首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roles of gravitational loading, sarcomere length, and/or tension development on the electromyogram (EMG) of soleus and afferent neurogram recorded at the L5 segmental level of spinal cord were investigated during parabolic flight of a jet airplane or hindlimb suspension in conscious rats. Both EMG and neurogram levels were increased when the gravity levels were elevated from 1-G to 2-G during the parabolic flight. They were decreased when the hindlimbs were unloaded by exposure to actual microgravity or by suspension. These phenomena were related to passive shortening of muscle fibers and/or sarcomeres. Unloading-related decrease in sarcomere length was greater at the central rather than the proximal and distal regions of fibers. These activities and tension development were not detected when the mean sarcomere length was less than 2.03 micrometers. It is suggested that load-dependent regulation of neuromuscular system is related to the tension development which is influenced by sarcomere length.  相似文献   

2.
It is well known that soleus muscle of rat atrophies following spaceflight or hindlimb suspension (Ohira et al., 1992). It is, further, reported that the electromyogram (EMG) of soleus muscle disappears immediately in response to unloading by exposure to actual micro-g environment (Kawano et al., 2002; Leterme and Falempin, 1998) and by hindlimb suspension of rats (Alford et al., 1987; Ohira et al., 2000). However, the EMG level is increased gradually to the control level following 7-10 days of continuous hindlimb suspension (Alford et al., 1987; Ohira, 2000), while muscle atrophy is progressing (Winiarski et al., 1987). We previously reported that reduction of the EMG level of rat soleus in response to actual micro-g environment, created by a parabolic flight of a jet airplane, was closely associated with a decrease of the afferent input recorded at the L5 segmental level of spinal cord (Kawano et al., 2002). However, it is still unclear how the EMG level of soleus muscle adapts to unloading condition. The current study was performed to investigate the responses of soleus EMG and both afferent and efferent neurogram at the L5 segmental level of spinal cord to acute (20 seconds) and chronic (14 days) unloading.  相似文献   

3.
Responses of electromyogram (EMG) in soleus muscle and both afferent and efferent neurograms at the fifth lumbar (L(5)) segmental level of spinal cord were investigated during acute and chronic unloading induced by hindlimb suspension and/or tenotomy in adult rats. The soleus EMG and afferent neurogram decreased 88 and 37%, respectively, relative to those at quadrupedal posture on the floor after acute hindlimb suspension that causes passive shortening of soleus due to ankle plantarflexion. However, the afferent neurogram (P < 0.05) and soleus EMG (P > 0.05) recorded on the floor increased after tenotomy of synergists. Furthermore, the afferent input was inhibited when the soleus EMG disappeared after tenotomy of soleus. The afferent neurogram and EMG of the soleus showed correlated responses to a variety of treatments, suggesting that the afferent neurogram recorded at the L(5) segmental level reflects the neural input associated with the activity level of the soleus predominantly. The level of efferent neurogram decreased after acute hindlimb suspension but was not influenced significantly by tenotomy of synergists and/or soleus itself. The EMG and afferent neurograms remained low up to the 4th day but recovered to the preexperimental levels within 14 days, due to reorganization of sarcomere number and length, as well as the shortening of muscle fiber length and recovery of tension development. It is suggested that the levels of EMG and afferent neurogram associated with antigravity muscle are closely related to the tension development of the muscle.  相似文献   

4.
Effects of hindlimb suspension or exposure to 2-G between postnatal day 4 and month 3 and of 3-month recovery at 1-G environment on the characteristics of rat hindlimb muscles were studied. Pronounced growth inhibition was induced by unloading, but not by 2-G loading. It is suggested that the development and/or differentiation of soleus muscle fibers are closely associated with gravitational loading. The data indicated that gravitational unloading during postnatal development inhibits the myonuclear accretion in accordance with subnormal numbers of both mitotic active and quiescent satellite cells. Even though the fiber formation and longitudinal fiber growth were not influenced, cross-sectional growth of muscle fibers was also inhibited in association with lesser myonuclear domain and DNA content per unit volume of myonucleus. Unloading-related inhibition was generally normalized following the recovery.  相似文献   

5.
Responses of Hoffman (H)-reflex in human soleus to changes in the levels of gravity, activities of skeletal muscles, and/or fluid distribution of lower limbs during the parabolic flight of a jet airplane and/or using a tilting table were studied. The time interval between the electrical stimulation and the appearance of either M- or H-wave and the amplitude of M-wave were not influenced by the changes in gravity and fluid distribution levels. However, the H-wave amplitude was increased when the subjects were exposed to microgravity (microgravity-G). Hypergravity at 1.5- or 2-G had no effect on the H-wave amplitude. The H-reflex had no relation with the changes of electromyogram activities of skeletal muscles and fluid volume in lower limbs. Further, the H-wave amplitude was even decreased insignificantly when the distribution of lower limb fluid was reduced at head-down position on the table. It is suggested that an acute exposure to microgravity-G increases the excitability of soleus motor pool, but the mechanism is still unclear.  相似文献   

6.
The effects of tendon vibration on bioassayable growth hormone (BGH) secretion from the pituitary gland were investigated in anesthetized adult male rats. The tendons from predominantly fast-twitch ankle extensor muscles (gastrocnemius and plantaris) or a predominantly slow-twitch ankle extensor (soleus) were vibrated by using a paradigm that selectively activates group Ia afferent fibers from muscle spindles. The lower hindlimb was secured with the muscles near physiological length, and the tendons were vibrated for 15 min at 150 Hz and a displacement of 1 mm. Control rats were prepared similarly, but the tendons were not vibrated. Compared with control, vibration of the tendons of the fast ankle extensors markedly increased (160%), whereas vibration of the slow soleus decreased (68%), BGH secretion. Complete denervation of the hindlimb had no independent effects on the normal resting levels of BGH, but it prevented the effects of tendon vibration on BGH secretion. The results are consistent with previous findings showing modulation of BGH release in response to in vivo activation or in situ electrical stimulation of muscle afferents (Bigbee AJ, Gosselink KL, Grindeland RE, Roy RR, Zhong H, and Edgerton VR. J Appl Physiol 89: 2174-2178, 2000; Gosselink KL, Grindeland RE, Roy RR, Zhong H, Bigbee AJ, and Edgerton VR. J Appl Physiol 88: 142-148, 2000; Gosselink KL, Grindeland RE, Roy RR, Zhong H, Bigbee AJ, Grossman EJ, and Edgerton VR. J Appl Physiol 84: 1425-1430, 1998). These data provide evidence that this previously described muscle afferent-pituitary axis is neurally mediated via group Ia afferents from peripheral skeletal muscle. Furthermore, these data show that activation of this group Ia afferent pathway from fast muscles enhances, whereas the same sensory afferent input from a slow muscle depresses, BGH release.  相似文献   

7.
The effects of torbafylline on the prevention of and the recovery from 5 weeks of hindlimb suspension induced atrophy were analyzed in rat soleus and extensor digitorum longus muscles. Muscle alterations were investigated by determining a suite of electrophysiological, histochemical, and muscle ultrastructural characteristics. Administration of torbafylline during the suspension period was ineffective in preventing any of the observed muscle atrophic changes. Application of torbafylline during the recovery period resulted in a faster recovery of some soleus muscle structural and functional properties. Mitochondrial volume densities and capillary to fiber ratios returned towards baseline values earlier in the recovery process with torbafylline. Furthermore, the drug significantly improved soleus muscle fatigue resistance 4 weeks after cessation of hindlimb suspension.  相似文献   

8.
The purpose of this study was to investigate how gravity level affects the excitability of the soleus muscle (SOL) motoneuron pool to la afferent input while erect posture is maintained in humans. Three healthy male subjects participated in an experiment whereby three different gravity conditions (micro gravity (MG), normal gravity (NG), and hyper gravity) were imposed using a parabolic flight procedure. The SOL H-reflex was evoked every 2 seconds while the subjects kept an erect posture. The background electromyographic activity (BGA) of the SOL was almost absent during MG. The SOL H-reflex amplitude was significantly larger during MG than during NG. These results suggest that the somatosensory systems detecting a load at the lower limbs and/or vertebral column play a role in reducing the excitability of the SOL motoneuron pool to la afferent inputs by presynaptic inhibition.  相似文献   

9.
This paper reports the quantitative evaluation of the H-reflex exhibited by parabolic flight with exposure to micro and high-gravity. With respect to previous findings in parabolic flights and short-term space missions, the analysis focused on reflex activity in weightlessness. The aim of this study was to investigate the effect of gravity on H-reflex and motor evoked potentials (MEP) in soleus muscle (SOL) during parabolic flight.  相似文献   

10.
A proteomic analysis was performed comparing normal rat soleus muscle to soleus muscle that had undergone either 0.5, 1, 2, 4, 7, 10 and 14 days of hindlimb suspension-induced atrophy or hindlimb suspension-induced atrophied soleus muscle that had undergone 1 hour, 8 hour, 1 day, 2 day, 4 day and 7 days of reweighting-induced hypertrophy. Muscle mass measurements demonstrated continual loss of soleus mass occurred throughout the 21 days of hindlimb suspension; following reweighting, atrophied soleus muscle mass increased dramatically between 8 hours and 1 day post reweighting. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 29 soleus proteins. Reweighting following atrophy demonstrated statistically significant changes in the relative levels of 15 soleus proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both atrophied and hypertrophied soleus muscle. Five differentially regulated proteins from the hindlimb suspended atrophied soleus muscle were identified while five proteins were identified in the reweighting-induced hypertrophied soleus muscles. The identified proteins could be generally grouped together as metabolic proteins, chaperone proteins and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the skeletal muscle proteome occur during disuse-induced soleus muscle atrophy and reweighting hypertrophy.  相似文献   

11.
Effects of 16 days of hindlimb suspension and 16 days of ambulation recovery at 1-G or 2-G environment on the characteristics of soleus muscle fibers were studied in male Wistar Hannover rats. The mean cross-sectional area and myonuclear number in isolated single fibers at the termination of suspension were approximately 30% and 25% of the controls, respectively. Satellite cells were distributed evenly throughout the fiber length in the control. However, the number of satellite cells distributed at the middle of the fiber was less in the unloaded rats immediately after the termination of suspension. Both the numbers of quiescent and mitotic active satellite cell per fiber were approximately 57% less immediately after the termination of suspension than controls. The number of satellite cells at the end of fibers was increased first during the early phase of reloading. Subsequently, the number at the middle was gradually increased. The myonuclear number per fiber was also less (approximately 25%) in the unloaded than the age-matched control at the termination of suspension, but was increased following the recovery. Although the mean in vivo sarcomere length of the soleus muscle was shortened in response to plantarflexion of ankle joint, the length at the certain ankle joint angle was increased after 16 days of suspension due to sarcomere remodeling. The length at the proximal and distal, rather than the middle, portion of the fiber was stretched in both reloaded and control rats in response to dorsiflexion of the ankle joint. But it was noted that the magnitude of stretch was greater in the unloaded rats. It is suggested that the fiber end is more stimulated rapidly than the middle portion by the load applied to the muscle during the ambulation recovery.  相似文献   

12.
Transversal cytoskeletal organization of muscle fibers is well described, although very few data are available concerning protein content. Measurements of desmin, alpha-actinin, and actin contents in soleus and extensor digitorum longus (EDL) rat skeletal muscles, taken with the results previously reported for several dystrophin-glycoprotein complex (DGC) components, indicate that the contents of most cytoskeletal proteins are higher in slow-type fibers than in fast ones. The effects of hypokinesia and unloading on the cytoskeleton were also investigated, using hindlimb suspension. First, this resulted in a decrease in contractile protein contents, only after 6 wk, in the soleus. Dystrophin and associated proteins were shown to be reduced for soleus at 3 wk, whereas only the dystrophin-associated proteins were found to increase after 6 wk. On the other hand, the contents of DGC components were increased for EDL for the two durations. Desmin and alpha-actinin levels were unchanged in the same conditions. Consequently, it can be concluded that the cytoskeletal protein expression levels could largely contribute to muscle fiber adaptation induced by modified functional demands.  相似文献   

13.
The hindlimb-unloading model was used to study the ability of muscle injured in a weightless environment to recover after reloading. Satellite cell mitotic activity and DNA unit size were determined in injured and intact soleus muscles from hindlimb-unloaded and age-matched weight-bearing rats at the conclusion of 28 days of hindlimb unloading, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-unloaded rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb unloading, but they were the same (P > 0.05) as those of weight-bearing rats 2 and 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, number of nuclei per millimeter, and DNA unit size were significantly (P < 0.05) smaller for the injured soleus muscles from hindlimb-unloaded rats than for the soleus muscles from weight-bearing rats at each recovery time. Satellite cell mitotic activity was significantly (P < 0.05) higher in the injured soleus muscles from hindlimb-unloaded rats than from weight-bearing rats 2 wk after reloading, but it was the same (P > 0.05) as in the injured soleus muscles from weight-bearing rats 9 wk after reloading. The injured soleus muscles from hindlimb-unloaded rats failed to achieve weight-bearing muscle size 9 wk after reloading, because incomplete compensation for the decrease in myonuclear accretion and DNA unit size expansion occurred during the unloading period.  相似文献   

14.
Degeneration of afferent nerve fibres was induced in rats in order to observe its effects on the properties of the extra-junctional membrane of soleus muscle fibres. In one approach, removal of dorsal root ganglia L4 and L5 was accomplished in preparations with intact or impulse-blocked (with tetrodotoxin containing cuffs around the sciatic nerve) efferent innervation. Spike resistance to tetrodotoxin developed in the inactive deafferented preparations earlier and to a greater extent than in control, that is only impulse-blocked, preparations. In another series of experiments, efferent denervation alone proved to be less effective than the association of efferent and afferent denervation. On the other hand, section of the afferent fibres central to the dorsal root ganglia was without effect. These results are consistent with the interpretation that products of nerve degeneration contribute together with inactivity to the development of the extrajunctional membrane changes observed in skeletal muscle after denervation.  相似文献   

15.
Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2′-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P<0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P<0.05) BrdU labeling in uninjured soleus muscles compared to weightbearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P>0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers. Accepted: 11 December 1997  相似文献   

16.
Effects of hindlimb unloading during the first 3 months after birth on the development of soleus muscle fibers were studied in rats. The mean absolute weigh and cross-sectional area of whole soleus muscle in the unloaded rats were -1/3 and 1/4 of those in the controls, respectively. But the unloading did not affect the lengths of muscle, at 90 degrees of ankle joint angle, and of muscle fibers sampled from tendon to tendon, and the total sarcomere number. Since the total number of fibers in soleus was not affected either, the inhibited increase of muscle mass following unloading was mainly due to the smaller CSA of individual fibers. Numbers of both myonuclei and satellite cells were significantly less in unloaded than control rats. The % distribution of fibers expressing pure type I myosin heavy chain was significantly less in unloaded than controls (-23 %). Further, muscle fibers with multiple innervation were noted in the unloaded rats. It is suggested that the development and/or differentiation of soleus muscle fibers are closely associated with gravitational loading and that the growth-associated increase in fiber number may be genetically programmed.  相似文献   

17.
The neural message is known to play a key role in muscle development and function. We analyzed the specific role of the afferent message on the functional regulation of two subcellular muscle components involved in the contractile mechanism: the contractile proteins and the sarcoplasmic reticulum (SR). Rats were submitted to bilateral deafferentation (DEAF group) by section of the dorsal roots L(3) to L(5) after laminectomy. Experiments were carried out in single skinned fibers of the soleus muscle. The maximal force developed by the contractile proteins was increased in the DEAF group compared with control, despite a decrease in muscle mass by 17%. The tension-pCa relationship was shifted toward lower calcium (Ca(2+)) concentrations. Different functional properties of the SR of DEAF soleus were examined by using caffeine-induced contractions. The caffeine sensitivity of the Ca(2+) release was decreased after deafferentation and ryanodine receptor 1 isoform was expressed at a lower level. The rate of Ca(2+) uptake was only slightly increased. The results underlined the dual effect of the afferent input on the functional regulation of both contractile proteins and SR.  相似文献   

18.
19.
Evidence from rats flown in space suggests that there is a decrease in the ability of the soleus muscle to oxidize long chain fatty acids during space flight. The observation suggests that a shift in the pathways involved in muscle fuel utilization in the absence of load on the muscle has occurred. It is also possible that the reduction is part of a general down-sizing of metabolic capacity since energy needs of inactive muscle are necessarily less. The rodent hind limb suspension model has proved to be a useful ground based model for studying the musculo-skeletal systems changes that occur with space flight. Microarray technology permits the screening of a large number of the enzymes of the relevant pathways thereby permitting a distinction to be made between a shift fuel utilization pattern or a general decrease in metabolic activity. The soleus muscle was isolated from 5 control and 5 hindlimb suspended rats (21 days) and the Affymetrix system for assessing gene expression used to determine the impact of hindlimb unloading on fuel pathways within the muscle of each animal. RESULTS: Suspended rats failed to gain weight at the same rate as the controls (337 +/- 5 g vs 318 +/- 6 g, p < 0.05) and muscle mass from the soleus was reduced (135 +/- 3 mg vs 48 +/- 4 mg, p < 0.05). There was a consistent decrease (p < 0.05) in gene expression of proteins involved in fatty acid oxidation in the suspended group whereas glycolytic activity was increased (p < 0.05). Gene expressions of individual key regulatory enzymes reflected these changes. Carnitine palmitoyltransferase I and II were decreased (p < 0.05) whereas expression of hexokinase, phosphofructokinase and pyruvate kinase were increased (p < 0.05). CONCLUSION: Disuse atrophy is associated with a change in mRNA levels of enzymes involved in fuel metabolism indicative of a shift in substrate utilization away from fat towards glucose.  相似文献   

20.
The purpose of this study was to ascertain the time course of changes, whilst suspending the hindlimb and physical exercise training, of myosin light chain (LC) isoform expression in rat soleus and vastus lateralis muscles. Two groups of six rats were suspended by their tails for 1 or 2 weeks, two other groups of ten rats each were subjected to exercise training on a treadmill for 9 weeks, one to an endurance training programme (1-h running at 20 m.min-1 5 days.week-1), and the other to a sprint programme (30-s bouts of running at 60 m.min-1 with rest periods of 5 min). At the end of these experimental procedures, soleus and vastus lateralis superficialis muscles were removed for myosin LC isoform determination by two-dimensional gel electrophoresis. Hindlimb suspension for 2 weeks significantly increased the proportion of fast myosin LC and decreased slow myosin LC expression in the soleus muscle. The pattern of myosin LC was unchanged in the vastus lateralis muscle. Sprint training or endurance training for 9 weeks increased the percentage of slow myosin LC in vastus lateralis muscle, whereas soleus muscle myosin LC was not modified. These data indicate that hindlimb suspension influences myosin LC expression in postural muscle, whereas physical training acts essentially on phasic muscle. There were no differences in myosin LC observed under the influence of sprint- or endurance-training programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号