首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hosoya K  Asaba H  Terasaki T 《Life sciences》2000,67(22):2699-2711
Efflux transport of estrogens such as estrone-3-sulfate (E1S), and estrone (E1) across the blood-brain barrier (BBB) was evaluated using the Brain Efflux Index (BEI) method. The apparent BBB efflux rate constant (Keff) of [3H]E1S, and [3H]E1 was 6.63 x 10(-2) +/- 0.77 x 10(-2) min(-1), and 6.91 x 10(-2) +/- 1.23 x 10(-2) min(-1), respectively. The efflux transport of [3H]E1S from brain across the BBB was a saturable process with Michaelis constant (Km) of 96.0 +/- 34.4 microM and 93.4 +/- 22.0 microM estimated by two different methods. By determining [3H]E1S metabolites using high performance liquid chromatography (HPLC) after intracerebral injection, significant amounts of [3H]E1S were found in the jugular venous plasma, providing direct evidence that most of [3H]E1S is transported from brain across the BBB in intact form. To compare the apparent efflux clearance across the BBB of E1S with that of E1, the brain distribution volume of E1S and E1 was estimated using the brain slice uptake method. The apparent efflux clearance of [3H]E1S was determined to be 74.9 +/- 3.8 microl/(min x g brain) due to the distribution volume of 1.13 +/- 0.06 ml/g brain. By contrast, the apparent efflux clearance of E1 was more than 227 +/- 3 microl/(min x g brain), since the distribution volume of [3H]E1 at 60 min was 3.28 +/- 0.13 ml/g. The E1S efflux transport process was inhibited by more than 40% by coadministration of bile acids (taurocholate, and cholate), and organic anions (sulfobromophthalein, and probenecid), whereas other organic anions did not affect the E1S efflux transport. The [3H]E1S efflux was significantly reduced by 48.6% after preadministration of 5 mM dehydroepiandrosterone sulfate. These results suggest that E1S is transported from brain to the circulating blood across the BBB via a carrier-mediated efflux transport system.  相似文献   

2.
The blood-brain barrier (BBB) efflux transport of [(14)C] adenosine was studied using the brain efflux index (BEI) technique. BEI increased linearly over the first 2 min after injection, with deviation from linearity thereafter; 90.12 +/- 1.5% of the injected [(14)C] radioactivity remained within the brain after 20 min. The remaining tracer appears to be mainly intracellular, trapped by phosphorylation, as an almost linear increase of BEI over 20 min was observed after intracerebral injection of [(14)C] adenosine together with 5-iodo tubercidin. The BBB efflux clearance of [(14)C] radioactivity was estimated to be 27.62 +/- 5.2 micro L/min/g, almost threefold higher than the BBB influx clearance estimated by the brain uptake index technique. High-performance liquid chromatography (HPLC) analysis of blood plasma collected from the jugular vein after the intracerebral injection revealed metabolic breakdown of [(14)C] adenosine into nucleobases. The BBB efflux transport was saturable with apparent K(m) = 13.22 +/- 1.75 micro m and V(max) = 621.07 +/- 71.22 pmole/min/g, which indicated that BBB efflux in vivo is 6.2-12p mole/min/g, negligible when compared to the reported rate of adenosine uptake into neurones/glia. However, these kinetic parameters also suggest that under conditions of elevated ISF adenosine in hypoxia/ischaemia, BBB efflux transport could increase up to 25% of the uptake into neurones/glia and become an important mechanism to oppose the rise in ISF concentration. HPLC-fluorometry detected 93.6 +/- 5.25 nm of adenosine in rat plasma, which is 17- to 220-fold lower than the reported K(m) of adenosine BBB influx in rat. Together with the observed rapid degradation inside endothelial cells, this indicated negligible BBB influx of intact adenosine under resting conditions. Cross-inhibition studies showed that unlabelled inosine, adenine and hypoxanthine caused a decrease in BBB efflux of [(14)C] radioactivity in a concentration-dependent manner, with K(i) of 16.7 +/- 4.88, 65.1 +/- 14.1 and 71.1 +/- 16.9 micro m, respectively. This could be due to either competition of unlabelled molecules with [(14)C] adenosine or competition with its metabolites hypoxanthine and adenine for the same transport sites.  相似文献   

3.
We have investigated the transport characteristics of dehydroepiandrosterone sulfate (DHEAS), a neuroactive steroid, at the blood-brain barrier (BBB) in a series of functional in vivo and in vitro studies. The apparent BBB efflux rate constant of [(3)H]DHEAS evaluated by the brain efflux index method was 2.68 x 10(-2) min(-1). DHEAS efflux transport was a saturable process with a Michaelis constant (K:(m)) of 32.6 microM: Significant amounts of [(3)H]DHEAS were determined in the jugular venous plasma by HPLC, providing direct evidence that most of the DHEAS is transported in intact form from brain to the circulating blood across the BBB. This efflux transport of [(3)H]DHEAS was significantly inhibited by common rat organic anion-transporting polypeptide (oatp) substrates such as taurocholate, cholate, sulfobromophthalein, and estrone-3-sulfate. Moreover, the apparent efflux clearance of [(3)H]DHEAS across the BBB (118 microl/min-g of brain) was 10.4-fold greater than its influx clearance estimated by the in situ brain perfusion technique (11.4 microl/min-g of brain), suggesting that DHEAS is predominantly transported from the brain to blood across the BBB. In cellular uptake studies using a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4), [(3)H]DHEAS uptake by TM-BBB4 cells exhibited a concentration dependence with a K:(m) of 34.4 microM: and was significantly inhibited by the oatp2-specific substrate digoxin. Conversely, [(3)H]digoxin uptake by TM-BBB4 cells was significantly inhibited by DHEAS. Moreover, the net uptake of [(3)H]DHEAS at 30 min was significantly increased under ATP-depleted conditions, suggesting that an energy-dependent efflux process may also be involved in TM-BBB4. RT-PCR and sequence analysis suggest that an oatp2 is expressed in TM-BBB4 cells. In conclusion, DHEAS efflux transport takes place across the BBB, and studies involving in vitro DHEAS uptake and RT-PCR suggest that there is oatp2-mediated DHEAS transport at the BBB.  相似文献   

4.
Nesfatin-1 crosses the blood-brain barrier without saturation   总被引:2,自引:0,他引:2  
Pan W  Hsuchou H  Kastin AJ 《Peptides》2007,28(11):2223-2228
Nesfatin-1 is an 82 amino acid peptide that suppresses food intake after intracerebroventricular injection. Nesfatin-1 and its precursor NUCB2 were identified by subtraction cloning in cell lines of both neuronal and adipocytic origin. This provides a strong basis for studies to determine how peripherally derived nesfatin-1 permeates the blood-brain barrier (BBB) to participate in its CNS actions and whether pharmacological delivery by the peripheral route is feasible. In this study, nesfatin-1 remained stable in blood at least 20 min after intravenous injection and permeated the BBB by a non-saturable mechanism. The influx rate of nesfatin-1 after intravenous delivery was 0.27+/-0.11 microl/g-min, and 0.3% of nesfatin-1 reached brain parenchyma 10 min after injection. The lack of saturation of influx was shown by use of excess unlabeled nesfatin-1 in multiple-time regression analysis, capillary depletion, and in situ brain perfusion. After intracerebroventricular injection, nesfatin-1 had a half-time disappearance of 23.8 min, which was not significantly different from that of albumin. This indicates that nesfatin-1 exited the brain by bulk absorption of cerebrospinal fluid without a specific efflux transport system. We conclude that the permeation of nesfatin-1 is a non-saturable process in either the blood-to-brain or brain-to-blood direction. Thus, the limited penetration under physiological conditions does not limit the pharmacological delivery of this satiety peptide as a potential therapeutic agent.  相似文献   

5.
Adrenomedullin (ADM) is present both in the periphery and brain. In addition to its peripheral effects, this peptide can exert central effects such as decreasing food ingestion. We used multiple-time regression analysis to determine that labeled ADM can cross from blood to brain with an apparent influx constant (K(I)) of 5.83 +/- 1.44 x 10(-4) ml/g-min, much faster than that of albumin, the vascular control. HPLC showed that almost all of the injected 125I-ADM in the brain was intact, and capillary depletion showed that it could reach the parenchyma of the brain. However, more 125I-ADM was reversibly associated with the brain vasculature than we have seen with any other peptide tested by these methods. After intracerebroventricular injection, 125I-ADM exited the brain with the bulk reabsorption of cerebrospinal fluid at an efflux rate comparable to that of albumin. Although there was no blood-to-brain saturation, in situ brain perfusion of 125I-ADM in blood-free physiological buffer showed self-inhibition by excess unlabeled ADM. This, along with evidence of the lack of protein binding shown by capillary zone electrophoresis, indicated competition for the binding site of ADM at the BBB. The low lipophilicity of ADM determined by the octanol/buffer partition coefficient was also consistent with the prominent reversible association of ADM with the vasculature of the BBB. This suggests a function for ADM at the cerebral blood vessels, such as altering cerebral blood flow and perfusion, without disruption of the BBB.  相似文献   

6.
In this study, GABA efflux transport from brain to blood was estimated by using the brain efflux index (BEI) method. [3H]GABA microinjected into parietal cortex area 2 (Par2) of the rat brain was eliminated from the brain with an apparent elimination half-life of 16.9 min. The blood-brain barrier (BBB) efflux clearance of [3H]GABA was at least 0.153 mL/min/g brain, which was calculated from the elimination rate constant (7.14 x 10(-2) x min(-1)) and the distribution volume in the brain (2.14 mL/g brain). Direct comparison of the apparent BBB influx clearance [3H]GABA (9.29 microL/min/g brain) and the apparent efflux clearance (153 microL/min/g brain) indicated that the efflux clearance was at least 16-fold greater than the influx clearance. In order to reduce the effect of metabolism in the neuronal cells following intracerebral microinjection, we determined the apparent efflux of [3H]GABA in the presence of nipecotic acid, a GABA transport inhibitor in parenchymal cells, using the BEI method. Under such conditions, the elimination of [3H]GABA across the BBB showed saturation and inhibition by probenecid in the presence of nipecotic acid. Furthermore, the uptake of [3H]GABA by MBEC4 cells was inhibited by GABA, taurine, beta-alanine and nipecotic acid in a concentration-dependent manner. It is likely that GABA inhibits the first step in the abluminal membrane uptake by brain endothelial cells, and that probenecid selectively inhibits the luminal membrane efflux transport process from the brain capillary endothelial cells based on the in vivo and in vitro evidence. The BBB acts as the efflux pump for GABA to reduce the brain interstitial fluid concentration.  相似文献   

7.
Pan W  Kastin AJ 《Life sciences》2001,68(24):2705-2714
The blood-brain barrier (BBB) regulates the amount of peripherally produced leptin reaching the brain. Knowing that the blood concentration of leptin has a circadian rhythm, we investigated whether the influx of leptin at the BBB followed the same pattern in three main sets of experiments. (a): The entry of 125I-leptin from blood to brain was measured in mice every 4 h, as indicated by the influx rate of 125I-leptin 1-10 min after an iv bolus injection. The blood concentration of endogenous leptin was measured at the same times. Blood leptin concentrations were higher at night and early morning (peak at 0800 h) and lower during the day (nadir at 1600 h). By contrast, the influx of 125I-leptin was fastest at 2000 h and slowest at 0400 h. Addition of unlabeled leptin (1 microg/mouse) significantly decreased the influx rate of 125I-leptin at all time points, indicating saturability of the transport system. The unlabeled leptin also abolished the diurnal variation of the influx of 125I-leptin. (b): The entry of 125I-leptin into spinal cord was faster than that into brain and showed a different diurnal pattern. The greatest influx occurred at 2400 h and the slowest at 0800 h. In spinal cord, unlike brain, unlabeled leptin (1 microg/mouse) neither inhibited the influx of 125I-leptin nor abolished the diurnal rhythm. (c): Higher concentrations of unlabeled leptin (5 microg/mouse) inhibited the uptake of 125I-leptin in spinal cord as well as in brain, but not in muscle. This experiment measured uptake 10 min after iv injection at 0600 h (beginning of the light cycle) and 1800 h (beginning of the dark cycle). Thus, influx of 125I-leptin into the CNS shows diurnal variation, indicating a circadian rhythm in the transport system at the BBB, saturation of the leptin transport system shows differences between the brain and spinal cord, and blood concentrations of leptin suggest that partial saturation of the transport system occurs at physiological concentrations of circulating leptin, contributing to the differing diurnal patterns in brain and spinal cord. Together, the results show that the BBB is actively involved in the neuroendocrine regulation of feeding behavior.  相似文献   

8.
Melanin-concentrating hormone (MCH), found both peripherally and centrally, is involved in food ingestion. Although its expression in brain is increased by fasting, it is not known whether it crosses the blood-brain barrier (BBB). Use of the sensitive method of multiple-time regression analysis has shown that almost all of the peptides and polypeptides tested cross the BBB at a rate faster than the vascular marker albumin. With this same method, however, we found that the 19-amino acid 125I-Phe13,Tyr19-MCH did not cross faster than 99mTc-albumin. Several mechanisms were excluded as possible explanations for the slow rate of influx. These included degradation, association with capillary endothelial cells, and transport from brain to blood. When Phe13,Tyr19-MCH was perfused in blood-free buffer, however, it entered the brain significantly faster than albumin. This suggested protein binding as an explanation for the slow rate of influx when the MCH was administered in blood. Protein binding was confirmed by capillary zone electrophoresis, which showed that almost all of the Phe13,Tyr19-MCH added to blood migrated with a large-molecular-weight substance. Sodium dodecyl sulfate-capillary gel electrophoresis of Phe13,Tyr19-MCH in buffer additionally showed that the MCH aggregated as a trimer, a factor not preventing its influx by blood-free perfusion. Thus, the results show that blood-borne Phe13,Tyr19-MCH does not significantly cross the BBB, probably because of its binding to serum proteins.  相似文献   

9.
Platelet-derived growth factor (PDGF) exerts neurotrophic and neuromodulatory effects on the CNS. To determine the permeability of the blood-brain barrier (BBB) to PDGF, we examined the blood-to-brain influx of radioactively labeled PDGF isoforms (PDGF-AA and PDGF-BB) by multiple-time regression analysis after intravenous (i.v.) injection and by in-situ perfusion, and also determined the physicochemical characteristics which affect their permeation across the BBB, including lipophilicity (measured by octanol:buffer partition coefficient), hydrogen bonding (measured by differences in octanol : buffer and isooctane : buffer partition coefficients), serum protein binding (measured by capillary electrophoresis), and stability of PDGF in blood 10 min after i.v. injection (measured by HPLC). After i.v. bolus injection, neither 125I-PDGF-AA nor 125I-PDGF-BB crossed the BBB, their influx rates being similar to that of the vascular marker 99mTc-albumin. 125I-PDGF-AA degraded significantly faster in blood than 125I-PDGF-BB. PDGF-BB, however, was completely bound to a large protein in serum whereas PDGF-AA showed no binding. Thus, degradation might explain the poor blood-to-brain influx of PDGF-AA, whereas protein binding could explain the poor influx of circulating PDGF-BB. Despite their lack of permeation in the intact mouse, both 125I-PDGF-AA and 125I-PDGF-BB entered the brain by perfusion in blood-free buffer, and the significantly faster rate of 125I-PDGF-AA than 125I-PDGF-BB may be explained by the lower hydrogen bonding potential of 125I-PDGF-AA. Thus, the lack of significant distribution of PDGF from blood to brain is not because of the intrinsic barrier function of the BBB but probably because of degradation and protein binding. Information from these studies could be useful in the design of analogues for delivery of PDGF as a therapeutic agent.  相似文献   

10.
Tryptophan is the only amino acid in the circulation that is bound by albumin, and previous studies have suggested that the brain tryptophan supply is a function of either the free or the albumin-bound pool of tryptophan in blood. Since the albumin molecule per se does not cross the brain capillary wall, i.e., the blood-brain barrier (BBB), the transport of tryptophan from the circulating albumin-bound pool may involve enhanced dissociation of tryptophan from the albumin binding sites within the cerebral microcirculation. This hypothesis was confirmed in the present studies wherein the dissociation constant (KaD) of albumin binding of tryptophan in the rat or rabbit brain microcirculation was measured in vivo. Brain extraction data for [14C]tryptophan determined with the carotid artery injection technique were fit to the Kety-Renkin-Crone equation modified for protein-bound solute. The KaD of albumin binding in the rat or rabbit brain microcirculation under pentobarbital anesthesia was 1.7 +/- 0.1 and 3.9 +/- 1.0 mM, respectively, as compared to the KD value measured in vitro with equilibrium dialysis, 0.13 +/- 0.03 mM. In contrast, the KaD value of albumin binding of tryptophan in vivo in the rabbit brain microcirculation was reduced by ether anesthesia to a value of 2.1 +/- 0.4 mM. This reduction in the KaD under ether anesthesia was associated with a 2.5-fold increase in cerebral blood flow. In addition, dialyzed rabbit serum caused a statistically significant inhibition in [14C]tryptophan influx during ether, but not pentobarbital, anesthesia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The purpose of this study was to clarify the mechanism of the blood-brain barrier (BBB) transport of H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA), which is a novel dermorphin analog with high affinity for the micro 1-opioid receptor. The in vivo BBB permeation influx rate of [125I]TAPA after an i.v. bolus injection (7.3 pmol/g body weight) into mice was estimated to be 0.265 +/- 0.025 microL/(min.g of brain). The influx rate of [125I]TAPA was reduced 70% by the coadministration of unlabeled TAPA (33 nmol/g of brain), suggesting the existence of a specific transport system for TAPA at the BBB. In order to elucidate the BBB transport mechanism of TAPA, a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4) was used as an in vitro model of the BBB. The acid-resistant binding of [125I]TAPA, which represents the internalization of the peptide into cells, was temperature- and concentration-dependent with a half-saturation constant of 10.0 +/- 1.7 microm. The acid-resistant binding of TAPA was significantly inhibited by 2,4-dinitrophenol, dansylcadaverine (an endocytosis inhibitor) and poly-l-lysine and protamine (polycations). These results suggest that TAPA is transported through the BBB by adsorptive-mediated endocytosis, which is triggered by binding of the peptide to negatively charged sites on the surface of brain capillary endothelial cells. Blood-brain barrier transport via adsorptive-mediated endocytosis plays a key role in the expression of the potent opioid activity of TAPA in the CNS.  相似文献   

12.
Cell-penetrating peptides (CPPs) are a group of peptides, which have the ability to cross cell membrane bilayers. CPPs themselves can exert biological activity and can be formed endogenously. Fragmentary studies demonstrate their ability to enhance transport of different cargoes across the blood-brain barrier (BBB). However, comparative, quantitative data on the BBB permeability of different CPPs are currently lacking. Therefore, the in vivo BBB transport characteristics of five chemically diverse CPPs, i.e. pVEC, SynB3, Tat 47–57, transportan 10 (TP10) and TP10-2, were determined. The results of the multiple time regression (MTR) analysis revealed that CPPs show divergent BBB influx properties: Tat 47–57, SynB3, and especially pVEC showed very high unidirectional influx rates of 4.73 μl/(g × min), 5.63 μl/(g × min) and 6.02 μl/(g × min), respectively, while the transportan analogs showed a negligible to low brain influx. Using capillary depletion, it was found that 80% of the influxed peptides effectively reached the brain parenchyma. Except for pVEC, all peptides showed a significant efflux out of the brain. Co-injection of pVEC with radioiodinated bovine serum albumin (BSA) did not enhance the brain influx of radiodionated BSA, indicating that pVEC does not itself significantly alter the BBB properties. A saturable mechanism could not be demonstrated by co-injecting an excess dose of non-radiolabeled CPP. No significant regional differences in brain influx were observed, with the exception for pVEC, for which the regional variations were only marginal. The observed BBB influx transport properties cannot be correlated with their cell-penetrating ability, and therefore, good CPP properties do not imply efficient brain influx.  相似文献   

13.
Prions are the infectious agents associated with transmissible spongiform encephalopathies and are composed mainly of a misfolded form of the endogenous prion protein. Prion protein must enter the brain to produce disease. Previous work has emphasized various mechanisms which partially bypass the blood-brain barrier (BBB). Here, we used the brain perfusion method to directly assess the ability of mouse scrapie protein (PrP(SC)) to cross the mouse BBB independent of the influences of neural pathways or circulating immune cells. We found that PrP(SC) oligomers rapidly crossed the BBB without disrupting it with a unidirectional influx rate of about 4.4microl/g-min. HPLC and capillary depletion confirmed that PrP(SC) crossed the entire width of the capillary wall to enter brain parenchyma. PrP(SC) also entered the cerebrospinal fluid (CSF) compartment. These results show that a prion protein can cross the intact BBB to enter both the parenchymal and CSF compartments of the brain.  相似文献   

14.
15.
Liu X  Chi OZ  Weiss HR 《Neurochemical research》2004,29(10):1857-1862
This investigation was performed to evaluate whether ACPD [(1S, 3R)-1-aminocyclopentane-1, 3-dicarboxylic acid], a metabotropic glutamate receptor agonist, would enhance the degree of increase in blood-brain barrier (BBB) permeability caused by focal cerebral ischemia. In this study, male Wistar rats were placed in control (n = 7) and ACPD (n = 7) groups under isoflurane anesthesia. Twenty minutes after middle cerebral artery (MCA) occlusion, patches of 10(-5) M ACPD or normal saline were placed on the ischemic cortex (IC) for a period of 40 min. Patches were changed every 10 min. One hour after MCA occlusion, BBB permeability was determined by measuring the transfer coefficient (Ki) of [alpha-14C] aminoisobutyric acid. There were no statistical differences in systemic blood pressures and heart rates between these groups. Blood gases were within normal limits. In the control group, the Ki of ischemic cortex (IC) was 2.1 times that of the contralateral cortex (CC) (3.7+/-0.9 vs. 1.8+/-0.3 microl/g/min). In the ACPD group, the Ki of the IC was 3.3 times that of the CC (5.0+/-0.7 vs. 1.5+/-0.4 microl/g/min). The increase in Ki of the ACPD group in the ischemic cortex was significantly greater than that in the control group. There was no significant difference in the Ki of the CC between these groups. Our data suggest that activation metabotropic glutamate receptors in the cortex can further augment the increase in BBB permeability caused by focal ischemia.  相似文献   

16.
W Pan  A J Kastin 《Peptides》1999,20(9):1091-1098
Epidermal growth factor (EGF) is a neurotrophic peptide produced both in the central nervous system and the periphery. Peripheral administration of EGF causes central nervous system-mediated changes. The central nervous system effects could be explained by the permeation of EGF across the blood-brain barrier (BBB). In this report, we show that 125I-EGF crosses the BBB rapidly, with an influx rate of about 2 microl/g x min, much faster than that for neurotrophins, cytokines, and most other bioactive peptides tested. The 125I-EGF was recovered intact in the brain 10 min after i.v. injection, and the majority of the peptide reaching the brain was present in the parenchyma. The fast rate of influx was significantly decreased by co-administration of nonradiolabeled EGF and transforming growth factor alpha, peptides that share the EGF receptor. By contrast, a monoclonal antibody against the EGF receptor failed to inhibit the entry of EGF. Furthermore, mice with a mutation in the EGF receptor had no significant decrease in the rapid rate of entry of 125I-EGF. By contrast to the fast rate of entry, 125I-EGF injected intracerebroventricularly (i.c.v.) only exited the brain with the bulk flow of cerebrospinal fluid. Thus, EGF has a saturable transport system at the BBB for rapid, unidirectional influx. The transport system does not require the entire EGF receptor and is susceptible to possible therapeutic manipulation.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to be a potent neuroprotective agent in global and focal ischemia. We demonstrated that PACAP could cross the blood-brain barrier (BBB) by a saturable transport system, and a systemic administration of PACAP reduced the infarct induced by unilateral middle cerebral artery occlusion (MCAO). Therefore, we studied whether this transport system is affected by MCAO in the rat. The entry of PACAP38 into the brain was compared in five groups: control, 4, 6, 24, and 48 h after MCAO. [(125)I]PACAP38 was injected intravenously and serum and various brain regions were collected 3 min later. The rate of entry into the brain of PACAP38 was also determined. We showed that PACAP entered the rat brain via a rapid transport system when the BBB is intact. After transient (2 h) unilateral MCAO, all regions of the brain, showed a selective increase in the passage of PACAP38 across the BBB after 4 h after the occlusion, which was not related to any generalized change in the permeability of the BBB, as measured with albumin. A significant decrease in the amount of PACAP38 entering the brain was observed in the 6- and 24-h groups, but it returned to the baseline level in the 48-h group. These results suggest that focal cerebral ischemia can selectively modify the passage of PACAP38 across the BBB, in both damaged and undamaged sides of the brain, and that these changes in influx are not solely due to the disruption of BBB. These findings imply the necessity of adjusting the dose of intravenously administered PACAP38 in order to maximize its therapeutic effect on the brain damage resulting from focal ischemia  相似文献   

18.
Kastin AJ  Akerstrom V 《Peptides》2000,21(5):679-682
Food deprivation and adrenalectomy are associated with low concentrations of leptin in blood and the absence of obesity. Because leptin is known to cross the blood-brain barrier (BBB) by a saturable transport system, we examined whether fasting and adrenalectomy (ADX) also act at the BBB. Multiple-time regression analysis showed that fasting, but not ADX, significantly decreased the entry of leptin into mouse brain. After 3 days of food deprivation, the influx of leptin became indistinguishable from that of the vascular control (albumin); 5 h of refeeding significantly reversed this reduced rate of influx. Thus, the results indicate that the BBB provides a dynamic site for the regulation of physiological processes involving leptin.  相似文献   

19.
We performed this study to determine whether gamma-aminobutyric acid (GABA(A)) receptor inhibition could reverse the effect of 17beta-estradiol on blood-brain barrier (BBB) disruption in focal cerebral ischemia. Young ovariectomized rats were implanted with a 500 microg 17beta-estradiol 21-day release pellet or with a vehicle pellet 21 days before the experiments. Forty-five minutes after middle cerebral artery (MCA) occlusion, half of each group was infused with bicuculline (a GABA(A) receptor antagonist) 1 mg/kg/min for 2 min followed by 0.1 mg/kg/min up to the end of experiments. The other half was infused with the same volume of normal saline. The transfer coefficient (Ki) of 14C-alpha-aminoisobutyric acid and the volume of 3H-dextran distribution (70,000 Daltons) were determined to measure the degree of BBB disruption one hour after MCA occlusion. In the control vehicle-treated animals, the Ki in the ischemic cortex (7.2 +/- 2.6 microl/g/min) was higher than in the contralateral cortex (2.5 +/- 1.4 microl/g/min). After bicuculline infusion, the Ki in the ischemic cortex increased (10.6 +/- 5.4 microl/g/min) although the increase was not statistically significant. In the 17beta-estradiol treated animals, the Ki in the ischemic cortex (3.8 +/- 1.6 microl/g/min) was lower than control vehicle-treated rats. With bicuculline infusion, the Ki in the ischemic cortex (14.5 +/- 6.8 microl/g/min) was markedly increased. In the non-ischemic cortex, there was no significant difference in Ki among the experimental groups. The volume of dextran distribution was not significantly different between the experimental groups in the ischemic or non-ischemic cortex. Our data suggests that part of the reason for the decreased BBB disruption in the focal ischemic area after 17beta-estradiol treatment could be due to the interaction between GABA(A) receptors and 17beta-estradiol.  相似文献   

20.
Hypertension is closely associated with vascular endothelial dysfunction. The aim of this study was to investigate the effects of Angiotensin II (ANG II) receptor antagonist losartan on the blood-brain barrier (BBB) permeability in L-NAME-induced hypertension and/or in ANG II-induced acute hypertension in normotensive and hypertensive rats. Systolic blood pressure was measured by tail cuff method before, during and following L-NAME treatment (1 g/L). Losartan (3 mg/kg) was given to the animal for five days. Acute hypertension was induced by ANG II (60 microg/kg). Arterial blood pressure was directly measured on the day of the experiment. BBB disruption was quantified according to the extravasation of the albumin-bound Evans blue dye. Losartan significantly reduced the mean arterial blood pressure from 169 +/- 3.9 mmHg to 82 +/- 2.9 mmHg in L-NAME and from 171 +/- 2.9 mmHg to 84 +/- 2.9 in L-NAME plus losartan plus ANG II groups (p < 0.05). The content of Evans blue dye in the cerebral cortex significantly increased in L-NAME (p < 0.01). Moreover, the content of Evans blue dye markedly increased in the cerebellum (p < 0.001) and slightly increased in diencephalon region (p < 0.05) in L-NAME plus ANG II. Losartan reduced the increased BBB permeability to Evans blue dye in L-NAME (p < 0.01) and L-NAME plus ANG II (p < 0.001). These results indicate that L-NAME and L-NAME plus ANG II both lead to an increase in microvascular Evans blue dye efflux to brain, and losartan treatment attenuates this protein-bound dye transport into brain tissue presumably due to its protective effect on endothelial cells of brain vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号