首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reported that membrane-associated APase (M-APase) is anchored in the lipid bilayer through its hydrophobic sequence close to the COOH-terminus [Biochem. Biophys. Res. Commun. (1989) 162, 1044-1053] and is released from lysosomal membranes into the lysosomal contents by limited proteolysis with cathepsin D [J. Biochem. (1990) 108, 287-291]. We here report the conversion process of M-APase to three forms of the content enzyme (C-APase I, II, and III) by assigning the COOH-terminus of each APase in lysosomes. The purified M-APase (67 kDa) was subjected to COOH-terminal determination after digestion with cathepsin D. The COOH-terminus of cathepsin D-digested M-APase (65 kDa) ended at the position of the 382nd leucine residue. The COOH-termini of C-APase I (48 kDa) and III (64 kDa) were also determined. Since the two enzymes ended at the same position of the 373rd alanine residue, this COOH-terminal is 9 amino acid residues shorter than that of cathepsin D-digested M-APase. Then, we compared NH2-terminal sequences of the three enzymes, and found that those of three enzymes are exactly the same. Therefore, protein portions of C-APase I and III proved to be identical. The above results indicate that in lysosomes M-APase is first hydrolyzed between amino acid residues 382 and 383 by cathepsin D, and after solubilization, the enzyme is converted to C-APase III by losing 9 amino acid residues by lysosomal carboxypeptidase(s). Molecular weight differences among three C-APases (III, 64 kDa; II, 55 kDa; I, 48 kDa) probably are due to different degrees of carbohydrate chain degradations as reported previously [J. Biochem. (1989) 105, 449-456].  相似文献   

2.
Photosystem II cores of spinach contain four phosphoproteins (8.3, 32, 34, and 44 kDa). Tryptic digestion of core particles released four phosphopeptides which were purified by affinity chromatography on Fe3+-chelating Sepharose and reverse-phase high pressure liquid chromatography. One peptide, derived from the 8.3-kDa protein, has been found to be the NH2 terminus of the psbH gene product (Michel, H. P., and Bennett, J. (1987) FEBS Lett. 212, 103-108). The other three peptides were found to be blocked at the NH2 terminus. We now report the use of tandem mass spectrometry to obtain the sequence of the three other peptides, to locate the phosphorylated residue, and to identify the blocking group. The three peptides correspond to the NH2 termini of D1, D2, and CPa-2; and each begins with N-acetyl-O-phosphothreonine. Comparison with sequences deduced from cloned genes indicates that D1 and D2 have lost their initiating N-formylmethionyl residues. The result for D1 contradicts the view that translation of D1 begins at the second AUG of the mRNA (Bloom, M., Brot, N., Cohen, B. N., and Weissbach, H. (1986) Methods Enzymol. 118, 309-315) and supports the view that processing of pre-D1 to its mature form involves loss of amino acids from the COOH terminus (Marder, J. B., Goloubinoff, P., and Edelman, M. (1984) J. Biol. Chem. 259, 3900-3908). In contrast, CPa-2 is processed at the NH2 terminus by cleaving off the first 14 amino acids. These results also establish that the NH2 termini of D1, D2, and CPa-2 are exposed to the stromal side of the thylakoids.  相似文献   

3.
L K Frankel  T M Bricker 《Biochemistry》1992,31(45):11059-11064
The structural organization of photosystem II proteins has been investigated by use of the amino group-labeling reagent N-hydroxysuccinimidobiotin (NHS-biotin) and calcium chloride-washed photosystem II membranes. We have previously shown that the presence of the extrinsic, manganese-stabilizing protein on photosystem II membranes prevents the modification of lysyl residues located on the chlorophyll protein CPa-1 (CP-47) by NHS-biotin [Bricker, T. M., Odom, W. R., & Queirolo, C. B. (1988) FEBS Lett. 231, 111-117]. Upon removal of the manganese-stabilizing protein by calcium chloride-washing, CPa-1 can be specifically modified by treatment with NHS-biotin. Preparative quantities of biotinylated CPa-1 were subjected to chemical cleavage with cyanogen bromide. Two major biotinylated peptides were identified with apparent molecular masses of 11.8 and 15.7 kDa. N-terminal sequence analysis of these peptides indicated that the 11.8-kDa peptide was 232G-330M and that the 15.7-kDa peptide was 360P-508V. The 15.7-kDa CNBr peptide was subjected to limited tryptic digestion. The two smallest tryptic fragments identified migrated at apparent molecular masses of 9.1 (nonbiotinylated) and 7.5 kDa (biotinylated). N-terminal sequence analysis and examination of the predicted amino acid sequences of these peptides suggest that the 9.1-kDa fragment was 422R-508V and that the 7.5-kDa fragment was 360P-421A. These results strongly suggest that two NHS-biotinylated domains, 304K-321K and 389K-419K, become exposed on CPa-1 when the manganese-stabilizing protein is removed by CaCl2 treatment. Both of these domains lie in the large extrinsic loop E of CPa-1.  相似文献   

4.
W R Odom  T M Bricker 《Biochemistry》1992,31(24):5616-5620
The structural organization of photosystem II proteins has been investigated by use of the zero-length protein cross-linking reagent 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and monoclonal and polyclonal antibody reagents. Photosystem II membranes were treated with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide which cross-links amino groups to carboxyl groups which are in van der Waals contact. This treatment did not affect the oxygen evolution rates of these membranes and increased the retention of oxygen evolution after CaCl2 washing. Analysis of the proteins cross-linked by this treatment indicated that two cross-linked species with apparent molecular masses of 95 and 110 kDa were formed which cross-reacted with antibodies against both the 33-kDa manganese-stabilizing protein and the chlorophyll protein CPa-1. Cleavage of the 110-kDa cross-linked species with cyanogen bromide followed by N-terminal sequence analysis was used to identify the peptide fragments of CPa-1 and the manganese-stabilizing protein which were cross-linked. Two cyanogen bromide fragments were identified with apparent molecular masses of 50 and 25 kDa. N-Terminal sequence analysis of the 50-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa fragment of CPa-1 and the intact manganese-stabilizing protein. This strongly suggests that the manganese-stabilizing protein is cross-linked to the large extrinsic loop domain of CPa-1. N-Terminal analysis of the 25-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa peptide of CPa-1 and the N-terminal 8-kDa peptide of the manganese-stabilizing protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Kenneth J. Leto 《BBA》1984,766(1):98-108
Three minor Chl a proteins were detected in electrophoretic profiles from wild-type maize thylakoids. The spectral characteristics of these Chl proteins and the apparent molecular weights of their constituent apoproteins suggested that they were associated with the Photosystem-II reaction center. One of these Chl a-proteins, CPa-1, was present in wild-type thylakoids and a photochemically active Photosystem-II particle, but was missing from thylakoids of a mutant-lacking Photosystem-II reaction center. CPa-2, on the other hand, was enriched in mutant thylakoids but was completely missing from the Photosystem-II particles. We conclude that CPa-1 is most likely to contain the photoactive chlorophyll of Photosystem II, while CPa-2 is not required for Photosystem-II activity. The apparent molecular weights of the major CPa-1 and CPa-2 apoproteins were 48 000 and 42 000, respectively. The third minor Chl protein seems most likely to be an electrophoretic variant of CPa-1 and has been designated CPa-11. Seven other Chl proteins were detected in wild-type profiles. Many of these Chl proteins appeared to be oligomers or highly order complexes of LHCP and CP-1.  相似文献   

6.
Antigenic sites for six monoclonal antibodies that bind to the alpha subunit (G alpha) of the photoreceptor guanyl nucleotide-binding protein (G-protein or transducin) have been determined. Five of these antibodies (4A, 7A, 7B, 7C, and 7D) were shown in the preceding paper (Hamm, H. E., Deretic, D., Hofmann, K. P., Schleicher, A., and Kohl, B. (1987) J. Biol. Chem. 262, 10831-10838) to block G-protein-rhodopsin interaction. We have blotted tryptic and chymotryptic peptides of G-protein to nitrocellulose paper and found that these antibodies bind to peptides that contain the COOH-terminal end of the protein assessed by 32P-ADP-ribosylation of the COOH-terminus by pertussis toxin. The antigenic site is not exactly at the COOH-terminus since the antibodies also bind two peptides which lack a 2-kDa piece from the COOH-terminus. Antigenic sites are therefore on the 7-kDa chymotryptic peptide and 5-kDa tryptic peptide more than 2 kDa away from the COOH-terminus. Further evidence for this antigenic site comes from the ability of these antibodies to block pertussis toxin-mediated ADP-ribosylation while still binding to the previously ADP-ribosylated protein both on nitrocellulose blots and in immunoprecipitations. Antibody 4H, which was shown not to interrupt any of the functions studied, binds to the 11-kDa major tryptic fragment. To aid in the mapping of these sites onto the surface of G alpha, a model of the three-dimensional structure of G alpha has been generated using the G alpha primary sequence, predicted secondary structure, hydropathy plot, and the constraints of the GDP-binding site of the GTP-binding protein elongation factor Tu solved by Jurnak (Jurnak, F. (1985) Science 230, 32-36).  相似文献   

7.
A photosystem II core complex from spinach exhibiting high rates of electron transport was obtained rapidly and in high yield by treatment of a Tris-extracted, O2-evolving photosystem II preparation with the detergent dodecyl-beta-D-maltoside. The core complex was essentially free of light-harvesting chlorophyll-protein and photosystem I polypeptides, and was highly enriched in the polypeptides associated with the photosystem II reaction center (45 and 49 kDa), cytochrome b559, and three polypeptides in the region 32-34 kDa. The photosystem II core complex contained two chlorophyll-proteins which had a slightly higher apparent molecular mass than CPa-1 and CPa-2. Additionally, a high-molecular-mass chlorophyll-protein complex termed CPa* was observed, which exhibited a low fluorescence yield when illuminated with ultraviolet light. This observation suggests that CPa* contains a functionally efficient quencher of chlorophyll fluorescence, possibly P680.  相似文献   

8.
Carbamoyl phosphate synthetase I (ammonia; E C 6.3.4.16) was purified from the liver of Rana catesbeiana (bullfrog). Crystals of the protein have been obtained at 22°C by the hanging drop vapor diffusion technique, with polyethylene glycol as precipitant. Tetragonal crystals of about 0.3 × 0.3 × 0.7 mm diffract at room temperature to at least 3.5 Å using a conventional source and are stable to X-radiation for about 12 h. Therefore, these crystals are suitablefor high resolution studies. The space group is P41212 (or its enantiomorph P43212), with unit cell dimensions a = b = 291.6 Å and c = 189.4 Å. Density packing considerations areconsistent with the presence of 4-6 monomers (Mr of the monomer, 160,000) in the asymmetric unit. Amino-terminal sequence of the enzyme and of a chymotryptic fragment of 73.7 kDa containing the COOH-terminus has been obtained. The extensive sequence identity with rat and human carbamoyl phosphate synthetase I indicates the relevance for mammals of structural data obtained with the frog enzyme. © 1995 Wiley-Liss, Inc.  相似文献   

9.
A new unique lectin (galactose-specific) purified from the seeds of Dolichos lablab, designated as DLL-II is a heterodimer composed of closely related subunits α and β. These were separated by SDS-PAGE and isolated by electroelution. By ESI-MS analysis their molecular masses were found to be 30.746 kDa (α) and 28.815 kDa (β) respectively. Both subunits were glycosylated and displayed similar amino acid composition. Using advanced mass spectrometry in combination with de novo sequencing and database searches for the peptides derived by enzymatic and chemical cleavage of these subunits, the primary sequence was deduced. This revealed DLL-II to be made of two polypeptide chains of 281(α) and 263(β) amino acids respectively. The β subunit differed from the α subunit by the absence of some amino acids at the carboxy terminal end. This structural difference suggests that possibly, the β subunit is derived from the α subunit by posttranslational proteolytic modification at the COOH-terminus. Comparison of the DLL-II sequence to other leguminous seed lectins indicates a high degree of structural conservation. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
(1) Five minor chlorophyll-protein complexes were isolated from thylakoid membranes of the green alga Acetabularia by SDS-polyacrylamide gel electrophoresis, after SDS or octylglucoside solubilization. None of them were related to CP I (Photosystem I reaction center core) or CP II (chlorophyll ab light-harvesting complex). (2) Two complexes (CPa-1 and CPa-2) contained only chlorophyll (Chl) a, with absorption maxima of 673 and 671 nm, and fluorescence emission maxima of 683 nm compared to 676 nm for CP II. The complexes had apparent molecular masses of 43–47 and 38–40 kDa, and contained a single polypeptide of 41 and 37 kDa, respectively. They each account for about 3% of the total chlorophyll. (3) Three complexes had identical spectra, with Chl ab ratios of 3–4 compared to 2 for thylakoid membranes, and a pronounced shoulder around 485 nm indicating enrichment in carotenoids. One of them was the complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432) and the other two were slightly different oligomeric forms of CP 29. They could be formed from CP 29 during reelectrophoresis; but about half the complex was isolated originally in an oligomeric form. Together they account for at least 7% of the total chlorophyll. Their function is unknown.  相似文献   

11.
The structure of the rye chloroplast DNA, which contains psbC gene coding for 43-kDa chlorophyll(a)-binding subunit of photosystem II, is determined. The sequence of trnS (UGA) gene encoding tRNA Ser is located at a distance of 140 bp downstream from the stop codon of psbC gene on the opposite DNA strand. The 5'-terminal part of psbC gene, like in other plants, overlaps by 50 bp the 3'-terminal region of psbD gene coding for D2 protein of photosystem II. The amino acid sequence of the psbC gene product reveals common features with the structure of the psbB gene product (CPa-1 protein). The structural similarity of these two proteins seems to reflect their similar functions.  相似文献   

12.
Evidence is presented for the identification of the chlorophyll- protein complex CPa-1 (CP 47) as the reaction centre of photosystem II (PS II). We have developed a simple, rapid method using octyl glucoside solubilization to obtain preparations from spinach and barley that are highly enriched in PS II reaction centre activity (measured as the light-driven reduction of diphenylcarbazide by 2,6-dichlorophenolindophenol). These preparations contain only the two minor chlorophyll-protein complexes CPa-1 and CPa-2. During centrifugation on a sucrose density gradient, there is a partial separation of the two CPa complexes from each other, and a complete separation from other chlorophyll-protein complexes. The PS II activity comigrates with CPa-1 but not CPa-2, strongly suggesting that the former is the reaction centre complex of PS II. Reaction centre preparations are sensitive to the herbicide 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but only at much higher concentrations than those required to inhibit intact thylakoid membranes. A model of PS II incorporating our current knowledge of the chlorophyll-protein complexes is presented. It is proposed that CPa-2 and the chlorophyll a + b complex CP 29 may function as internal antenna complexes surrounding the reaction centre, with the addition of variable amounts of the major chlorophyll a + b light-harvesting complex.  相似文献   

13.
A cDNA coding for the murine proprotein convertase-1 (mPC1 also known as mPC3 or mSPC3) was inserted into theAutographa californicanuclear polyhedrosis virus. Following infection ofSpodoptera frugiperdacells, the recombinant N-glycosylated protein is secreted into the cell culture medium from which it can be purified to homogeneity as a fully enzymatically active enzyme. Two major secreted molecular forms of mPC1 with apparent molecular weights of 85 and 71 kDa, respectively, and a minor one of 75 kDa are immunodetected in the medium. Automated NH2-terminal sequencing reveals that all three forms result from processing at the predicted zymogen activation site whereas both the 75- and the 71-kDa forms are truncated at their COOH-terminus. Labeling by an active-site titrant demonstrates that the 85-kDa form is optimally labeled at near neutral pH whereas the COOH-truncated forms are optimally labeled at acidic pH. Additionally it is shown that the 85-kDa mPC1 is transformed into the COOH-truncated forms followingin vitroincubation at acidic pH levels and in presence of calcium. Concomitantly, the transformation from 85 to 71 kDa is accompanied by a 10- to 40-fold increase in enzymatic activity upon assaying at pH 6.0. The 71-kDa form can be recovered after purification at a level of 1 to 1.5 mg per liter of cell culture medium and is enzymatically stable only in the pH range from 5.0 to 6.5. Cells treated with tunicamycin show a drastically reduced secretion of the convertase in the medium but are not affected by swainsonine and deoxymannojirimycin. Finally, the 85-kDa secreted mPC1 is shown to be sulfated.  相似文献   

14.
Proenzyme dipeptidyl peptidase I (DPP I) of Schistosoma japonicum was expressed in a baculovirus expression system utilizing Trichoplusia ni BTI-5B1-4 (High Five) strain host insect cells. The recombinant enzyme was purified from cell culture supernatants by affinity chromatography on nickel–nitriloacetic acid resin, exploiting a polyhistidine tag fused to the COOH-terminus of the recombinant protease. The purified recombinant enzyme resolved in reducing SDS–PAGE gels as three forms, of 55, 39, and 38 kDa, all of which were reactive with antiserum raised against bacterially expressed S. japonicum DPP I. NH2-terminal sequence analysis of the 55-kDa polypeptide revealed that it corresponded to residues −180 to −175, NH2-SRXKXK, of the proregion peptide of S. japonicum DPP I. The 39- and 38-kDa polypeptides shared the NH2-terminal sequence, LDXNQLY, corresponding to residues −73 to −67 of the proregion peptide and thus were generated by removal of 126 residues from the NH2-terminus of the proenzyme. Following activation for 24 h at pH 7.0, 37°C under reducing conditions, the recombinant enzyme exhibited exopeptidase activity against synthetic peptidyl substrates diagnostic of DPP I. Specificity constants (kcat/Km) for the recombinant protease for the substrates H-Gly-Arg-NHMec and H-Gly-Phe-NHMec were found to be 14.4 and 10.7 mM1 s−1, respectively, at pH 7.0. Approximately 1 mg of affinity-purified schistosome DPP I was obtained per liter of insect cell culture supernatant, representing 2 × 109 High Five cells.  相似文献   

15.
The structure and function of CPa-1 and CPa-2 in Photosystem II   总被引:3,自引:0,他引:3  
This review presents a summary of recent investigations examining the structure and function of the chlorophyll-proteins CPa-1 (CP47) and CPa-2 (CP43). Comparisons of the derived amino acid sequences of these proteins suggest sites for chlorophyll binding and for interactions between these chlorophyll-proteins and other Photosystem II components. Hydropathy plot analysis of these proteins allows the formulation fo testable hypotheses concerning their topology and orientation within the photosynthetic membrane. The role of these chlorophyll-proteins as interior light-harvesting chlorophyll-a antennae for Photosystem II is examined and other possible additional roles for these important Photosystem II components are discussed.This work was supported by NSF Grant DMB-8740292.  相似文献   

16.
Starch grains present in the endosperm of grains of common buckwheat (Fagopyrum esculentum Moench) show a monomodal distribution with size ranging from 4 to 10 μm. SDS-PAGE analysis of starch granule bound proteins revealed the presence of a single band corresponding to molecular mass of 59.7 kDa. The protein is localized within the central core of the starch grains. Antisera raised against the 59.7 kDa protein cross reacted with the 61 kDa GBSS-I from endosperm starches of maize and the 60 kDa GBSS-I from endosperm starches of rice and wheat, thereby indicating serological homology between the 59.7 kDa buckwheat starch granule bound protein and GBSS-I of wheat, maize and rice. 2D-PAGE of starch granule bound proteins of common buckwheat resolved the fraction into 7 spots with pI ranging from 5.2 to 5.6. N-terminal amino acid sequence for 25 residues of two immunoreactive proteins separated by 2D PAGE showed 94 % homology with N-terminal amino acid sequence of GBSS-I from Hordeum vulgare, Triticum spp. and Phaseolus vulgaris. Even though analysis of the sequence alignment revealed a clear diversification into monocotyledonous and dicotyledonous groups, the protein from buckwheat showed similarities with GBSS-I from both dicots as well as monocots. As is the case with dicots, the sequence of GBSS-I from buckwheat has valine as the 11th residue. GBSS-I from majority of monocots has methionine at this position. The sequence also showed similarities with monocots with valine at P’5 from the N-terminus. GBSS-I from majority of dicots has isoleucine at this position. The significance of these substitution remains to be ascertained.  相似文献   

17.
Certain marine organisms have been known to cause allergic reactions among occupational fishermen. We have previously reported that bronchial asthma among the workers engaged in spiny lobster fishing in Japan was caused by octocorals such as Dendronephthya sp. and Scleronephthya gracillima (previously named Alcyonium gracillimum). Now we have found another octocoral, Scleronephthya gracillima (Kuekenthal), which causes the allergic disease in fishermen. The octocoral was characterized as a new green fluorescent protein (GFP)‐like family. The new allergen has a molecular mass of 27 kDa in 1D and 2D SDS‐PAGE under reduced conditions. The 27 kDa component was determined to be an allergen by western blotting, ECL immune staining method and absorption of patient sera with the antigen. Furthermore, the combination of analysis with LC‐ESI‐MS/MS and MASCOT search in the NCBInr database concluded the 27 kDa component had the sequence YPADI/LPDYFK, and that the 22 kDa component had the sequence QSFPEGFSWER, which both matched a GFP‐like protein in Acropora aculeus and in Montastraea annularis. Further analysis by MALDI‐TOF/MS/MS and MASCOT search in the NCBInr database of all 27 kDa eight spot components from 2D SDS‐PAGE indicated that the sequence QSFPEGFSWER also matched as GFP‐like protein in Lobophyllia hemprichii and Scleractinia sp. To our knowledge, this is the first report of the new allergenic protein that corresponds to a new GFP‐like protein named Akane, and which has fluorescent emissions in the red and green part of the spectra at 628 nm and 508 nm, respectively.  相似文献   

18.
Laboratory for Plant Ecological Studies, Faculty of Science,Kyoto University, Kyoto 606, Japan P700-Chl a-protein complexes(CP1 and CP1*), Chl-protein complexes of PS II core (CPa-1 andCPa-2), light-harvesting Chi a/A-protein complexes (LHCPo andLHCPm) and CP29 of spinach thylakoids were resolved by SDS-polyacrylamide-gelelectrophoresis (PAGE) under non-denaturing conditions. TheLHCP oligomer purified by electrophoresis, had 29.5- and 27-kDapolypeptides. CP1, CP29 and two LHCPs (LHCP-1 and LHCP-2) ofspinach thylakoids were separated by a lithium dodecylsulfate(LDS) PAGE system with high resolution. The two LHCPs showedthe same absorption spectrum on the gel. When LHCP oligomerwas reelectrophoresed by this system it also gave LHCP-1, andLHCP-2. LHCP-1 had both 29.5- and 27- kDa polypeptides, butLHCP-2 had only 29.5 kDa polypeptide. Both polypeptides seemedto bind Chi. The heterogeneity of LHCP was also observed withbean thylakoids. (Received August 5, 1987; Accepted September 17, 1987)  相似文献   

19.
The deep-sea tube worm Riftia pachyptila Jones possesses a multi-hemoglobin system with three different extracellular Hbs: two dissolved in the vascular blood, V1 (ca. 3,500 kDa) and V2 (ca. 400 kDa), and one in the coelomic fluid, C1 (ca. 400 kDa). V1 Hb consists of four heme-containing, globin chains (b–e) and four linker chains (L1–L4). V2 and C1 Hbs are exclusively built from globin chains, six for V2 (a–f) and five for C1 (a–e). The complete amino acid sequence of the isolated monomeric globin chain b, common to all Riftia Hbs, has been determined by automated Edman degradation sequencing of the peptides derived by digestion with trypsin, chymotrypsin, thermolysin, and CNBr. This polypeptide chain is composed of 144 amino acid residues, providing a Mr of 16, 135.0 Da. Moreover, the primary sequence of chain b revealed 3 Cys residues at position 4, 75, and 134. Cys-4 and Cys-134 are located at positions where an intra-chain disulfide bridge is formed in all annelid, vestimentiferan, or pogonophoran chains, but Cys-75 is located at a unique position only found in three globin chains belonging to Lamellibrachia and Oligobrachia, a vestimentiferan and a pogonophoran. In both groups, Hbs can bind sulfide reversibly to fuel the chemosynthetic process of the symbiotic bacteria they harbor. Sulfide-binding experiments performed on purified Hb fractions (i.e., V1, V2, and C1 Hbs) suggest that free Cys residues on globin chains, and the numerous Cys found in linker chains, as determined previously by ESI-MS, may be the sulfide binding-sites. Blocking the free Cys by N-ethylmaleimide, we confirmed that free cysteines were involved in sulfide-binding but did not account for the whole sulfide-binding capacity of V1 Hb. Furthermore, a phylogenetic tree was constructed from 18 globin-like chains of annelid, vetimentiferan, and pogonophoran extracellular Hbs to clarify the systematic position of tubeworms. Riftia chain b clearly belongs to the “strain A” family with 30 to 80% identity with the other sequences analyzed. Its position in the tree confirmed a close relationship between vestimentiferan, pogonophoran, and annelid Hbs. Proteins 29:562–574, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The O-demethylase of the methylotrophic homoacetogenic bacterium strain MC was purified to apparent homogeneity. The enzyme system consisted of four different components that were designated A, B, C, and D according to their elution sequence from the anionic-exchange chromatography column. All four components were essentially required for catalysis of the transfer of the methyl group from phenyl methyl ethers to tetrahydrofolate. According to gel filtration and SDS-PAGE, components A and B were monomers with apparent molecular masses of approximately 26 kDa (subunit 25 kDa) and 36 (subunit 41 kDa), respectively; component C appeared to be a trimeric protein (195 kDa, subunit 67 kDa); and component D was probably a dimer (64 kDa, subunit 30 kDa). Component A contained one corrinoid per monomer. In crude extracts, component D appeared to be the rate-limiting protein for the complete methyl transfer reaction. Additional requirements for the reaction were ATP and low-potential reducing equivalents supplied by either titanium(III) citrate or H2 plus hydrogenase purified from strain MC. Received: 5 February 1997 / Accepted: 17 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号