首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keltjens  W.G.  van Beusichem  M.L. 《Plant and Soil》1998,203(1):119-126
Heavy metal contaminated soils often show increased levels of more than one metal, e.g. copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) or nickel (Ni). In case such soils are used for crop production, prediction of yield reduction or quality decline due to heavy metals in the soil is inadequate when based only on chemical soil analysis. The use of biomarkers such as phytochelatins (PC), non-protein thiols specifically induced in plants upon exposure to heavy metals, may be an additional tool or diagnostic criterion in heavy metal research and in practice. In the present work, Cu and Cd uptake and induction of PC synthesis are studied with hydroponically grown maize and wheat plants exposed to mixtures of the two metals. We observed a close positive relationship between the concentrations of Cd and PC in the plant shoot material. A decreased shoot concentration of Cd after addition of Cu, due to metal competition at common root absorption sites, coincided with lower shoot PC levels. Also differences in metal uptake and xylary metal transport among the two plant species were reflected in corresponding differences in PC concentration. The observed direct relationship between shoot PC concentration and the degree of metal-induced growth inhibition makes the use of PC promising for the purpose tested for.  相似文献   

2.
In the present study, nine native plant species were collected to determine their potential to clean up nine heavy metals from soil of a sewage sludge dump site. Almost all nine plant species grown at sewage sludge dump site showed multifold higher concentrations of heavy metals as compared to plants grown at the reference site. All the investigated species were characterized by a bioaccumulation factor (BF) > 1.0 for some heavy metals. BF was generally higher for Cd, followed by Pb, Co, Cr, Cu, Ni, Mn, Zn, and Fe. The translocation factor (TF) varied among plant species, and among heavy metals. For most studied heavy metals, TFs were <1.0. The present study proved that the concentrations of all heavy metals (except Cd, Co, and Pb) in most studied species were positively correlated with those in soil. Such correlations indicate that these species reflect the cumulative effects of environmental pollution from soil, and thereby suggesting their potential use in the biomonitoring of most heavy metals examined. In conclusion, all tissues of nine plant species could act as bioindicators, biomonitors, and remediates of most examined heavy metals. Moreover, Bassia indica, Solanum nigrum, and Pluchea dioscoridis are considered hyperaccumulators of Fe; Amaranthus viridis and Bassia indica are considered hyperaccumulators of Pb; and Portulaca oleracea is considered hyperaccumulator of Mn.  相似文献   

3.
Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya   总被引:3,自引:0,他引:3  
Most commonly used hyperaccumulator plants for phytoextraction of metals evolved on soils where moisture is limited throughout much of the year. As these plant species are commercialized for use, they are frequently moved from the point of evolution to locations where environmental conditions may be significantly different. Greatest among these potential differences is soil moisture. The objective of this study was therefore to determine whether these plants could grow in soils with much higher soil moisture and whether they would continue to hyperaccumulate metals as soils approach saturation. We examined extractable soil metal concentrations, plant growth, and metal accumulation for the Ni hyperaccumulators, Alyssum murale and Berkheya coddii and the Zn hyperaccumulators Thlaspi caerulescens cultivars AB300 and AB336. Non-hyperaccumulating control species for each were also examined. In general, extractable soil concentrations of Ni decreased with increasing soil moisture content. Few significant effects related to Zn extractability were observed for any of the soil moisture treatments. The biomass of all tested species was generally greater at higher soil moisture and inhibited at low soil moisture. Further, plants accumulated large amounts of metals from soil at higher soil moisture. Highest foliar concentrations of Zn or Ni were found at the two highest WHCs of 80 and 100%. These results show that hyperaccumulators grow well under conditions of high soil moisture content and that they continue to hyperaccumulate metals. Thus, growing Thlaspi, Alyssum, and Berkheya for commercial phytoextraction under nonnative conditions is appropriate and suggests that this technology may be applied to a wide and diverse range of soil types, climatic conditions, and irrigation regimes.  相似文献   

4.
The relationships between the concentrations of zinc, cadmium and lead in aquatic plants and the concentrations of these metals in the ambient water have been compared for three algae (Lemanea fluviatilis, Cladophora glomerata, Stigeoclonium tenue), one liverwort (Scapania undulata) and three mosses (Amblystegium riparium, Fontinalis antipyretica, Rhynchostegium riparioides). The data to establish these relationships are all based on our own studies, some published already, some here for the first time. They come from a wide range of streams and rivers in Belgium, France, Germany, Ireland, Italy and the U.K. There were significant bivariate positive relationships between concentrations of Zn, Cd and Pb in water and plant for all species except Cd and Pb in Stigeoclonium tenue. When relationships were compared using datasets with total or filtrable metals in water, most differences were slight. However there were marked differences both between species and between metals. Comparison for the seven species of Zn in the plant when aqueous Zn is 0.01 mg l–1, a concentration at which all seven were found, shows that the four bryophytes had the highest concentrations; however the two green algae had steeper slopes (representing change in concentration in plant in response to change in aqueous concentration). Lemanea fluviatilis had a slope closer to that of the bryophytes, but the concentration was about one order of magnitude lower. All seven species were found at a concentration of 0.01 mg l–1 Pb, and at this concentration there were almost two orders of magnitude difference between the species which accumulated the most (Scapania undulata) and the one which accumulated the least (Cladophora glomerata). The steepest slope was however shown by C. glomerata.When multiple stepwise regression was applied, the aqueous metal under consideration was the first variable extracted in only nine of the 21 regressions. However one of the other heavy metals (aqueous or accumulated) was extracted first in all but one of the other regressions, presumably because the occurrences of Zn, Cd and Pb were strongly cross-correlated. The principal non-heavy metal factor extracted for Zn and Cd, but not Pb, was aqueous Ca. The relevance of these results to the use of aquatic plants for monitoring heavy metals is discussed.  相似文献   

5.
Metallothioneins (MTs) are low-molecular-weight, cysteine-rich metal-binding proteins found in a wide variety of organisms including bacteria, fungi and all eukaryotic plant and animal species. MTs bind essential and non-essential heavy metals. In mammalian cells MT genes are highly inducible by many heavy metals including Zn, Cd, Hg, and Cu. Aquatic systems are contaminated by different pollutants, including metals, as a result of man's activities. Bivalve molluscs are known to accumulate high concentrations of heavy metals in their tissue and are widely used as bioindicators for pollution in marine and freshwater environments, with MTs frequently used as a valuable marker of metal contamination. We here describe the MT isoform gene expression patterns of marine and freshwater molluscs and fish species after Cd or Zn contamination. Contamination was carried out at a river site polluted by a zinc ore extraction plant or in the laboratory at low, environmentally relevant metal concentrations. A comparison for each species based on the accumulated MT protein levels often shows discrepancies between gene expression and protein level. In addition, several differences observed in the pattern of MT gene expression between mollusc and mammalian species enable us to discuss and challenge a model for the induction of MT gene expression.  相似文献   

6.
菰和菖蒲对重金属的胁迫反应及其富集能力   总被引:26,自引:3,他引:23  
通过盆栽实验研究了Cu—Zn—Ph-Cd复合污染条件下,菰和菖蒲的生长状况、生理特性及吸收和富集重金属的能力。结果表明,高浓度污染下菰和菖蒲不能存活;低、中浓度中菖蒲的生长受到抑制,菰各生长指标与对照相比差异不显著,表明菰对低、中浓度重金属的耐性强于菖蒲。随着污染浓度的增加,菰和菖蒲叶片叶绿索含量显著降低;菰叶绿素a/b值略有降低,菖蒲叶绿素a/b值显著降低;菰和菖蒲叶片脯氨酸含量、相对电导率显著升高,超氧化物歧化酶(SOD)、过氧化物酶(POD)活性在低浓度时升高,中浓度时降低。菰体内重金属含量为Zn〉Cu〉Pb〉Cd,菖蒲体内的含量为Cu〉Zn〉Pb〉Cd,且二者体内的重金属含量都随着污染浓度的增加而升高。菰和菖蒲对Cd的富集系数较大,地上部分(茎与叶)和地下部分(根与根状茎)均大于1;对Pb的富集系数较小,地上部分和地下部分均小于1。菰和菖蒲地下部分重金属含量均高于地上部分含量,二者根系对4种重金属都有较强的滞留效应,平均滞留率均大于50%。各处理中菰对重金属的吸收量均高于菖蒲。综合分析菰和菖蒲的生长、生理及富集重金属的能力,菰比菖蒲更适用于低、中浓度重金属污染水体的生态修复。  相似文献   

7.
Ninety soil samples, forty plant samples (Anabasis articulata), and twenty air samples were collected from the scrap yard of discarded vehicles near Zarqa city, Jordan. These samples were analyzed for heavy metals: Cd, Pb, Zn, Cu, Mn, Al, and Fe. Longitudinal and vertical profiles of soil samples were studied. Generally, the levels of all heavy metals studied in the scrap yard area were found to be higher than those of the control samples. The levels of heavy metals decreased with depth until reaching a constant value at 9 cm depth. The levels of heavy metals also decreased at distances farther away from the scrap yard area. A significant difference in heavy metal concentrations was found between washed and unwashed plant samples. On the other hand, no significant differences have been found between plant samples from inside and outside the scrap yard area. Air samples showed wide variations in heavy metal levels among the sampling sites. The enrichment factors for non-crustal elements such as Pb, Cd, Cu, and Zn, in both soil and particulate matter, were found to be more than 10, indicating anthropogenic sources such as dust, rust, and exhaust emissions from the scrap yard area, whereas the crustal elements such as Fe and Mn showed enrichment factors of less than 10.  相似文献   

8.
High concentrations of heavy metals have been shown to adversely affect the size, diversity, and activity of microbial populations in soil. The aim of this work was to determine how the diversity of arbuscular mycorrhizal (AM) fungi is affected by the addition of sewage-amended sludge containing heavy metals in a long-term experiment. Due to the reduced number of indigenous AM fungal (AMF) propagules in the experimental soils, several host plants with different life cycles were used to multiply indigenous fungi. Six AMF ecotypes were found in the experimental soils, showing consistent differences with regard to their tolerance to the presence of heavy metals. AMF ecotypes ranged from very sensitive to the presence of metals to relatively tolerant to high rates of heavy metals in soil. Total AMF spore numbers decreased with increasing amounts of heavy metals in the soil. However, species richness and diversity as measured by the Shannon-Wiener index increased in soils receiving intermediate rates of sludge contamination but decreased in soils receiving the highest rate of heavy-metal-contaminated sludge. Relative densities of most AMF species were also significantly influenced by soil treatments. Host plant species exerted a selective influence on AMF population size and diversity. We conclude based on the results of this study that size and diversity of AMF populations were modified in metal-polluted soils, even in those with metal concentrations that were below the upper limits accepted by the European Union for agricultural soils.  相似文献   

9.
This study determined rates of in situ fine root decomposition and changes in trace metals concentration during decomposition at sites in Sudbury, ON, and Rouyn-Noranda, QU, with elevated or background concentrations of Cu, Ni, Pb, and/or Zn in the soil, and correlated the depth gradients of Cu, Ni, Pb, and Zn for soils and roots at the same sites. Fine roots were extracted from soil cores within root traps several times over 12 months; biomass and metal concentrations were measured. Live roots were collected from 30-cm soil cores, separated into three depths. Elevated soil metal concentrations did not necessarily reduce fine root decomposition, and effects on decomposition were similar to those previously reported for surface foliar litter at the same sites. Decomposing roots at only the high metal sites demonstrated increased metal concentrations with time. Root tissue concentrations of Cu, Ni, and Zn, but not Pb, at lower soil depths were generally higher than expected from soil metal concentrations. This could be explained by reallocation of essential metals, although these metals were likely also more available for uptake at depth due to lower DOC concentrations. This study means that for risk assessment, separate determinations of altered decomposition for roots and leaf litter are likely not necessary for predicting ecosystem effects, a pragmatically useful conclusion given the labor intensity of the fine root studies. This study also suggests that for risk assessment of plant community exposure to metals, prediction of exposure to metals should probably consider soil layers that do not have substantially elevated metal concentrations, as their soil characteristics, or plant processes, may result in unexpected exposure.  相似文献   

10.
Hamon  R.E.  Holm  P.E.  Lorenz  S.E.  McGrath  S.P.  Christensen  T.H. 《Plant and Soil》1999,216(1-2):53-64
Uptake of metals by plants growing in sewage sludge-amended soils frequently exhibits a plateau response at high sludge loading rates associated with high total concentrations of metals in the soil. This type of response has generally been attributed to attenuation of metal bioavailability by increased sorption sites provided by the sludge constituents at the high sludge loading rates. We grew Raphanus sativus L. in a soil historically amended with sewage sludge at different rates and examined concentrations of Cd and Zn in the plants and in corresponding rhizosphere soil solution. Metal concentrations in the plants displayed a plateau response. However, concentrations of total or free metals in the soil solution did not display a similar plateau response, therefore the pre-requisite for determining that metal uptake by plants was limited by sludge chemistry was not met. It was concluded that plant physiological factors were responsible for the plateau in plant metal concentrations observed in this study. Examination of data by other authors suggests that a plateau response due to plant physiological factors has routinely been misinterpreted as being the result of only attenuation by sludge chemistry. The serious implications of an incorrect interpretation of the factors underlying a plateau response are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Summary Absorption and accumulation of alkali (Li, Na, K, Rb, Cs) and alkaline earth (Mg, Ca, Sr, Ba) metals were investigated as taxonomic characteristics (in 62 plant species). Leaf and soil samples were collected from 9 sites in temperature forest in Japan and the above mentioned elements were analyzed. Considerable differences were found among species in their ability to accumulate alkali and alkaline earth metals. Very high concentrations of Li (45 ppm, D.W.), K (37×103 ppm), Rb (159 ppm) and Cs (8.2 ppm) were detected inLastrea japonica which were about 412, 12, 27 and 6 times higher than those of the species with the lowest concentrations. Na content was high inAcer micranthum (358 ppm) which was 16 times higher than species with the lowest concentration. Other species containing high levels of alkali metals wereHydrangea macrophylla, Struthiopteris niponica, Clethra barbinervis. Mean discrimination ratio (D.R.) for all investigated plant species for Li, Na, Rb, and Cs to K were 1.7, 0.44, 0.9 and 1.8 respectively. High concentrations of alkaline earth metals Ca (36×103 ppm), Sr (345 ppm), and Ba (241 ppm) were found in the leaves ofHydrangea paniculata which were about 31, 84, and 72 times higher than those for the species with the lowest concentration. Mg was very high inStruthiopteris niponica (83×102 ppm). Other species with high concentrations of alkaline earth metals belonged to the genus Viburnum. Mean D.Rs. for Mg, Sr, and Bavs Ca were 1.0, 0.7 and 0.08. Principal component analysis of interrelationships between the mineral content in leaf tissues indicated that these elements could be classified into 2 groups with respect to their accumulation behavior in plants. The alkali metals K, Li, Rb, and Cs behaved similarly in their accumulation in leaves but Na behaved independently. Alkaline earth metals Ca, Mg, Sr, and Ba were also found to behave similarly in their accumulation. Factors scores of 1st and 2nd components revealed three groups of plant species: alkaliphilic, alkaline earthphilic, and neutral (non-accumulators).  相似文献   

12.
Absorption ability for heavy metals varies among plant species. This study is to evaluate the absorption characteristics of different plant species and planting patterns for heavy metals. Five plant species (tomato, maize, greengrocery, cabbage, and Japan clover herb) were cultivated in monoculture and in intercropping in soil contaminated with heavy metals (Cd, Pb, Cr, Cu, and Fe), to determine the absorption status. Tomato absorbs greater amounts of heavy metals (especially Cd). Furthermore, accumulation of heavy metals increased when tomato was intercropped with other plant species. Maize accumulates greater amounts of Cr, Cu, and Fe. The heavy metal concentrations were reduced when maize was intercropped. Cd and Pb accumulated more in roots of Japan Clover Herb, and the levels of all five heavy metals decreased when intercropped. Tomato intercropping is a feasible method for phytoremediation of heavy metal-contaminated soil, and maize intercropping is feasible for obtaining safe harvest which can be eaten securely.  相似文献   

13.
Comparison of Source Identification of Metals in Road-Dust and Soil   总被引:1,自引:0,他引:1  
Source identification of toxic metals is very critical for pollution prevention and human health protection. Many studies only use either road dust metal data or soil metal data to evaluate metal contamination and identify pollution sources, and this may lead to the exclusion of some important information. In this study, the differences of metal spatial distribution and source identification between road dust and associated soil in an industrial area were investigated.

Results indicate the metal concentrations in road dust were generally higher than those in soil. Based on the average concentrations, the order for dust metal concentrations was Fe>>Zn>>Pb>Cu>Cr>Ni. The order for soil metal concentrations was slightly different, namely Fe>>Zn>>Cu~Pb>Ni>Cr. The spatial distributions of metals in the road dust were very different from those in the soil, except for Fe. The GIS results indicate that elevated levels of Fe, Zn, and Pb were present in road dust near a steel plant. High concentrations of Cu, Cr, and Ni appeared at a road intersection. Elevated metal concentrations of Fe, Zn, Pb, Cu, and Cr were present in soil around the steel plant. A coal-fired power plant did not seem to be a significant metal source in this study. Significant correlations for dust metals imply that these were well mixed in the study area. The metal sources identified by PCA with soil metal data were obviously different from those identified with road dust metal data. When road dust metal data were used, the changes of PCA analyzed areas slightly influenced the source identification. The PCA results were obviously influenced by changes of analyzed areas when soil metal data were used.  相似文献   


14.
The potential of Eichornia crassipes to serve as a phytoremediation plant in the cleaning up of metals from contaminated coastal areas was evaluated in this study. Ten metals, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, V and Zn were assessed in water and the plant roots and shoots from the coastal area of Ondo State, Nigeria and the values were used to evaluate the enrichment factor (EF) and translocation factor (TF) in the plant. The critical concentrations of the metals were lower than those specified for hyperaccumulators thus classifying the plant as an accumulator but the EF and TF revealed that the plant accumulated toxic metals such as Cr, Cd, Pb and As both at the root and at the shoot in high degree, which indicates that the plant that forms a large biomass on the water surface and is not fed upon by animals can serve as a plant for both phytoextraction and rhizofiltration in phytoremediation technology.  相似文献   

15.
High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by most high biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine tetraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0.1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0.01, 0.05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.  相似文献   

16.
Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg?1, respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.  相似文献   

17.
It is known that vegetation plays an important role in the retention of heavy metals in salt marshes by taking up and accumulating the metals. In this study, we investigated whether arbuscular mycorrhizal fungi (AMF) increase Cd and Cu uptake and accumulation in the root system of the salt marsh species Aster tripolium L., and whether indigenous AMF isolated from polluted salt marshes have higher capacity to resist and alleviate metal stress in A. tripolium than isolates of the same species originated from non-polluted sites. Plants inoculated with Glomus geosporum, either isolated from a polluted salt marsh site (PL isolate) or from a non-polluted site (NP isolate), and non-mycorrhizal (NM) plants were compared in a pot experiment at four different Cd and Cu concentrations. Cd had no effect in root colonization, whereas high concentrations of Cu decreased colonization level in plants inoculated with the NP isolate. AM colonization did not increase plant dry weight or P concentration but influenced root Cd and Cu concentrations. Inoculation with PL and NP isolates enhanced root Cd and Cu concentrations, especially at highest metal addition levels, as compared to NM plants, without increasing shoot Cd and Cu concentrations. There was no evidence of intraspecific variation in the effects between AMF isolated from polluted and non-polluted sites, since there were no differences between plants inoculated with PL or NP isolate in any of the tested plant variables. The results of this study showed that AMF enhance metal accumulation in the root system of A. tripolium, suggesting a contribution of AMF to the sink of metals within vegetation in the salt marshes.  相似文献   

18.
Motor vehicles are now equipped with exhaust gas catalytic converters containing rare metals, such as palladium (Pd), platinum and rhodium, as catalytic active materials, leading to significantly increased emission of these metals. Compared with platinum and rhodium, low concentrations of Pd have been shown to have more serious effects on cells and organisms. In the present study, uptake of Pd by barley and behaviour of Pd nanoparticles in nutrient solutions used to grow plants were observed in order to develop a model of Pd exposure of plant systems. Pd determination was performed using a selective separation and pre-concentration procedure, which was further developed for this study, and coupled to graphite furnace atomic absorption spectrometry. The results show that uptake of Pd depends on Pd particle diameter. Compared to other toxic metals, like mercury, Pd causes stress effects in leaves at lower concentrations in nutrient solutions. Furthermore, Pd particles are dissolved at different rates, depending on size, in the nutrient solution during plant growth.  相似文献   

19.
The concentrations of polychlorinated biphenyls and 28 metals were determined in mussels from 32 stations in the southwestern Baltic Sea. Elevated levels of PCBs (up to 28 mg/kg lipids) were found in harbour areas. Increased amounts of some metal contaminants were found in three large areas. The discharge from a sewage plant is responsible for high residues at stations in the outlet of Kiel Fjord. Increased levels of heavy metals in the outer Flensburg Fjord and in the vicinity of Fehmarn Sound seem to be due to natural geological formations, as indicated by the occurrence of elements that usually are not found at high concentrations in anthropogenic wastewaters.  相似文献   

20.
Bona E  Marsano F  Cavaletto M  Berta G 《Proteomics》2007,7(7):1121-1130
Cannabis sativa is an annual herb with very high biomass and capability to absorb and accumulate heavy metals in roots and shoots; it is therefore a good candidate for phytoremediation of soils contaminated with metals. Copper is an essential micronutrient for all living organisms, it participates as an important redox component in cellular electron transport chains; but is extremely toxic to plants at high concentrations. The aim of this work was to investigate copper effects on the root proteome of C. sativa, whose genome is still unsequenced. Copper stress induced the suppression of two proteins, the down-regulation of seven proteins, while five proteins were up-regulated. The resulting differences in protein expression pattern were indicative of a plant adaptation to chronic stress and were directed to the reestablishment of the cellular and redox homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号