首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery that the potato cyst nematode Globodera pallida has a multipartite mitochondrial DNA (mtDNA) composed, at least in part, of six small circular mtDNAs (scmtDNAs) raised a number of questions concerning the population-level processes that might act on such a complex genome. Here we report our observations on the distribution of some scmtDNAs among a sample of European and South American G. pallida populations. The occurrence of sequence variants of scmtDNA IV in population P4A from South America, and that particular sequence variants are common to the individuals within a single cyst, is described. Evidence for recombination of sequence variants of scmtDNA IV in P4A is also reported. The mosaic structure of P4A scmtDNA IV sequences was revealed using several detection methods and recombination breakpoints were independently detected by maximum likelihood and Bayesian MCMC methods. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. [Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

2.
Evidence suggests that the mitochondrial (mt)DNA of anthozoans is evolving at a slower tempo than their nuclear DNA; however, parallel surveys of nuclear and mitochondrial variations and calibrated rates of both synonymous and nonsynonymous substitutions across taxa are needed in order to support this scenario. We examined species of the scleractinian coral genus Acropora, including previously unstudied species, for molecular variations in protein-coding genes and noncoding regions of both nuclear and mt genomes. DNA sequences of a calmodulin (CaM)-encoding gene region containing three exons, two introns and a 411-bp mt intergenic spacer (IGS) spanning the cytochrome b (cytb) and NADH 2 genes, were obtained from 49 Acropora species. The molecular evolutionary rates of coding and noncoding regions in nuclear and mt genomes were compared in conjunction with published data, including mt cytochrome b, the control region, and nuclear Pax-C introns. Direct sequencing of the mtIGS revealed an average interspecific variation comparable to that seen in published data for mt cytb. The average interspecific variation of the nuclear genome was two to five times greater than that of the mt genome. Based on the calibration of the closure of Panama Isthmus (3.0 mya) and closure of the Tethy Seaway (12 mya), synonymous substitution rates ranged from 0.367% to 1.467% Ma−1 for nuclear CaM, which is about 4.8 times faster than those of mt cytb (0.076–0.303% Ma−1). This is similar to the findings in plant genomes that the nuclear genome is evolving at least five times faster than those of mitochondrial counterparts. I-Ping Chen and Chung-Yu Tang, co-first author (equal contribution)  相似文献   

3.
Triant DA  DeWoody JA 《Genetica》2008,132(1):21-33
Nuclear sequences of mitochondrial origin (numts) are common among animals and plants. The mechanism(s) by which numts transfer from the mitochondrion to the nucleus is uncertain, but their insertions may be mediated in part by chromosomal repair mechanisms. If so, then lineages where chromosomal rearrangements are common should be good models for the study of numt evolution. Arvicoline rodents are known for their karyotypic plasticity and numt pseudogenes have been discovered in this group. Here, we characterize a 4 kb numt pseudogene in the arvicoline vole Microtus rossiaemeridionalis. This sequence is among the largest numts described for a mammal lacking a completely sequenced genome. It encompasses three protein-coding and six tRNA pseudogenes that span ∼25% of the entire mammalian mitochondrial genome. It is bordered by a dinucleotide microsatellite repeat and contains four transposable elements within its sequence and flanking regions. To determine the phylogenetic distribution of this numt among the arvicolines, we characterized one of the mitochondrial pseudogenes (cytochrome b) in 21 additional arvicoline species. Average rates of nucleotide substitution in this arvicoline pseudogene are estimated as 2.3 × 10−8 substitutions/per site/per year. Furthermore, we performed comparative analyses among all species to estimate the age of this mitochondrial transfer at nearly 4 MYA, predating the origin of most arvicolines. All sequences generated in this study have been deposited within the GenBank database.  相似文献   

4.
Microhabitat selection and seasonal activity of the snake-eyed skink, Ablephaus kitaibelii fitzingeri, are compared to the two lacertid lizards (Lacerta viridis and Podarcis muralis) that co-occur in many of its habitats. The food composition of A. k. fitzingeri is also described. Significant differences in microhabitat selection and seasonal activity among the three species were found. The snake-eyed skink was associated with open grasslands, and with a low level of scrub, bare soil and rock cover. The microhabitat preference of L. viridis was quite similar to that of the skink, but with a higher preference for scrub. P. muralis occurred in places with greater rock and bare soil cover, and more scrub than A. k. fitzingeri. Activity of the snake-eyed skink decreased dramatically in summer, probably because of the reduced thermal inertia originating from the extremely small size of this species, but its seasonal activity overlapped with those of the lacertids. Stomach content analysis of the snake-eyed skink suggests that it is a generalist predator of small, mainly flightless arthropod prey. Competition with juvenile lacertids and predation by adult L. viridis are conceivable for the snake-eyed skink.  相似文献   

5.
The major histocompatibility complex (MHC) class I region of teleosts harbors a tight cluster of the class IA genes and several other genes directly involved in class I antigen presentation. Moreover, the dichotomous haplotypic lineages (termed d- and N- lineages) of the proteasome subunit beta genes, PSMB8 and PSMB10, are present in this region of the medaka, Oryzias latipes. To understand the evolution of the Oryzias MHC class I region at the nucleotide sequence level, we analyzed bacterial artificial chromosome clones covering the MHC class I region containing the d- lineage of Oryzias luzonensis and the d- and N- lineages of Oryzias dancena. Comparison among these three elucidated sequences and the published sequences of the d- and N- lineages of O. latipes indicated that the order and orientation of the encoded genes were completely conserved among these five genomic regions, except for the class IA genes, which showed species-specific variation in copy number. The PSMB8 and PSMB10 genes showed trans-species dimorphism. The remaining regions flanking the PSMB10, PSMB8, and class IA genes showed high degrees of sequence conservation at interspecies as well as intraspecies levels. Thus, the three independent evolutionary patterns under apparently distinctive selective pressures are recognized in the Oryzias MHC class I region. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Although the molecular data currently used for identifying dinoflagellates are generally limited to nuclear ribosomal RNA genes, some dinoflagellates cannot be identified by their gene sequence or morphotype, suggesting that additional effective molecular makers are required. We report here a novel species-specific marker on the mitochondrial (mt) genome of dinoflagellates belonging to six Alexandrium spp., namely, A. tamarense, A. catenella, A. tamiyavanichii, A. affine, A. hiranoi, and A. pseudogonyaulax. This new mt marker was able to clearly differentiate these six species. PCR analysis using a primer set for the A. tamarense-specific sequence confirmed that this sequence is conserved in A. tamarense strains but not in other dinoflagellate species. We also sequenced the mt genome containing the developed molecular marker using a single cell from a field sample, which suggests that this marker is a powerful tool for identifying unculturable dinoflagellates. The sequenced molecular region was also used to identify Alexandrium-like cells isolated from environmental seawater as A. tamarense and A. affine.  相似文献   

7.
We determined the complete sequence of the mitochondrial DNA of the entomopathogenic nematode Steinernema carpocapsae and analyzed its structure and composition as well as the secondary structures predicted for its tRNAs and rRNAs. Almost the complete genome has been amplified in one fragment with long PCR and sequenced using a shotgun strategy. The 13,925-bp genome contains genes for 2 rRNAs, 22 tRNAs, and 12 proteins and lacks an ORF encoding ATPase subunit 8. Four initiation codons were inferred, TTT, TTA, ATA, and ATT, most of the genes ended with TAA or TAG, and only two had a T as an incomplete stop codon. All predicted tRNAs showed the nonconventional secondary structure typical of Secernentea. Although we were able to fold the sequences of trnN, trnD, and trnC into more conventional cloverleaf structures after adding adjacent nucleotides, northern blot experiments showed that the nonstandard tRNAs are actually expressed. Phylogenetic and comparative analyses showed that the mitochondrial genome of S. carpocapsae is more closely related to the genomes of A. suum and C. elegans than to that of Strongyloides stercoralis. This finding does not support the phylogeny based on nuclear small subunit ribosomal DNA sequences previously published. This discrepancy may result from differential reproductive strategies and/or differential selective pressure acting on nuclear and mitochondrial genes. The distinctive characteristics observed among mitochondrial genomes of Secernentea may have arisen to counteract the deleterious effects of Muller’s ratchet, which is probably enhanced by the reproductive strategies and selective pressures referred to above. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

8.
The complete nucleotide sequence of the urochordate Ciona savignyi (Ascidiacea, Enterogona) mitochondrial (mt) genome (14,737 bp) was determined. The Ciona mt genome does not encode a gene for ATP synthetase subunit 8 but encodes an additional tRNAGly gene (anticodon UCU), as is the case in another urochordate, Halocynthia roretzi (Ascidiacea, Pleurogona), mt genome. In addition, the Ciona mt genome encodes two tRNAMet genes; anticodon CAT and anticodon TAT. The tRNACys gene is thought to lack base pairs at the D-stem. Thus, the Ciona mt genome encodes 12 protein, 2 rRNA, and 24 tRNA genes. The gene arrangement of the Ciona mt genome differs greatly from those of any other metazoan mt genomes reported to date. Only three gene boundaries are shared between the Halocynthia and the Ciona mt genomes. Molecular phylogenetic analyses based on amino acid sequences of mt protein genes failed to demonstrate the monophyly of the chordates.  相似文献   

9.
the entire mitochondrial genome (mt genome) of the unicellular green alga Platymonas subcordiformis (synonym Tetraselmis subcordiformis; Prasinophyceae) was cloned and a physical map for the four restriction enzymes Hind III, Eco RI, Bgl II and Xba I was constructed. The mt genome of P. subcordiformis is a 42.8 kb circular molecule, coding for at least 23 genes. Hybridization and sequence analysis revealed the presence of a ca. 1.5 kb inverted repeat on the mt genome of P. subcordiformis. Phylogenetic analyses based on sequences of several coxI genes were carried out. Our data indicate that mitochondria from P. subcordiformis and from land plants form a natural, monophyletic group.  相似文献   

10.
The dice snake, Natrix tessellata (Laurenti, 1768), is a suitable study organism to address questions of Eurasian phylogeography due to its wide Palearctic distribution. We analysed complete mitochondrial cytochrome b sequences and nuclear ISSR-PCR fingerprints of more than 300 specimens representing nearly the entire geographic range. Nine major mitochondrial lineages were discovered based on mtDNA sequences. The three most basal lineages comprised populations from Iran, Jordan–Egypt, and Greece, respectively. Other lineages were associated with samples from the Turkish peninsula, the Caucasus, the Aral Sea, and eastern Kazakhstan. A sister-group relationship was found between two lineages from Crete and the European mainland. Assuming an evolutionary rate of 1.35% sequence divergence per million years, among-lineage p-distances of 1.7–8.4% suggest that intraspecific differentiation might date back as far as the Miocene/Pliocene transition 5–6 million years ago. The pattern of genetic differentiation in mitochondrial phylogeny with regard to Asia Minor and the region of the Aral Sea was not congruent with the results of the nuclear ISSR-PCR analyses, and suggests admixing within some mtDNA clades at contact zones. The taxonomic implications of the high intraspecific variation in the dice snake are discussed.  相似文献   

11.
The Western capercaillie (Tetrao urogallus) is a keystone species of Palearctic boreal and altitude coniferous forests. With the increase of mountain leisure activities and habitat loss, populations are declining in most mountain ranges in Western Europe. Recent work has shown that the populations from the Pyrenees and Cantabrian Mountains survived a severe bottleneck during the 19th century, and are still considered as threatened due to habitat fragmentation and isolation with other populations. We present an extensive phylogeographic study based on mitochondrial DNA sequence (control region) extracted non-invasively from faeces collected throughout the species range (from western European mountains to central and eastern Europe, Fenno-Scandia, Russia and Siberia). We also compared our results with DNA sequences of closely related black-billed capercaillie (T. parvirostris). We found that populations from Pyrenees and Cantabrians are closely related but are different from all other capercaillie populations that form a homogenous clade. Therefore, we consider that these South-Western populations should be considered as forming an Evolutionary Significant Unit that needs an appropriate management at a local scale. We also discuss the possible locations of glacial refugia and subsequent colonisation routes in Eurasia, with a Western “aquitanus” lineage from Iberia and Balkans, and an Eastern “urogallus” lineage from Southern Asia. This work might have important implication for capercaillie conservation strategies to define important areas for conservation, and to prevent possible exchange or introductions of individuals originated from other lineages. Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

12.
The transfer and integration of tRNA genes from organellar genomes to the nuclear genome and between organellar genomes occur extensively in flowering plants. The routes of the genetic materials flowing from one genome to another are biased, limited largely by compatibility of DNA replication and repair systems differing among the organelles and nucleus. After thoroughly surveying the tRNA gene transfer among organellar genomes and the nuclear genome of a domesticated rice (Oryza sativa L. ssp. indica), we found that (i) 15 mitochondrial tRNA genes originate from the plastid; (ii) 43 and 80 nuclear tRNA genes are mitochondrion-like and plastid-like, respectively; and (iii) 32 nuclear tRNA genes have both mitochondrial and plastid counterparts. Besides the native (or genuine) tRNA gene sets, the nuclear genome contains organelle-like tRNA genes that make up a complete set of tRNA species capable of transferring all amino acids. More than 97% of these organelle-like nuclear tRNA genes flank organelle-like sequences over 20 bp. Nearly 40% of them colocalize with two or more other organelle-like tRNA genes. Twelve of the 15 plastid-like mitochondrial tRNA genes possess 5′- and 3′-flanking sequences over 20 bp, and they are highly similar to their plastid counterparts. Phylogenetic analyses of the migrated tRNA genes and their original copies suggest that intergenomic tRNA gene transfer is an ongoing process with noticeable discriminatory routes among genomes in flowering plants. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. David Guttman  相似文献   

13.
Here we present a screening method to evaluate the potential of genes to transfer aspects of apomixis into sexual crop plants. Based on the assumption that an apomictic progeny is an exact genetic replica of the mother plant we employed a set of single sequence length polymorphism (SSLP) markers to identify individuals displaying heterozygosity fixation in segregating sexual populations as an indication of rare apomictic events. Here we present the results of such a study using the Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 (AtSERK1) gene expressed under the control of the AtLTP1 promoter in sexual Arabidopsis plants. In one of the three tested F2 transgenic populations expressing the AtLTP1::AtSERK1 construct we observed two plants with heterozygosity maintenance for the full set of SSLP markers indicating a possible clonal inheritance. However, as their offspring revealed a close to binomial segregation for a number of heterozygous loci, it was concluded that these two putative apomictic plants either lost their clonal ability in the next generation or resulted from incidental recombination events displaying the genotype of the parent. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA‐originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last . A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein‐coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage.  相似文献   

15.
Using long-polymerase chain reaction (Long-PCR) method, we determined the complete nucleotide sequence of the mitochondrial genome (mitogenome) of Phthonandria atrilineata. The complete mtDNA from P. atrilineata was 15,499 base pairs in length and contained 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The P. atrilineata genes were in the same order and orientation as the completely sequenced mitogenomes of other lepidopteran species. The nucleotide composition of P. atrilineata mitogenome was biased toward A + T nucleotides (81.02%), and the 13 PCGs show different A + T contents that range from 73.25% (cox1) to 92.12% (atp8). Phthonandria had the canonical set of 22 tRNA genes, that fold in the typical cloverleaf structure described for metazoan mt tRNAs, with the unique exception of trnS(AGN). The phylogenetic relationships were reconstructed with the concatenated sequences of the 13 PCGs of the mitochondrial genome, which confirmed that P. atrilineata is most closely related to the superfamily Bombycoidea.  相似文献   

16.
We have analyzed nucleotide sequences of the mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 2 (nd2) genes to elucidate the phylogenetic status (genetic variation) of Canary Island populations of great spotted woodpeckers (Dendrocopos major) that are on the western fringe of the distribution range. Based on these two genes, differences are found between a clade from the Canaries and the rest of the range studied. No differences were observed within the two races found on this archipelago.  相似文献   

17.
18.
piggyBac is a short inverted-repeat-type DNA transposable element originally isolated from the genome of the moth Trichoplusia ni. It is currently the gene vector of choice for the transformation of various insect species. A few sequences with similarity to piggyBac have previously been identified from organisms such as humans ( Looper), the pufferfish Takifugu rubripes (Pigibaku), Xenopus (Tx), Daphnia (Pokey), and the Oriental fruit fly Bactrocera dorsalis. We have now identified 50 piggyBac-like sequences from publicly available genome sequences and expressed sequence tags (ESTs). This survey allows the first comparative examination of the distinctive piggyBac transposase, suggesting that it might contain a highly divergent DDD domain, comparable to the widespread DDE domain found in many DNA transposases and retroviral integrases which consists of two absolutely conserved aspartic acids separated by about 70 amino acids with a highly conserved glutamic acid about 35 amino acids further away. Many piggyBac-like sequences were found in the genomes of a phylogenetically diverse range of organisms including fungi, plants, insects, crustaceans, urochordates, amphibians, fishes and mammals. Also, several instances of "domestication" of the piggyBac transposase sequence by the host genome for cellular functions were identified. Novel members of the piggyBac family may be useful in genetic engineering of many organisms.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

19.
The (non-LTR) LINE and Ty3-gypsy-type LTR retrotransposon populations of three Vicia species that differ in genome size (Vicia faba, Vicia melanops and Vicia sativa) have been characterised. In each species the LINE retrotransposons comprise a complex, very heterogeneous set of sequences, while the Ty3-gypsy elements are much more homogeneous. Copy numbers of all three retrotransposon groups (Ty1-copia, Ty3-gypsy and LINE) in these species have been estimated by random genomic sequencing and Southern hybridisation analysis. The Ty3-gypsy elements are extremely numerous in all species, accounting for 18–35% of their genomes. The Ty1-copia group elements are somewhat less abundant and LINE elements are present in still lower amounts. Collectively, 20–45% of the genomes of these three Vicia species are comprised of retrotransposons. These data show that the three retrotransposon groups have proliferated to different extents in members of the Vicia genus and high proliferation has been associated with homogenisation of the retrotransposon population.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

20.
We have cloned the Aspergillus niger dapB gene. Analysis of its nucleotide sequence and the corresponding protein sequence indicates that the gene encodes a type IV dipeptidyl aminopeptidase (DPP IV). Based upon its deduced sequence we predict the presence of a transmembrane domain in the protein. Furthermore, dapB-overexpressing transformants display an increase in intracellular DPP IV activity. This is the first reported characterisation of a dipeptidyl aminopeptidase with a transmembrane domain from a filamentous fungus. Using the dapB sequence as a query, we were able to identify 14 DPP IV-encoding genes, and 12 additional DPPIV proteases in public genomic databases. Phylogenetic analysis reveals that in yeasts there are two clades of genes that encode DPP IV proteases with a transmembrane domain. In this study we demonstrate that, as in yeasts, two classes of DPP IV-encoding genes exist in filamentous fungi. However, only one of these codes for DPP IV proteases with a transmembrane domain. The second type present in filamentous fungi encodes extracellular DPP IV proteases. The dapB gene belongs to the first cluster. We propose that DapB plays a role in the proteolytic maturation of enzymes produced by A. niger.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号