incorporates 2 mol of BITC/mol of enzyme subunit upon complete inactivation. S-Methylglutathione and 8-anilino-1-naphthalene sulfonate (ANS) each yield partial protection against inactivation and decrease reagent incorporation, whereas S-(N-benzylthiocarbamoyl)glutathione or S-methylglutathione + ANS protects completely. Mapping of proteolytic digests of modified enzyme by using mass spectrometry reveals that Tyr(103) and Cys(47) are modified equally. S-Methylglutathione reduces modification of Cys(47), indicating this residue is at/near the glutathione binding region, whereas ANS decreases modification of Tyr(103), suggesting this residue is at/near the BITC substrate site, which is also near the binding site of ANS. The Y103F and Y103S mutant enzymes were generated, expressed, and purified. Both mutants handle substrate 1-chloro-2,4-dinitrobenzene normally; however, Y103S exhibits a 30-fold increase in K(m) for BITC and binds ANS poorly, whereas Y103F has a normal K(m) for BITC and K(d) for ANS. These results indicate that an aromatic residue at position 103 is essential for the binding of BITC and ANS. This study provides evidence for the existence of a novel xenobiotic substrate site in hGST P1-1, which can be occupied by benzyl isothiocyanate and is distinct from that of monobromobimane and 1-chloro-2,4 dinitrobenzene.  相似文献   

6.
The potent peptidic inhibitor, Y1, of the basic residue-specific yeast aspartyl protease, yapsin 1, was synthesized and characterized. The inhibitor was based on the peptide sequence of a cholecystokinin(13-33) analog that yapsin 1 cleaved with an efficiency of 5.2 x 10(5) m(-1) s(-1) (Olsen, V., Guruprasad, K., Cawley, N. X., Chen, H. C., Blundell, T. L., and Loh, Y. P. (1998) Biochemistry 37, 2768-2777). The apparent K(i) of Y1 for the inhibition of yapsin 1 was determined to be 64.5 nm, and the mechanism is competitive. Y2 was also developed as an analog of Y1 for coupling to agarose beads. The resulting inhibitor-coupled agarose beads were successfully used to purify yapsin 1 to apparent homogeneity from conditioned medium of a yeast expression system. Utilization of this new reagent greatly facilitates the purification of yapsin 1 and should also enable the identification of new yapsin-like enzymes from mammalian and nonmammalian sources. In this regard, Y1 also efficiently inhibited Sap9p, a secreted aspartyl protease from the human pathogen, Candida albicans, which has specificity for basic residues similar to yapsin 1 and might provide the basis for the prevention or control of its virulence. A single-step purification of Sap9p from conditioned medium was also accomplished with the inhibitor column. N-terminal amino acid sequence analysis yielded two sequences indicating that Sap9p is composed of two subunits, designated here as alpha and beta, similar to yapsin 1.  相似文献   

7.
Glutathione transferase (GST) A3-3 is the most efficient human steroid double-bond isomerase known. The activity with Delta(5)-androstene-3,17-dione is highly dependent on the phenolic hydroxyl group of Tyr-9 and the thiolate of glutathione. Removal of these groups caused an 1.1 x 10(5)-fold decrease in k(cat); the Y9F mutant displayed a 150-fold lower isomerase activity in the presence of glutathione and a further 740-fold lower activity in the absence of glutathione. The Y9F mutation in GST A3-3 did not markedly decrease the activity with the alternative substrate 1-chloro-2,4-dinitrobenzene. Residues Phe-10, Leu-111, and Ala-216 selectively govern the activity with the steroid substrate. Mutating residue 111 into phenylalanine caused a 25-fold decrease in k(cat)/K(m) for the steroid isomerization. The mutations A216S and F10S, separate or combined, affected the isomerase activity only marginally, but with the additional L111F mutation k(cat)/K(m) was reduced to 0.8% of that of the wild-type value. In contrast, the activities with 1-chloro-2,4-dinitrobenzene and phenethylisothiocyanate were not largely affected by the combined mutations F10S/L111F/A216S. K(i) values for Delta(5)-androstene-3,17-dione and Delta(4)-androstene-3,17-dione were increased by the triple mutation F10S/L111F/A216S. The pK(a) of the thiol group of active-site-bound glutathione, 6.1, increased to 6.5 in GST A3-3/Y9F. The pK(a) of the active-site Tyr-9 was 7.9 for the wild-type enzyme. The pH dependence of k(cat)/K(m) of wild-type GST A3-3 for the isomerase reaction displays two kinetic pK(a) values, 6.2 and 8.1. The basic limb of the pH dependence of k(cat) and k(cat)/K(m) disappears in the Y9F mutant. Therefore, the higher kinetic pK(a) reflects ionization of Tyr-9, and the lower one reflects ionization of glutathione. We propose a reaction mechanism for the double-bond isomerization involving abstraction of a proton from C4 in the steroid accompanied by protonation of C6, the thiolate of glutathione serving as a base and Tyr-9 assisting by polarizing the 3-oxo group of the substrate.  相似文献   

8.
Håkansson S  Viljanen J  Broo KS 《Biochemistry》2003,42(34):10260-10268
Here we describe a new route to site- and class-specific protein modification that will allow us to create novel functional proteins with artificial chemical groups. Glutathione transferases from the alpha but not the mu, pi, omega, or theta classes can be rapidly and site-specifically acylated with thioesters of glutathione (GS-thioesters) that are similar to compounds that have been demonstrated to occur in vivo. The human isoforms A1-1, A2-2, A3-3, and A4-4 from the alpha class all react with the reagent at a conserved tyrosine residue (Y9) that is crucial in catalysis of detoxication reactions. The yield of modified protein is virtually quantitative in less than 30 min under optimized conditions. The acylated product is stable for more than 24 h at pH 7 and 25 degrees C. The modification is reversible in the presence of excess glutathione, but the labeled protein can be protected by adding S-methylglutathione. The stability of the ester with respect to added glutathione depends on the acyl moiety. The reaction can also take place in Escherichia coli lysates doped with alpha class glutathione transferases. A control substance that lacks the peptidyl backbone required for binding to the glutathione transferases acylates surface-exposed lysines. There is some acyl group specificity since one out of the three different GS-thioesters that we tried was not able to acylate Y9.  相似文献   

9.
A C-terminal helix (α9) adjacent to the active site on each subunit is a structural feature unique to the alpha isoform of glutathione transferases which contributes to the catalytic and ligandin functions of the enzyme. The ionisation state of Tyr-9, a residue critical to catalysis, influences α9 dynamics, although the mechanism is poorly understood. In this study, isothermal titration calorimetry was used to probe the binding energetics of G-site (glutathione and glutathione sulfonate) and H-site (ethacrynic acid) ligands to wild-type and a Y9F mutant of human glutathione transferase A1-1. Although previous studies have reported a favourable entropic component to the binding of conjugates occupying both sites, our data reveal that ligand binding is enthalpically driven when either the G- or H-site is occupied independently. Also, heat capacity changes demonstrate that α9 is fully localised by H-site but not G-site occupation. The Tyr-9 hydroxyl group contributes significantly to ligand binding energetics, although the effect differs between the two binding sites. G-site binding is made slightly enthalpically more favourable and entropically less favourable by the Y9F mutation. Binding to the H-site is more dramatically affected, with the K(d) for ethacrynic acid increasing 5 fold despite a more favourable ΔS. The heat capacity change is more negative for G-site binding in the absence of the Tyr-9 hydroxyl (ΔΔC(p)=-0.73 kJ mol(-1) K(-1)), but less negative for H-site binding to the Y9F mutant (ΔΔC(p)=0.63 kJ mol(-1) K(-1)). This suggests that the relationship between Tyr-9 and α9 is not independent of the ligand. Rather, Tyr-9 appears to function in orienting the ligand optimally for α9 closure.  相似文献   

10.
BACKGROUND: Glutathione, a ubiquitous tripeptide, is an important cellular constituent, and measurement of reduced and oxidized glutathione is a measure of the redox state of cells. Glutathione-S-transferase (GST) fusion proteins bind naturally to beads derivatized with glutathione, and elution of such bead-bound fusion proteins with buffer containing millimolar glutathione is a commonly used method of protein purification. Many protein-protein interactions have been established by using GST fusion proteins and measuring binding of fusion protein binding partners by GST pulldown assays, usually monitored by Western blot methodology. METHODS: Dextran beads suitable for flow cytometry were derivatized with glutathione. A fusion protein of GST and green fluorescent protein was used to define kinetic and equilibrium binding characteristics of GST fusion proteins to glutathione beads. Free glutathione competes with this binding, and this competition was used to measure free glutathione concentration. RESULTS: A 10 microl assay can measure 5 microl of 20 microM glutathione (100 pmol glutathione) in 2 h by flow cytometry. This concentration is two orders of magnitude lower than cellular glutathione concentrations, and three orders of magnitude lower than affinity chromatography eluates. One important result is that by generating high site density, the GST fusion proteins can be constrained to the surface of one bead without hopping to the next bead in multiplex assays. CONCLUSIONS: Glutathione in cellular lysates and GST-fusion protein affinity chromatography eluates can be measured by flow cytometry. Many interactions between GST fusion proteins and their fluorescent binding partners should be quantifiable by flow cytometry. Although a system may have the disadvantage that it has a low affinity and a correspondingly quick off-rate in solution, it may remain on beads if the site density can be increased to offer a slow apparent off rate.  相似文献   

11.
Fluorescent labels for proteomics and genomics   总被引:1,自引:0,他引:1  
Fluorescent labeling reagents are an essential component of a huge industry built on sensitive fluorescence detection. This technology has grown over 30 years and is in some ways mature. Excellent labeling reagents with close to maximum theoretical brightness are available in many different colors. Large fluorescent proteins like phycobiliproteins are also widely used that are exceedingly bright. Other fluorescent proteins like the GFP family can be obtained for creating genetically encoded protein labels in living cells. A new 'solid state' quantum dot technology is being exploited for large-scale multiparameter labeling. This technology provides the 'ultimate' photostable labeling reagent. Still, there are advances to be made. Not available is the ultimate tool kit of low molecular weight, strongly light absorbing, photostable labels with narrow emission bands ranging from the UV to the IR.  相似文献   

12.
In a previous study, we constructed a three-dimensional (3D) structure of pentachlorophenol 4-monooxygenase (PcpB). In this study, further analyses are performed to examine the important amino acid residues in the catalytic reaction by identification of the proteins with mass spectrometry, circular dichroism (CD) and UV spectrometry, and determination of kinetic parameters. Recombinant histidine-tagged PcpB protein was produced and shown to have a similar activity to the native protein. Mutant proteins of PcpB were then produced (F85A, Y216A, Y216F, R235A, R235E, R235K, Y397A and Y397F) on the basis of the proposed 3D structure. The CD spectra of the proteins showed that there were no major changes in the structures of the mutant proteins, with the exception of R235E. Steady-state kinetics showed a 20-fold reduction in k(cat)/K(m) and a ninefold increase in K(m) for Y216F and a threefold reduction in k(cat)/K(m) and a sixfold increase in K(m) for Y397F compared to the wild type. On the other hand, the value of k(cat)/K(m) of R235K mutant was the same as that of wild type. As a result, it was confirmed that Y216 and Y397 play an important role with respect to the recognition of the substrate.  相似文献   

13.
Photoactivable reagents have been useful for studying the structural aspects of membrane hydrophobic core. We have reported earlier (Anjaneyulu, P.S.R., and Lala, A. K. (1982) FEBS Lett. 146, 165-167) the use of diazofluorene as a probe for fluorescent photochemical labeling of hydrophobic core in artificial membranes. To quantitate and enhance the monitoring ability of this probe, we have synthesized 2-[3H]diazofluorene of high specific activity. This reagent rapidly partitions into phosphatidylcholine vesicles and selectively labels the fatty acyl chains of phosphatidylcholine. The insertion yield (13%) is not affected by the presence of scavengers like reduced glutathione. 2-[3H]Diazofluorene also readily partitions into erythrocyte membranes and on photolysis labels the membrane. The overall insertion was 48% with 9.7% in protein fraction and the rest in lipids. The distribution of radioactivity in labeled protein fraction was restricted to integral membrane proteins with Band 3 being the major protein labeled. There is little or no labeling associated with extrinsic proteins like spectrin. Further analysis of labeled Band 3 by treatment with chymotrypsin indicated that the labeling was restricted to the membrane spanning CH-17 and CH-35 fragments. No labeling of the cytoplasmic fragment of Band 3 could be observed. 2-[3H]Diazofluorene should prove useful for studying integral membrane proteins and their membrane-spanning regions.  相似文献   

14.
A multipurpose receptor akin to the "electronic nose" was composed of coumarin-labeled mutants of human glutathione transferase A1. We have previously constructed a kit for site-specific modification of a lysine residue (A216K) using a thiol ester of glutathione (GSC-Cou bio) as a modifying reagent. In the present investigation, we scrambled the hydrophobic binding site (H-site) of the protein scaffold through mutations at position M208 via random mutagenesis and isolated a representative library of 11 A216K/M208X mutants. All of the double mutants could be site-specifically labeled to form the K216 Cou conjugates. The labeled proteins responded to the addition of different analytes with signature changes in their fluorescence spectra resulting in a matrix of 96 data points per analyte. Ligands as diverse as n-valeric acid, fumaric acid monoethyl ester, lithocholic acid, 1-chloro-2,4-dinitrobenzene (CDNB), glutathione (GSH), S-methyl-GSH, S-hexyl-GSH, and GS-DNB all gave rise to signals that potentially can be interpreted through pattern recognition. The measured K d values range from low micromolar to low millimolar. The cysteine residue C112 was used to anchor the coumarin-labeled protein to a PEG-based hydrogel chip in order to develop surface-based biosensing systems. We have thus initiated the development of a multipurpose, artificial receptor composed of an array of promiscuous proteins where detection of the analyte occurs through pattern recognition of fluorescence signals. In this system, many relatively poor binders each contribute to detailed readout in a truly egalitarian fashion.  相似文献   

15.
Neuraminidase (NA) mutations conferring resistance to NA inhibitors (NAIs) generally compromise the fitness of influenza viruses. The only NAI-resistant virus that widely spread in the population, the A/Brisbane/59/2007 (H1N1) strain, contained permissive mutations that restored the detrimental effect caused by the H275Y change. Computational analysis predicted other permissive NA mutations for A(H1N1)pdm09 viruses. Here, we investigated the effect of T289M and N369K mutations on the viral fitness of the A(H1N1)pdm09 H275Y variant. Recombinant wild-type (WT) A(H1N1)pdm09 and the H275Y, H275Y/T289M, H275Y/N369K, and H275Y/V241I/N369K (a natural variant) NA mutants were generated by reverse genetics. Replication kinetics were performed by using ST6GalI-MDCK cells. Virulence was assessed in C57BL/6 mice, and contact transmission was evaluated in ferrets. The H275Y mutation significantly reduced viral titers during the first 12 to 36 h postinfection (p.i.) in vitro. Nevertheless, the WT and H275Y viruses induced comparable mortality rates, weight loss, and lung titers in mice. The T289M mutation eliminated the detrimental effect caused by the H275Y change in vitro while causing greater weight loss and mortality in mice, with significantly higher lung viral titers on days 3 and 6 p.i. than with the H275Y mutant. In index ferrets, the WT, H275Y, H275Y/T289M, and H275Y/V241I/N369K recombinants induced comparable fever, weight loss, and nasal wash viral titers. All tested viruses were transmitted at comparable rates in contact ferrets, with the H275Y/V241I/N369K recombinant demonstrating higher nasal wash viral titers than the H275Y mutant. Permissive mutations may enhance the fitness of A(H1N1)pdm09 H275Y viruses in vitro and in vivo. The emergence of such variants should be carefully monitored.  相似文献   

16.
Abed Y  Pizzorno A  Bouhy X  Boivin G 《PLoS pathogens》2011,7(12):e1002431
Neuraminidase (NA) mutations conferring resistance to NA inhibitors were believed to compromise influenza virus fitness. Unexpectedly, an oseltamivir-resistant A/Brisbane/59/2007 (Bris07)-like H1N1 H275Y NA variant emerged in 2007 and completely replaced the wild-type (WT) strain in 2008-2009. The NA of such variant contained additional NA changes (R222Q, V234M and D344N) that potentially counteracted the detrimental effect of the H275Y mutation on viral fitness. Here, we rescued a recombinant Bris07-like WT virus and 4 NA mutants/revertants (H275Y, H275Y/Q222R, H275Y/M234V and H275Y/N344D) and characterized them in vitro and in ferrets. A fluorometric-based NA assay was used to determine Vmax and Km values. Replicative capacities were evaluated by yield assays in ST6Gal1-MDCK cells. Recombinant NA proteins were expressed in 293T cells and surface NA activity was determined. Infectivity and contact transmission experiments were evaluated for the WT, H275Y and H275Y/Q222R recombinants in ferrets. The H275Y mutation did not significantly alter Km and Vmax values compared to WT. The H275Y/N344D mutant had a reduced affinity (Km of 50 vs 12 μM) whereas the H275Y/M234V mutant had a reduced activity (22 vs 28 U/sec). In contrast, the H275Y/Q222R mutant showed a significant decrease of both affinity (40 μM) and activity (7 U/sec). The WT, H275Y, H275Y/M234V and H275Y/N344D recombinants had comparable replicative capacities contrasting with H275Y/Q222R mutant whose viral titers were significantly reduced. All studied mutations reduced the cell surface NA activity compared to WT with the maximum reduction being obtained for the H275Y/Q222R mutant. Comparable infectivity and transmissibility were seen between the WT and the H275Y mutant in ferrets whereas the H275Y/Q222R mutant was associated with significantly lower lung viral titers. In conclusion, the Q222R reversion mutation compromised Bris07-like H1N1 virus in vitro and in vivo. Thus, the R222Q NA mutation present in the WT virus may have facilitated the emergence of NAI-resistant Bris07 variants.  相似文献   

17.
Helix 9, the major structural element in the C-terminal region of class Alpha glutathione transferases, forms part of the active site of these enzymes where its dynamic properties modulate both catalytic and ligandin functions. A conserved aspartic acid N-capping motif for helix 9 was identified by sequence alignments of the C-terminal regions of class Alpha glutathione S-transferases (GSTs) and an analysis by the helix-coil algorithm AGADIR. The contribution of the N-capping motif to the stability and dynamics of the region was investigated by replacing the N-cap residue Asp-209 with a glycine in human glutathione S-transferase A1-1 (hGST A1-1) and in a peptide corresponding to its C-terminal region. Far-UV circular dichroism and AGADIR analyses indicate that, in the absence of tertiary interactions, the wild-type peptide displays a low intrinsic tendency to form a helix and that this tendency is reduced significantly by the Asp-to-Gly mutation. Disruption of the N-capping motif of helix 9 in hGST A1-1 alters the conformational dynamics of the C-terminal region and, consequently, the features of the H-site to which hydrophobic substrates (e.g. 1-chloro-2,4-dinitrobenzene (CDNB)) and nonsubstrates (e.g. 8-anilino-1-naphthalene sulfonate (ANS)) bind. Isothermal calorimetric and fluorescence data for complex formation between ANS and protein suggest that the D209G-induced perturbation in the C-terminal region prevents normal ligand-induced localization of the region at the active site, resulting in a less hydrophobic and more solvent-exposed H-site. Therefore, the catalytic efficiency of the enzyme with CDNB is diminished due to a lowered affinity for the electrophilic substrate and a lower stabilization of the transition state.  相似文献   

18.
The glutathione S-transferase enzymes (GSTs) have a tyrosine or serine residue at their active site that hydrogen bonds to and stabilizes the thiolate anion of glutathione, GS(-). The importance of this hydrogen bond is obvious, in light of the enhanced nucleophilicity of GS(-) versus the protonated thiol. Several A-class GSTs contain a C-terminal segment that undergoes a ligand-dependent local folding reaction. Here, we demonstrate the effects of the Y9F substitution on binding affinity for glutathione conjugates and on rates of the order-disorder transition of the C terminus in rat GST A1-1. The equilibrium binding affinity of the glutathione conjugate, GS-NBD (NBD-Cl, 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole), was decreased from 4.09 microm to 0.641 microm upon substitution of Tyr-9 with Phe. This result was supported by isothermal titration calorimetry, with K(d) values of 1.51 microm and 0.391 microm for wild type and Y9F, respectively. The increase in binding affinity for the mutant is associated with dramatic decreases in rates for the C-terminal order-disorder transition, based on a stopped-flow kinetic analysis. The same effects were observed, qualitatively, for a second GSH conjugate, GS-ethacrynic acid. Apparently, the phenolic hydroxyl group of Tyr-9 is critical for orchestrating C-terminal dynamics and efficient product release, in addition to its role in lowering the pK(a) of GSH.  相似文献   

19.
Previously, we discovered that human glutathione transferases (hGSTs) from the alpha class can be rapidly and quantitatively modified on a single tyrosine residue (Y9) using thioesters of glutathione (GS-thioesters) as acylating reagents. The current work was aimed at exploring the potential of this site-directed acylation using a combinatorial approach, and for this purpose a panel of 17 GS-thioesters were synthesized in parallel and used in screening experiments with the isoforms hGSTs A1-1, A2-2, A3-3, and A4-4. Through analytical HPLC and MALDI-MS experiments, we found that between 70 and 80% of the reagents are accepted and this is thus a very versatile reaction. The range of ligands that can be used to covalently reprogram these proteins is now expanded to include functionalities such as fluorescent groups, a photochemical probe, and an aldehyde as a handle for further chemical derivatization. This site-specific modification reaction thus allows us to create novel functional proteins with a great variety of artificial chemical groups in order to, for example, specifically tag GSTs in biological samples or create novel enzymatic function using appropriate GS-thioesters.  相似文献   

20.
A universally applicable labelling and purification process was established to prepare biologically active proteins with a stoichiometric 1:1 ratio of attached dye-label. The dye-label is linked to a specific DNA sequence, which acts as a barcode-like tag for affinity purification. The DNA-dye tag is covalently bound to the target protein, which is present in excess to assure the binding of not more than one dye per molecule. Affinity purification occurs at magnetic beads that are functionalized with oligonucleotides that are complementary to the DNA-tag of the labelled proteins but for one or two mismatches. Washing removes all unbound, unlabelled molecules. The labelled protein is subsequently released by the addition of a fully complementary oligonucleotide. This process allows a gentle purification of a protein fraction that has exactly one label attached to each molecule under conditions that preserve protein structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号