首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity in isolated skeletal muscle of insulin-resistant, prediabetic obese Zucker rats and if these effects of GSK3 inhibition are associated with enhanced insulin signaling. Type I soleus and type IIb epitrochlearis muscles from female obese Zucker rats were incubated in the absence or presence of a selective, small organic GSK3 inhibitor (1 microM CT118637, Ki < 10 nM for GSK3alpha and GSK3beta). Maximal insulin stimulation (5 mU/ml) of glucose transport activity, glycogen synthase activity, and selected insulin-signaling factors [tyrosine phosphorylation of insulin receptor (IR) and IRS-1, IRS-1 associated with p85 subunit of phosphatidylinositol 3-kinase, and serine phosphorylation of Akt and GSK3] were assessed. GSK3 inhibition enhanced (P <0.05) basal glycogen synthase activity and insulin-stimulated glucose transport in obese epitrochlearis (81 and 24%) and soleus (108 and 20%) muscles. GSK3 inhibition did not modify insulin-stimulated tyrosine phosphorylation of IR beta-subunit in either muscle type. However, in obese soleus, GSK3 inhibition enhanced (all P < 0.05) insulin-stimulated IRS-1 tyrosine phosphorylation (45%), IRS-1-associated p85 (72%), Akt1/2 serine phosphorylation (30%), and GSK3beta serine phosphorylation (39%). Substantially smaller GSK3 inhibitor-mediated enhancements of insulin action on these insulin signaling factors were observed in obese epitrochlearis. These results indicate that selective GSK3 inhibition enhances insulin action in insulin-resistant skeletal muscle of the prediabetic obese Zucker rat, at least in part by relieving the deleterious effects of GSK3 action on post-IR insulin signaling. These effects of GSK3 inhibition on insulin action are greater in type I muscle than in type IIb muscle from these insulin-resistant animals.  相似文献   

2.
Akt/protein kinase B is a serine/threonine kinase that has emerged as a critical signaling component for mediating numerous cellular responses. Contractile activity has recently been demonstrated to stimulate Akt signaling in skeletal muscle. Whether physiological exercise in vivo activates Akt is controversial, and the initiating factors that result in the stimulation of Akt during contractile activity are unknown. In the current study, we demonstrate that treadmill running exercise of rats using two different protocols (intermediate high or high-intensity exhaustive exercise) significantly increases Akt activity and phosphorylation in skeletal muscle composed of various fiber types. To determine if Akt activation during contractile activity is triggered by mechanical forces applied to the skeletal muscle, isolated skeletal muscles were incubated and passively stretched. Passive stretch for 10 min significantly increased Akt activity (2-fold) in the fast-twitch extensor digitorum longus (EDL) muscle. However, stretch had no effect on Akt in the slow-twitch soleus muscle, although there was a robust phosphorylation of the stress-activated protein kinase p38. Similar to contraction, stretch-induced Akt activation in the EDL was fully inhibited in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin, whereas glycogen synthase kinase-3 (GSK3) phosphorylation was only partially inhibited. Stretch did not cause dephosphorylation of glycogen synthase on GSK3-targeted sites in the absence or presence of wortmannin. We conclude that physiological exercise in vivo activates Akt in multiple skeletal muscle fiber types and that mechanical tension may be a part of the mechanism by which contraction activates Akt in fast-twitch muscles.  相似文献   

3.
Muscle atrophy contributes to morbidity and mortality in aging and chronic disease, emphasizing the need to gain understanding of the mechanisms involved in muscle atrophy and (re)growth. We hypothesized that the magnitude of muscle regrowth during recovery from atrophy determines whether myonuclear accretion and myogenic differentiation are required and that insulin-like growth factor (IGF)-I/Akt/glycogen synthase kinase (GSK)-3 signaling differs between regrowth responses. To address this hypothesis we subjected mice to hindlimb suspension (HS) to induce atrophy of soleus (–40%) and plantaris (–27%) muscle. Reloading-induced muscle regrowth was complete after 14 days and involved an increase in IGF-IEa mRNA expression that coincided with Akt phosphorylation in both muscles. In contrast, phosphorylation and inactivation of GSK-3 were observed during soleus regrowth only. Furthermore, soleus but not plantaris regrowth involved muscle regeneration based on a transient increase in expression of histone 3.2 and myosin heavy chain-perinatal, which are markers of myoblast proliferation and differentiation, and a strong induction of muscle regulatory factor (MRF) expression. Experiments in cultured muscle cells showed that IGF-I-induced MRF expression is facilitated by inactivation of GSK-3 and selectively occurs in the myoblast population. This study suggests that induction of IGF-I expression and Akt phosphorylation during recovery from muscle atrophy is independent of the magnitude of muscle regrowth. Moreover, our data demonstrate for the first time that the regenerative response characterized by myoblast proliferation, differentiation, and increased MRF expression in recovering muscle is associated with the magnitude of regrowth and may be regulated by inactivation of GSK-3. glycogen synthase kinase-3; Akt; muscle growth; muscle atrophy  相似文献   

4.
We have investigated glycogen synthase (GS) activation in L6hIR cells expressing a peptide corresponding to the kinase regulatory loop binding domain of insulin receptor substrate-2 (IRS-2) (KRLB). In several clones of these cells (B2, F4), insulin-dependent binding of the KRLB to insulin receptors was accompanied by a block of IRS-2, but not IRS-1, phosphorylation, and insulin receptor binding. GS activation by insulin was also inhibited by >70% in these cells (p < 0.001). The impairment of GS activation was paralleled by a similarly sized inhibition of glycogen synthase kinase 3 alpha (GSK3 alpha) and GSK3 beta inactivation by insulin with no change in protein phosphatase 1 activity. PDK1 (a phosphatidylinositol trisphosphate-dependent kinase) and Akt/protein kinase B (PKB) activation by insulin showed no difference in B2, F4, and in control L6hIR cells. At variance, insulin did not activate PKC zeta in B2 and F4 cells. In L6hIR, inhibition of PKC zeta activity by either a PKC zeta antisense or a dominant negative mutant also reduced by 75% insulin inactivation of GSK3 alpha and -beta (p < 0.001) and insulin stimulation of GS (p < 0.002), similar to Akt/PKB inhibition. In L6hIR, insulin induced protein kinase C zeta (PKC zeta) co-precipitation with GSK3 alpha and beta. PKC zeta also phosphorylated GSK3 alpha and -beta. Alone, these events did not significantly affect GSK3 alpha and -beta activities. Inhibition of PKC zeta activity, however, reduced Akt/PKB phosphorylation of the key serine sites on GSK3 alpha and -beta by >80% (p < 0.001) and prevented full GSK3 inactivation by insulin. Thus, IRS-2, not IRS-1, signals insulin activation of GS in the L6hIR skeletal muscle cells. In these cells, insulin inhibition of GSK3 alpha and -beta requires dual phosphorylation by both Akt/PKB and PKC zeta.  相似文献   

5.
6.
7.
8.
Protein kinase B [PKB, also known as Akt (PKB/Akt)] and calcineurin (CaN) are postulated to play important roles in integrating intracellular signaling in skeletal muscle in response to disuse and increased muscle loading. These experiments investigated changes in signal transduction of the downstream pathways of PKB/Akt and CaN during recovery following disuse-induced muscle atrophy. A 10-day period of hindlimb unloading (HLU) via tail suspension (male rats) was used to produce soleus muscle atrophy. Muscle recovery was achieved by returning animals to normal ambulation for 3-10 days. HLU resulted in significant muscle atrophy and a slow-to-fast fiber transition as revealed by appearance of type IId/x and IIb myosin heavy chain (MHC) isoforms. Muscle mass in HLU animals recovered to control (Con) levels after 10 days of reloading, but the fast-to-slow shift in muscle MHC was incomplete, as indicated by the continued presence of type IId/x MHC. Ten days of HLU resulted in a significant decrease (-43%) in muscle levels of phosphorylated PKB/Akt. In contrast, muscle levels of phosphorylated PKB/Akt were greater (+56%) in HLU than in Con animals early after the onset of reloading (3 days). Soleus levels of phosphorylated p70S6K were significantly higher (+26%) in HLU animals after 3 days of muscle reloading. Muscle levels of phosphorylated PKB/Akt and phosphorylated p70S6K returned to Con levels by day 10 of recovery. Moreover, muscle CaN levels were significantly higher than Con levels after 10 days of muscle reloading. These findings are consistent with the hypothesis that PKB/Akt and its downstream mediators are active in the regrowth of muscle mass during the early periods of recovery from muscle atrophy. Our data support the concept that CaN is involved in muscle remodeling during the later phases of recovery from disuse muscle atrophy.  相似文献   

9.
Skeletal muscle secretes biologically active proteins that contribute to muscle hypertrophy in response to either exercise or dietary intake. The identification of skeletal muscle-secreted proteins that induces hypertrophy can provide critical information regarding skeletal muscle health. Dietary provitamin A, β-carotene, induces hypertrophy of the soleus muscle in mice. Here, we hypothesized that skeletal muscle produces hypertrophy-inducible secretory proteins via dietary β-carotene. Knockdown of retinoic acid receptor (RAR) γ inhibited the β-carotene-induced increase soleus muscle mass in mice. Using RNA sequencing, bioinformatic analyses, and literature searching, we predicted transglutaminase 2 (TG2) to be an all-trans retinoic acid (ATRA)-induced secretory protein in cultured C2C12 myotubes. Tg2 mRNA expression increased in ATRA- or β-carotene-stimulated myotubes and in the soleus muscle of β-carotene-treated mice. Knockdown of RARγ inhibited β-carotene-increased mRNA expression of Tg2 in the soleus muscle. ATRA increased endogenous TG2 levels in conditioned medium from myotubes. Extracellular TG2 promoted the phosphorylation of Akt, mechanistic target of rapamycin (mTOR), and ribosomal p70 S6 kinase (p70S6K), and inhibitors of mTOR, phosphatidylinositol 3-kinase, and Src (rapamycin, LY294002, and Src I1, respectively) inhibited TG2-increased phosphorylation of mTOR and p70S6K. Furthermore, extracellular TG2 promoted protein synthesis and hypertrophy in myotubes. TG2 mutant lacking transglutaminase activity exerted the same effects as wild-type TG2. Knockdown of G protein-coupled receptor 56 (GPR56) inhibited the effects of TG2 on mTOR signaling, protein synthesis, and hypertrophy. These results indicated that TG2 expression was upregulated through ATRA-mediated RARγ and that extracellular TG2 induced myotube hypertrophy by activating mTOR signaling-mediated protein synthesis through GPR56, independent of transglutaminase activity.  相似文献   

10.
Unilateral denervation (DNV) of rat diaphragm muscle increases protein synthesis at 3 days after DNV (DNV-3D) and degradation at DNV-5D, such that net protein breakdown is evident by DNV-5D. On the basis of existing models of protein balance, we examined DNV-induced changes in Akt, AMP-activated protein kinase (AMPK), and ERK½ activation, which can lead to increased protein synthesis via mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K), glycogen synthase kinase-3β (GSK3β), or eukaryotic initiation factor 4E (eIF4E), and increased protein degradation via forkhead box protein O (FoxO). Protein phosphorylation was measured using Western analyses through DNV-5D. Akt phosphorylation decreased at 1 h and 6 h after DNV compared with sham despite decreased AMPK phosphorylation. Both Akt and AMPK phosphorylation returned to sham levels by DNV-1D. Phosphorylation of their downstream effector mTOR (Ser2481) did not change at any time point after DNV, and phosphorylated p70S6K and eIF4E-binding protein 1 (4EBP1) increased only by DNV-5D. In contrast, ERK½ phosphorylation and its downstream effector eIF4E increased 1.7-fold at DNV-1D and phosphorylated GSK3β increased 1.5-fold at DNV-3D (P < 0.05 for both comparisons). Thus, following DNV there are differential effects on protein synthetic pathways with preferential activation of GSK3β and eIF4E over p70S6K. FoxO1 nuclear translocation occurred by DNV-1D, consistent with its role in increasing expression of atrogenes necessary for subsequent ubiquitin-proteasome activation evident by DNV-5D. On the basis of our results, increased protein synthesis following DNV is associated with changes in ERK½-dependent pathways, but protein degradation results from downregulation of Akt and nuclear translocation of FoxO1. No single trigger is responsible for protein balance following DNV. Protein balance in skeletal muscle depends on multiple synthetic/degradation pathways that should be studied in concert.  相似文献   

11.
12.
The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents and humans. In this study, we used Akt2 knockout mice to explore the role of Akt2 in exercise-stimulated glucose uptake and glycogen synthesis as well as intracellular signaling pathways that regulate glycogen metabolism in skeletal muscle. We found that Akt2 deficiency does not affect basal or exercise-stimulated glucose uptake or intracellular glycogen content in the soleus muscle. In addition, lack of Akt2 did not result in alterations in basal Akt Thr(308) or basal and contraction-stimulated glycogen synthase kinase-3beta (GSK-3beta) Ser(9) phosphorylation, glycogen synthase phosphorylation, or glycogen synthase activity. In contrast, in situ contraction failed to elicit normal increases in Akt T-loop Thr(308) phosphorylation and GSK-3alpha Ser(21) phosphorylation in tibialis anterior muscles from Akt2-deficient animals. Our data establish a key role for Akt2 in the regulation of GSK-3alpha Ser(21) phosphorylation with contraction and add genetic evidence to support the separation of the intracellular pathways regulated by insulin and exercise that converge on glucose uptake and glycogen synthesis in skeletal muscle.  相似文献   

13.
Contraction regulation of Akt in rat skeletal muscle.   总被引:11,自引:0,他引:11  
The protein serine/threonine kinase Akt/protein kinase B has been recognized as a critical signaling mediator for multiple cell systems. The function of Akt in skeletal muscle is not well understood, and whether contractile activity stimulates Akt activity has been controversial. In the current study, contraction in situ, induced via sciatic nerve stimulation, significantly increased Akt Ser(473) phosphorylation in multiple muscle types including the extensor digitorum longus (13-fold over basal), plantaris (5.8-fold), red gastrocnemius (4.7-fold), white gastrocnemius (3.3-fold), and soleus (1.6-fold). In addition to increasing phosphorylation, contraction in situ significantly increased the activity of all three Akt isoforms (Akt1 > Akt2 > Akt3) with maximal activation occurring at 2.5 min and returning to base line with 15 min of contraction. Akt phosphorylation and activity were also increased when isolated muscles were contracted in vitro in the absence of systemic factors, although to a much lesser extent. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 fully inhibited contraction-stimulated Akt phosphorylation and activity but did not diminish contraction-stimulated glycogen synthase kinase-3 phosphorylation and glycogen synthase activity. These results demonstrate that contraction increases Akt phosphorylation and activity in skeletal muscle and that this stimulation is rapid, transient, muscle fiber type-specific, and wortmannin- and LY294002-inhibitable. Akt signaling is not necessary for the regulation of glycogen synthase activity in contracting skeletal muscle.  相似文献   

14.
To determine the molecular mechanism underlying hyperglycemia-induced insulin resistance in skeletal muscles, postreceptor insulin-signaling events were assessed in skeletal muscles of neonatally streptozotocin-treated diabetic rats. In isolated soleus muscle of the diabetic rats, insulin-stimulated 2-deoxyglucose uptake, glucose oxidation, and lactate release were all significantly decreased compared with normal rats. Similarly, insulin-induced phosphorylation and activation of Akt/protein kinase B (PKB) and GLUT-4 translocation were severely impaired. However, the upstream signal, including phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS)-1 and -2 and activity of phosphatidylinositol (PI) 3-kinase associated with IRS-1/2, was enhanced. The amelioration of hyperglycemia by T-1095, a Na(+)-glucose transporter inhibitor, normalized the reduced insulin sensitivity in the soleus muscle and the impaired insulin-stimulated Akt/PKB phosphorylation and activity. In addition, the enhanced PI 3-kinase activation and phosphorylation of IR and IRS-1 and -2 were reduced to normal levels. These results suggest that sustained hyperglycemia impairs the insulin-signaling steps between PI 3-kinase and Akt/PKB, and that impaired Akt/PKB activity underlies hyperglycemia-induced insulin resistance in skeletal muscle.  相似文献   

15.
The inositol pyrophosphate IP7 (5-diphosphoinositolpentakisphosphate), formed by a family of three inositol hexakisphosphate kinases (IP6Ks), modulates diverse cellular activities. We now report that IP7 is a physiologic inhibitor of Akt, a serine/threonine kinase that regulates glucose homeostasis and protein translation, respectively, via the GSK3β and mTOR pathways. Thus, Akt and mTOR signaling are dramatically augmented and GSK3β signaling reduced in skeletal muscle, white adipose tissue, and liver of mice with targeted deletion of IP6K1. IP7 affects this pathway by potently inhibiting the PDK1 phosphorylation of Akt, preventing its activation and thereby affecting insulin signaling. IP6K1 knockout mice manifest insulin sensitivity and are resistant to obesity elicited by high-fat diet or aging. Inhibition of IP6K1 may afford a therapeutic approach to obesity and diabetes.  相似文献   

16.
In isosmotic conditions, insulin stimulation of PI 3-K/Akt and p38 MAPK pathways in skeletal muscle inhibits Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity induced by the ERK1,2 MAPK pathway. Whether these signaling cascades contribute to NKCC regulation during osmotic challenge is unknown. Increasing osmolarity by 20 mosM with either glucose or mannitol induced NKCC-mediated (86)Rb uptake and water transport into rat soleus and plantaris skeletal muscle in vitro. This NKCC activity restored intracellular water. In contrast to mannitol, hyperosmolar glucose increased ERK1,2 and p38 MAPK phosphorylation. Glucose, but not mannitol, impaired insulin-stimulated phosphorylation of Akt and p38 MAPK in the plantaris and soleus muscles, respectively. Hyperosmolarity-induced NKCC activation was insensitive to insulin action and pharmacological inhibition of ERK1,2 and p38 MAPK pathways. Paradoxically, cAMP-producing agents, which stimulate NKCC activity in isosmotic conditions, suppressed hyperosmolar glucose- and mannitol-induced NKCC activity and prevented restoration of muscle cell volume in hyperosmotic media. These results indicate that NKCC activity helps restore muscle cell volume during hyperglycemia. Moreover, hyperosmolarity activates NKCC regulatory pathways that are insensitive to insulin inhibition.  相似文献   

17.
Estrogen status and skeletal muscle recovery from disuse atrophy.   总被引:2,自引:0,他引:2  
Although estrogen loss can alter skeletal muscle recovery from disuse, the specific components of muscle regrowth that are estrogen sensitive have not been described. The primary purpose of this study was to determine the components of skeletal muscle mass recovery that are biological targets of estrogen. Intact, ovariectomized (OVX), and ovariectomized with 17beta-estradiol replacement (OVX+E2) female rats were subjected to hindlimb suspension for 10 days and then returned to normal cage ambulation for the duration of recovery. Soleus muscle mass returned to control levels by day 7 of recovery in the intact animals, whereas OVX soleus mass did not recover until day 14. Intact rats recovered soleus mean myofiber cross-sectional area (CSA) by day 14 of recovery, whereas the OVX soleus remained decreased (42%) at day 14. OVX mean fiber CSA did return to control levels by day 28 of recovery. The OVX+E2 treatment group recovered mean CSA at day 14, as in the intact animals. Myofibers demonstrating central nuclei were increased at day 14 in the OVX group, but not in intact or OVX+E2 animals. The percent noncontractile tissue was also increased 29% in OVX muscle at day 14, but not in either intact or OVX+E2 groups. In addition, collagen 1a mRNA was increased 45% in OVX muscle at day 14 of recovery. These results suggest that myofiber growth, myofiber regeneration, and extracellular matrix remodeling are estrogen-sensitive components of soleus muscle mass recovery from disuse atrophy.  相似文献   

18.
19.
20.
Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca2+]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca2+]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号