首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The heat shock protein 90 (Hsp-90) inhibitor, geldanamycin, and the proteasome inhibitor, MG-132, both inhibited tumor necrosis factor receptor 1 (TNF-R1)- but not TRAIL-induced apoptosis in Kym-1 cells, suggesting that TNF-R1-induced cell death is dependent on NF-kappaB activation in this model. Triggering of TNF-R1 by agonistic antibodies led to cell-type specific induction of endogenous TNF and apoptosis, the latter of which was abrogated by neutralizing TNF specific antibodies. TNF-R1-stimulated cells expressed TNF mainly in a cell-associated form, suggesting that the endogenously produced TNF act in its membrane-bound form. Geldanamycin failed to inhibit apoptosis induction by a combination of agonistic TNF-R1- and TNF-R2-specific antibodies, indicating that both TNF receptors co-operate in TNF-R1-triggered apoptosis in Kym-1 cells. Thus, TNF-R1 stimulation can elicit a strong and rapid apoptotic response via induction of membrane TNF and subsequent cooperation of TNF-R1 and TNF-R2. Moreover, we give evidence that this mechanism circumvents the need of the prolonged presence of exogenous soluble TNF for TNF-R1-mediated apoptosis induction.  相似文献   

3.
4.
Tumor necrosis factor (TNF)-alpha-induced hepatocyte apoptosis is implicated in a wide range of liver diseases including viral hepatitis, alcoholic hepatitis, ischemia/reperfusion liver injury, and fulminant hepatic failure. TNF-alpha exerts a variety of effects that are mediated mainly by TNF-receptor 1 (TNF-R1) in cell death. The activation of TNF-R1 leads to the activation of multiple apoptotic pathways involving the activation of the pro-death Bcl-2 family proteins, reactive oxygen species, C-Jun NH2-terminal kinase, cathepsin B, acidic sphingomyelinase and neutral sphingomyelinase. These pathways are closely interlinked and mainly act on mitochondria, which release the apoptogenic factors and other events, resulting in apoptosis. This article reviews the recent progress in the molecular mechanisms of TNF-alpha-induced apoptosis in hepatocytes, and discusses how these molecular findings are shaping our understanding of the pathogenesis of liver diseases and our strategy to develop novel therapeutics.  相似文献   

5.
Tumor necrosis factor (TNF) signaling leads to pleiotropic responses in a wide range of cell types, in part by activating antiapoptotic and proapoptotic pathways. Previous studies have suggested that TNF receptor-associated factor (TRAF) 2 can mediate crucial antiapoptotic signals during TNF stimulation. However, it is unclear how the antiapoptotic signals via TRAF2 in TNF-R1 signaling is regulated. Here we show that TRAF1 is cleaved by caspase-8 into two fragments during apoptosis induced by TNF. Overexpression of the C-terminal cleavage product, TRAF1-c, increased TNF-induced cell death of hybridoma T cells. Importantly, we demonstrate that the cleavage product of TRAF1 coimmunoprecipitates with TRAF2 that is released from the TNF-R1 complex in response to prolonged TNF treatment. These results indicate that caspase-dependent cleavage of TRAF1 generates TRAF1-c fragments that are able to bind TRAF2, and then sequester TRAF2 from the TNF-R1 complex, rendering cells, at least in part, sensitive to TNF.  相似文献   

6.
Death receptors such as the 55 kDa tumor necrosis factor (TNF) receptor (TNF-R55) or Fas can initiate both apoptotic (caspase-dependent) and caspase-independent routes to programmed cell death (PCD). Here, we demonstrate for the first time that the single murine receptor for (TNF)-related apoptosis-inducing ligand (mTRAIL-R2) can induce a caspase-independent form of PCD with necrosis-like features in addition to apoptosis. Analysis of morphological and cellular features of caspase-independent PCD in response to TRAIL and TNF suggests that mTRAIL-R2 and TNF-R55 elicit caspase-independent PCD through similar pathways, although without participation of cathepsins. Cells overexpressing acid ceramidase (AC), an enzyme that metabolizes the sphingolipid ceramide, show enhanced survival from TRAIL-induced caspase-independent PCD but not from apoptosis, implicating a function of ceramide as a key mediator in caspase-independent PCD (but not apoptosis) induced by mTRAIL-R2. In concert with the enhanced resistance of AC-overexpressing cells against caspase-independent PCD induced by TNF, our results suggest that ceramide acts as a common mediator of caspase-independent PCD caused by death receptors such as mTRAIL-R2 and TNF-R55.  相似文献   

7.
TNF signaling: early events and phosphorylation   总被引:1,自引:0,他引:1  
Tumor necrosis factor-alpha (TNF) is a major mediator of apoptosis as well as immunity and inflammation. Inappropriate production of TNF or sustained activation of TNF signaling has been implicated in the pathogenesis of a wide spectrum of human diseases, including cancer, osteoporosis, sepsis, diabetes, and autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. TNF binds to two specific receptors, TNF-receptor type I (TNF-R1, CD120a, p55/60) and TNF-receptor type II (TNF-R2, CD120b, p75/80). Signaling through TNF-R1 is extremely complex, leading to both cell death and survival signals. Many findings suggest an important role of phosphorylation of the TNF-R1 by number of protein kinases. Role of TNF-R2 phosphorylation on its signaling properties is understood less than TNF-R1. Other cellular substrates as TRADD adaptor protein, TRAF protein family and RIP kinases are reviewed in relation to TNF receptor-mediated apoptosis or survival pathways and regulation of their actions by phosphorylation.  相似文献   

8.
The various biological activities of tumor necrosis factor (TNF) are mediated by two receptors, one of 55 kD (TNF-R55) and one of 75 kD (TNF-R75). Although the phenotypic and molecular responses elicited by TNF in different cell types are fairly well characterized, the signaling pathways leading to them are so far only partly understood. To further unravel these processes, we focused on TNF-R55, which is responsible for mediating most of the known TNF effects. Since several studies have demonstrated the importance of receptor clustering and consequently of close association of the intracellular domains for signaling, we addressed the question of whether clustering of the intracellular domains of TNF-R55 (TNF-R55i) needs to occur in structural association with the inner side of the cell membrane, where many signaling mediators are known to reside. Therefore, we investigated whether induced intracellular clustering of only TNF-R55i would be sufficient to initiate and generate a full TNF response, without the need for a full-length receptor molecule or a transmembrane region. Our results provide clear evidence that inducible forced trimerization of either TNF-R55i or only the death domain elicits an efficient TNF response, comprising activation of the nuclear factor κB, induction of interleukin-6, and cell killing.  相似文献   

9.
Endothelial monocyte activating polypeptide-II (EMAP-II) is an inflammatory cytokine known to have a role in neutrophil and macrophage chemotaxis and in apoptosis. It is a tumour-derived cytokine that sensitizes tumour vasculature to the effects of systemic TNF. In order to gain insight into the mechanism by which EMAP-II sensitizes vessels to TNF, we focused on its effects on TNF receptor expression. In human umbilical vein endothelial cells (HUVEC), TNF-R1 mRNA is increased four-fold following incubation with recombinant EMAP-II. Conditioned media from cell lines known to produce high levels of EMAP-II upregulated TNF-R1 but not TNF-R2 by up to twenty-fold compared to media controls and low expressing cell lines; this effect was blocked by anti-EMAP-II antibody. Recombinant EMAP-II upregulated TNF-R1 expression by approximately six-fold. Analysis of HUVEC lysates by ELISA showed increased expression of TNF-R1 within 2 h; TNF-R2 expression was unaffected by recombinant EMAP-II. Finally, immunohistochemistry of human melanomas in vivo showed that TNF-R1 staining is increased on the vessels of tumours known to express high levels of EMAP-II compared to low EMAP-II expressing tumours. These results suggest that EMAP-II upregulates TNF-R1 expression by endothelial cells both in vitro and in vivo. This induction of TNF-R1 expression may be the mechanism by which EMAP-II sensitizes tumour endothelium to the effects of TNF leading to haemorrhagic necrosis.  相似文献   

10.
Endothelial monocyte-activating polypeptide-II (EMAP-II), a proinflammatory cytokine with antiangiogenic properties, renders tumours sensitive to tumour necrosis factor-alpha (TNF) treatment. The exact mechanisms for this effect remain unclear. Here we show that human endothelial cells (EC) are insensitive to TNF-induced apoptosis but after a short pre-treatment with EMAP-II, EC quickly undergo TNF-induced apoptosis. We further analysed this EMAP-II pre-treatment effect and found no increase of TNF-R1 protein expression but rather an induction of TNF-R1 redistribution from Golgi storage pools to cell membranes. In addition, we observed EMAP-II induced mobilization and membrane expression of the TNF-R1-Associated Death Domain (TRADD) protein. Immunofluorescence co-staining experiments revealed that these two effects occurred at the same time in the same cell but TNF-R1 and TRADD were localized in different vesicles. These findings suggest that EMAP-II sensitises EC to apoptosis by facilitating TNF-R1 apoptotic signalling via TRADD mobilization and introduce a molecular and antiangiogenic explanation for the TNF sensitising properties of EMAP-II in tumours.  相似文献   

11.
Tumor necrosis factor (TNF) is the prototypic member of the TNF ligand family and has a key role in the regulation of inflammatory processes. TNF exerts its functions by interaction with the death domain-containing TNF-receptor 1 (TNF-R1) and the non-death domain-containing TNF-receptor 2 (TNF-R2), both members of a receptor family complementary to the TNF ligand family. Due to the prototypic features of the TNF receptors and their importance for the regulation of inflammation, the signal transduction mechanisms utilized by these receptors have been extensively studied. Several proteins that interact directly or indirectly with the cytoplasmic domains of TNF-R1 and TNF-R2 have been identified in the recent years giving ideas how these receptors are connected to the apoptotic pathway and the signaling cascades leading to activation of NF-kappaB and JNK. Of special interest are TNF receptor-associated factor (TRAF) 1 and 2, which defines a novel group of adaptor proteins involved in signal transduction by most members of the TNF receptor family, of IL-1 receptor and IL-17 receptor as well as some members of the TOLL-like receptor family. TRAF 2 is currently the best-characterized TRAF family member, having a key role in mediating TNF-R1-induced activation of NF-kappaB and JNK. Moreover, recent studies suggest that TRAF 2 represents an integration point for pro- and antiapoptotic signals. This review focuses on the molecular mechanisms that underlay signal initiation by TNF-R1 and TNF-R2, with particular consideration of the role of TRAF 2, and highlights the importance of this molecule for the integration of such antagonizing pathways as death induction and NF-kappaB-mediated surviving signals.  相似文献   

12.
13.
Tumour necrosis factor (TNF) exerts two main effects: a beneficial one as an anti-infection, anti-tumour cytokine, and a detrimental one in the systemic inflammatory response syndrome (SIRS). Two receptors (TNF-R) mediate these effects, but their precise role in different cell types is far from solved. TNF induces receptor oligomerization, an event that is believed to connect the receptors to downstream signalling pathways. Recent research suggests that several TNF-R-associated proteins, including kinases, may initiate cytoplasmic signal transduction.  相似文献   

14.
15.
IntroductionMutations in the TNFRSF1A gene, encoding tumor necrosis factor receptor 1 (TNF-R1), are associated with the autosomal dominant autoinflammatory disorder, called TNF receptor associated periodic syndrome (TRAPS). TRAPS is clinically characterized by recurrent episodes of long-lasting fever and systemic inflammation. A novel mutation (c.262 T > C; S59P) in the TNFRSF1A gene at residue 88 of the mature protein was recently identified in our laboratory in an adult TRAPS patient. The aim of this study was to functionally characterize this novel TNFRSF1A mutation evaluating its effects on the TNF-R1-associated signaling pathways, firstly NF-κB, under particular conditions and comparing the results with suitable control mutations.MethodsHEK-293 cell line was transfected with pCMV6-AC construct expressing wild-type (WT) or c.262 T > C (S59P), c.362G > A (R92Q), c.236C > T (T50M) TNFRSF1A mutants. Peripheral blood mononuclear cells (PBMCs) were instead isolated from two TRAPS patients carrying S59P and R92Q mutations and from five healthy subjects. Both transfected HEK-293 and PBMCs were stimulated with tumor necrosis factor (TNF) or interleukin 1β (IL-1β) to evaluate the expression of TNF-R1, the activation of TNF-R1-associated downstream pathways and the pro-inflammatory cytokines by means of immunofluorescent assay, array-based technique, immunoblotting and immunometric assay, respectively.ResultsTNF induced cytoplasmic accumulation of TNF-R1 in all mutant cells. Furthermore, all mutants presented a particular set of active TNF-R1 downstream pathways. S59P constitutively activated IL-1β, MAPK and SRC/JAK/STAT3 pathways and inhibited apoptosis. Also, NF-κB pathway involvement was demonstrated in vitro by the enhancement of p-IκB-α and p65 nuclear subunit of NF-κB expression in all mutants in the presence of TNF or IL-1β stimulation. These in vitro results correlated with patients’ data from PBMCs. Concerning the pro-inflammatory cytokines secretion, mainly IL-1β induced a significant and persistent enhancement of IL-6 and IL-8 in PBMCs carrying the S59P mutation.ConclusionsThe novel S59P mutation leads to defective cellular trafficking and to constitutive activation of TNF-R1. This mutation also determines constitutive activation of the IL-1R pathway, inhibition of apoptosis and enhanced and persistent NF-κB activation and cytokine secretion in response to IL-1β stimulation.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0604-7) contains supplementary material, which is available to authorized users.  相似文献   

16.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is selectively toxic to tumor compared with normal cells. Other members of the TNF family of death ligands (TNF, CD95L) engage their respective receptors (TNF-R1 and CD95), resulting in internalization of receptor and ligand and recruitment of adaptor proteins to the caspase activation platform known as the death-inducing signaling complex (DISC). Recently, TNF-R1 and CD95 have been shown to induce apoptosis with an absolute requirement for internalization of their corresponding receptors in the formation of a DISC. We show that TRAIL and its receptors are rapidly endocytosed in a time- and concentration-dependent manner. Blockade of receptor internalization with hyperosmotic sucrose did not inhibit TRAIL-induced apoptosis but, rather, amplified the apoptotic signaling of TRAIL. Plate-bound and soluble TRAIL induced similar levels of apoptosis. Together these results suggest that neither ligand nor receptor internalization is required for TRAIL-induced apoptosis. Internalization of TRAIL is mediated primarily by clathrin-dependent endocytosis and also by clathrin-independent pathways. Inhibition of clathrin-dependent internalization by overexpression of dominant negative forms of dynamin or AP180 did not inhibit TRAIL-induced apoptosis. Consistent with the finding that neither internalization of TRAIL nor its receptors is required for transmission of its apoptotic signal, recruitment of FADD (Fas-associated death domain) and procaspase-8 to form the TRAIL-associated DISC occurred at 4 degrees C, independent of endocytosis. Our findings demonstrate that TRAIL and TRAIL receptor 1/2, unlike TNF-TNF-R1 or CD95L-CD95, do not require internalization for formation of the DISC, activation of caspase-8, or transmission of an apoptotic signal in BJAB type I cells.  相似文献   

17.
Tumor necrosis factor (TNF) contributes to insulin resistance by binding to the 55kDa TNF receptor (TNF-R55), resulting in serine phosphorylation of proteins such as insulin receptor (IR) substrate (IRS)-1, followed by reduced tyrosine phosphorylation of IRS-1 through the IR and, thereby, diminished IR signal transduction. Through independent receptor domains, TNF-R55 activates a neutral (N-SMase) and an acid sphingomyelinase (A-SMase), that both generate the sphingolipid ceramide. Multiple candidate kinases have been identified that serine-phosphorylate IRS-1 in response to TNF or ceramide. However, due to the fact that the receptor domain of TNF-R55 mediating inhibition of the IR has not been mapped, it is currently unknown whether TNF exerts these effects with participation of N-SMase or A-SMase. Here, we identify the death domain of TNF-R55 as responsible for the inhibitory effects of TNF on tyrosine phosphorylation of IRS-1, implicating ceramide generated by A-SMase as a downstream mediator of inhibition of IR signaling.  相似文献   

18.
Several members of the tumour necrosis factor receptor (TNF-R) superfamily can induce cell death. For TNF-R1, Fas/APO-1, DR3, DR6, TRAIL-R1 and TRAIL-R2, a conserved 'death domain' in the intracellular region couples these receptors to activation of caspases. However, it is not yet known how TNF receptor family members lacking a death domain, such as TNF-R2, CD40, LT-betaR, CD27 or CD30, execute their death-inducing capability. Here we demonstrate in different cellular systems that cytotoxic effects induced by TNF-R2, CD40 and CD30 are mediated by endogenous production of TNF and autotropic or paratropic activation of TNF-R1. In addition, stimulation of TNF-R2 and CD40 synergistically enhances TNF-R1-induced cytotoxicity. These findings describe a novel pro-apoptotic mechanism induced by some members of the TNF-R family.  相似文献   

19.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号