首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D J Jones 《Life sciences》1982,31(5):479-488
The stimulation of cyclic adenosine 3',5'-monophosphate (cyclic AMP) accumulation by the depolarizing agents K+, ouabain and veratridine, was studied in rat and guinea pig spinal cord tissue slices. Significantly increased accumulation of cyclic AMP was produced by each of the agents in a concentration-dependent manner. Veratridine and ouabain were equipotent (EC50 = 5 x 10(-5)M) and approximately 500 fold more potent than K+ (EC50 = 10(-2)M). Depolarizing agent-induced cyclic AMP accumulation in slices from guinea pig spinal cord was approximately double the response in rat spinal cord. Maximum stimulation occurred within 2.5 min of incubation with these agents and lasted for at least 30 min. Regional studies demonstrated that the maximal accumulation of cyclic AMP occurred to a greater degree in tissue slices from the dorsal section of spinal cord from both rat and guinea pig. Whereas the ouabain and veratridine stimulatory responses are completely dependent on extracellular Ca++, the K+ response is only partially dependent. Stimulation due to ouabain and veratridine is dependent, and K+ is independent, of release of neurohumoral substances such as norepinephrine or adenosine from spinal neurons. These experiments indicate the possible modulatory role of depolarization-linked events in regulating the spinal cord cyclic AMP system.  相似文献   

2.
In slices obtained from the ventral and the dorsal guinea pig spinal cord both forskolin and vasoactive intestinal peptide (VIP) caused a dose-dependent stimulation of the production of cyclic AMP. By contrast capsaicin stimulated cyclic AMP formation only in the dorsal cord; no effect was observed in the ventral cord. The alpha 2-adrenergic agonist UK-14,304 dose-dependently inhibited the production of cyclic AMP in both the dorsal and ventral aspects of the cord when the formation of cyclic AMP had been stimulated with 3 microM forskolin, the maximal inhibition amounting to 25-32%. Also the basal (i.e., unstimulated) production of cyclic AMP was inhibited, the inhibition amounting to about 16-18%. However, after stimulation of cyclic AMP formation in the dorsal cord with capsaicin, UK-14,304 was virtually ineffective in inhibiting the accumulation of cyclic AMP. Also, when the formation of cyclic AMP was stimulated with VIP, UK-14,304 was virtually ineffective in inhibiting the formation of cyclic AMP both in the ventral and the dorsal parts of the cord. When cyclic AMP production had been stimulated with forskolin the ability of UK-14,304 to inhibit the formation of cyclic AMP was not attenuated by capsaicin, either in the ventral or in the dorsal cord. The results are discussed with the notion that cyclic AMP inhibitory spinal cord alpha 2-adrenoceptors are located on cells accessible to stimulation of cyclic AMP with forskolin but not with capsaicin or VIP.  相似文献   

3.
The effect of Ca2+ and putative neurotransmitters on formation of cyclic AMP and cyclic GMP has been studied in incubated slices of brain tissue. Cyclic AMP levels in cerebellar slices after about 90 min of incubation ranged from 10 pmol/mg protein in rabbit, to 25 in guinea pig, to 50 in mouse and 200 in rat. Cyclic GMP levels in the same four species showed no correlation with cyclic AMP levels and were, respectively, 1.3, 20, 5 and 30 pmol/mg protein. The absence of calcium during the prolonged incubation of cerebellar slices had little effect on final levels of cyclic AMP, while markedly decreasing final levels of cyclic GMP. Reintroduction of Ca2+ resulted in a rapid increase in cerebellar levels of cyclic GMP which was most pronounced for guinea pig where levels increased nearly 7-fold within 5 min. Prolonged incubation of guinea pig cerebral cortical slices in calcium-free medium greatly elevated cyclic AMP levels apparently through enhanced formation of adenosine, while having little effect on final levels of cyclic GMP. Norepinephrine and adenosine elicited accumulations of cyclic AMP and cyclic GMP in both guinea pig cerebral cortical and cerebellar slices. Glutamate, γ-aminobutyrate, glycine, carbachol, and phenylephrine at concentrations of 1 mM or less had little or noe effect on cyclic nucleotide levels in guinea pig cerebellar slices. Prostaglandin E1 and histamine slightly increased cerebellar levels of cyclic AMP. Isoproterenol increased both cyclic AMP and cyclic GMP. The accumulation of cyclic AMP and cyclic GMP elicited by norepinephrine in cerebellar slices appeared, baed on dose vs. response curves, agonist-antaganonist relationships and calcium dependency, to involve in both cases activation of a similar set of ß-adrenergic receptors. In cerebellar slices accumulations of cyclic AMP and cyclic GMP elicted by norepinephrine and by a depolarizing agent, veratridine, were strongly dependent on the presence of calcium. The stimulatory effects of adenosine on cyclic AMP and cyclic GMP formation were antagonized by theophylline. The lack of correlations between levels of cyclic AMP and cyclic GMP under the various conditions suggested independent activation of cyclic AMP- and cyclic GMP-generating systems in guinea pig cerebellar slices by interactions with Ca2+, norephinephrine and adenosine.  相似文献   

4.
Abstract: The role of nitric oxide (NO) in the control of 5-hydroxytryptamine (5-HT)-induced release of substance P was investigated in rat spinal cord in vitro. 5-HT facilitated the 60 m M K+-evoked release of substance P-like immunoreactive materials (SPLI) from the superfused rat dorsal spinal cord slices without affecting spontaneous SPLI release. The facilitatory effect of 5-HT was significantly inhibited by ICS 205-930 or granisetron (potent and specific 5-HT3 receptor antagonists), by N G-monomethyl- l -arginine (NMMA, a NO synthase inhibitor), and by methylene blue or 1 H -[1,2,4]oxadiazolo[4,3- a ]quinoxaline-1-one (MB or ODQ, respectively; both are inhibitors of soluble guanylyl cyclase) and was mimicked by 2-methylserotonin (2-m-5-HT, a selective 5-HT3 receptor agonist), l -arginine (a precursor of NO), or 8-bromo-cyclic GMP. NMMA, MB, or ODQ inhibited the 2-m-5-HT-induced increase of cyclic GMP levels in the rat dorsal spinal cord slices. These data suggest that the facilitatory effect of 5-HT on the release of SPLI is mediated by the 5-HT3 receptor and that the intracellular signaling is mediated via NO by an increase in cyclic GMP production.  相似文献   

5.
The diterpene forskolin markedly activates adenylate cyclase in membranes from various rat brain regions and elicits marked accumulations of radioactive cyclic AMP in adenine-labeled slices from cerebral cortex, cerebellum, hippocampus, striatum, superior colliculi, hypothalamus, thalamus, and medulla-pons. In cerebral cortical slices, forskolin has half-maximal effects at 20-30 microM on cyclic AMP levels, both alone and in the presence of the phosphodiesterase inhibitor ZK 62771. The presence of a very low dose of forskolin (1 microM) can augment the response of brain cyclic AMP-generating systems to norepinephrine, isoproterenol, histamine, serotonin, dopamine, adenosine, prostaglandin E2, and vasoactive intestinal peptide. Forskolin does not augment responses to combinations of histamine-norepinephrine adenosine-norepinephrine, or histamine-adenosine. For norepinephrine and isoproterenol in rat cerebral cortical slices and for histamine in guinea pig cerebral cortical slices, the presence of 1 microM-forskolin augments the apparent efficacy of the amine, whereas for adenosine, prostaglandin E2, and vasoactive intestinal peptide, the major effect of 1 microM-forskolin is to increase the apparent potency of the stimulatory agent. In rat striatal slices, forskolin reveals a significant response of cyclic AMP systems to dopamine and augments the dopamine-elicited activation of adenylate cyclase in rat striatal membranes. The activation of cyclic AMP systems by forskolin is rapid and reversible, and appears to involve both direct activation of adenylate cyclase and facilitation and/or enhancement of receptor-mediated activation of the enzyme.  相似文献   

6.
Methoxamine and phenylephrine (PE), postsynaptic alpha adrenergic agonists stimulated the accumulation of cyclic AMP in spinal cord tissue slices. Naphazoline, oxymetazoline and clonidine, previously shown to have greater efficacy at presynaptic alpha receptors did not alter accumulation and, in fact, blocked the PE response. The PE-stimulation was completely inhibited by postsynaptic alpha antagonists, incompletely by agents which bl ock presynaptic alpha receptors, and slightly by the beta blocker propranolol. Pe-stimulated accumulation was potentiated by phosphodiesterase inhibition (RO 20-1724). In contrast to previous reports on the requirement of the copresence of adenosine for alpha receptor stimulated accumulation of cyclic AMP in neuronal tissue, the PE-stimulation in spinal cord slices was unchanged by adenosine receptor blockade (theophylline), hydrolysis of endogenous adenosine (adenosine deaminase), inhibition of adenosine deaminase (EHNA) or blockade of adenosine uptake (dipyridamole). Added adenosine increased basal accumulation and produced a marked potentiation of the PE response. From this data it is evident that, in spinal cord tissue slices, there occurs a postsynaptic alpha adrenergic receptor linked to cyclic AMP accumulation which does not require the presence of other neurohumoral agents for activation.  相似文献   

7.
In guinea pig cerebral cortical slices labeled during a prior incubation with radioactive adenine, electrical stimulation or the presence of depolarizing agents such as veratridine, ouabain, and high concentrations of K+ elicit a marked accumulation of radioactive cyclic AMP. This accumulation is reduced in all cases by the presence of theophylline, a compound that antagonizes the stimulatory effects of adenosine on cyclic AMP accumulation in brain slices. Exogenous adenosine deaminase also reduced the accumulation of cyclic AMP elicited by electrical stimulation, veratridine, and high concentrations of K+. Thus, adenosine formed in neuronal compartments under depolarizing conditions appears to be released into the extracellular medium as a prerequisite to stimulation of the cyclic AMP-generating system. Adenosine deaminase does not prevent the reduction in levels of ATP under depolarizing conditions, nor does it antagonize the accumulation of cyclic AMP elicited by a combination and norepinephrine. Adenosine deaminase does not, however, prevent the accumulations of cyclic AMP elicited by the depolarizing agent, ouabain.  相似文献   

8.
Several compounds have been tested for their activity as inhibitors of 3′,5′-nucleotide phosphodiesterase in brain cortical slices from guinea pig. SQ 20,009 (1-ethyl-4-isopropylidenehydrazino)-1H-pyrazolo (3,4-b)pyridine-5-carboxylate, ethylester, hydrochloride), a very potent inhibitor of 3′,5′-nucleotide phosphodiesterase from rat and rabbit brain shows only moderate activity as 3′,5′-nucleotide phosphodiesterase inhibitor when tested in brain slices. It enhances cyclic AMP accumulation only when slices are stimulated by histamine. It does not affect cyclic AMP levels when histamine/norepinephrine are used as stimuli of cyclic AMP formation and decreases the activity of adenosine as stimulant slightly. Ro 20–1724 (4-(3-butoxy-4-methoxy)-2-imidazolidinone) a potent inhibitor of canine cerebral cortex PDE activity effectively augments the increase in cyclic AMP under all stimulating conditions mentioned, as does to a somewhat smaller extent the more water soluble Ro 20–2926 (4-(3-ethoxy-ethoxy-4-methoxy)-2-imidazolidinone). Dose-response curves for Ro 20–1724 under three stimulating conditions of increased cyclic AMP formation (0.1 mm histamine, 0.1 mm histamine/0.1 mm norepinephrine, 0.1 mm adenosine) yield an ED50 of about 20 μm in all instances. A significant increase over respective controls is seen even at 1 μm Ro 20–1724 (histamine/norepinephrine). The drugs may be useful as tools for studying the regulation of cyclic AMP levels in the central nervous system.  相似文献   

9.
—Norepinephrine and epinephrine, in combination with either adenosine or histamine, enhanced the accumulation of cyclic AMP in guinea pig cerebral cortical slices. Isoproterenol had only marginal effects under the same conditions. Studies with d- and l-norepinephrine and with the α- and β-adrenergic blocking agents, phenoxybenzamine, phentolamine, dihydroergokryptamine, propranolol and sotalol, indicated that the effect of catecholamines on cyclic AMP levels in this tissue was stereo-specific and was mediated primarily via interaction with a classical α-adrenergic receptor. Studies with the antihistaminics, diphenhydramine and pheniramine, and the antiserotonin agent, methysergide, indicated that guinea pig cerebral cortical slices contain receptors for histamine and serotonin, whose activation also stimulates an enhanced accumulation of cyclic AMP in the presence of adenosine.  相似文献   

10.
The mechanism by which cannabinoid compounds produce their effects in the rat brain was evaluated in this investigation. Cannabinoid receptors, quantitated by [3H]CP-55,940 binding, were found in greatest abundance in the rat cortex, cerebellum, hippocampus, and striatum, with smaller but significant binding also found in the hypothalamus, brainstem, and spinal cord. Using rat brain slice preparations, we evaluated the effect of desacetyllevonantradol on basal and forskolin-stimulated cyclic AMP accumulation in the regions exhibiting the greatest cannabinoid receptor density. Desacetyllevonantradol (10 microM) reduced cyclic AMP levels in the hippocampus, frontal cortex, and striatum. In the cerebellum, however, the response to desacetyllevonantradol was biphasic with cyclic AMP accumulation being decreased at lower and increased at higher concentrations. Desacetyllevonantradol reduced cyclic AMP accumulation in isoproterenol-stimulated slices in the cortex and cerebellum, but not in the hippocampus. Cells that responded to vasoactive intestinal peptide with an increase in cyclic AMP accumulation in the hippocampus and cortex also responded to desacetyllevonantradol. The modulation of cyclic AMP accumulation by desacetyllevonantradol could be attenuated following stereotaxic implantation of pertussis toxin, supporting the involvement of a G protein in the cannabinoid response in the brain. However, other actions of cannabinoid compounds may also affect the cyclic AMP levels in brain slice preparations.  相似文献   

11.
F W Smellie  J W Daly  J N Wells 《Life sciences》1979,25(22):1917-1924
1-Isoamyl-3-isobutylxanthine (EC50 t 5 μM) potentiates by 2 to 6-fold the accumulations of cyclic AMP elicited in guinea pig cerebral cortical slices by norepinephrine, histamine, and adenosine. In addition, the xanthine derivative causes a 2 to 3-fold elevation of basal levels of cyclic AMP. 1-Isoamyl-3-isobutylxanthine has no effect on accumulations of cyclic AMP elicited by histamine or adenosine in the presence of a potent phosphodiesterase inhibitor, ZK 62771. The xanthine derivative retards the disappearance of cyclic AMP after a prior stimulation by adenosine. The results indicate that 1-isoamyl-3-isobutylxanthine is an extremely potent and effective inhibitor of phosphodiesterases involved in the regulation of cyclic AMP levels in guinea pig cerebral cortical slices. The 1-benzyl, 1-isoamyl, and 1-isobutyl derivatives of 3-isobutylxanthine potentiate the accumulation of cyclic AMP elicited by adenosine, while the 1-methyl derivative and 1-isoamyl-3-methylxanthine are inhibitory undoubtedly because of blockade of adenosine-receptors by these compounds. Xanthines with bulky 1- and 3- substituents appear to be relatively weak adenosine-antagonists and relatively specific and potent agents for inhibition of phosphodiesterases involved in cyclic AMP metabolism in brain tissue.  相似文献   

12.
The stimulatory effect of cysteine sulfinic acid on cyclic AMP formation was examined in slices from three different regions of guinea pig brain. The inhibitory effect of taurine on the stimulated formation of cyclic AMP was also studied. Cysteine sulfinic acid (1--10 mM) greatly increased the cyclic AMP level in striatal, cortical, and especially hippocampal slices. In hippocampal slices, taurine (0.1--30 mM) markedly lowered the increase of cyclic AMP induced by cysteine sulfinic acid, but not that induced by glutamate or aspartate. In this region, taurine also reduced the stimulatory effects on cyclic AMP formation of adenosine, norepinephrine, and histamine, but not of depolarizing agents. It did not, however, inhibit the effects of any of these stimulants in cortical slices. These results suggest that sulfur-containing amino acids, such as cysteine sulfinic acid and taurine, regulate the cyclic AMP level in the hippocampus.  相似文献   

13.
Norepinephrine and serotonin augment by about 2-fold the accumulation of cyclic [3H]AMP elicited by 2-chloroadenosine in [3H]adenine-labeled guinea-pig cerebral cortical slices. Histamine causes a 3-fold augmentation. The first two agents have no effect on cyclic AMP alone, while histamine has only a small effect alone. The augmentation of the 2-chloroadenosine response appears to be mediated by alpha 1-adrenergic, 5HT2-serotonergic and H2-histaminergic receptors. VIP-elicited accumulations of cyclic AMP are also augmented through stimulation of alpha 1-adrenergic, 5HT2-serotonergic and H1-histaminergic receptors. Activation of these amine receptors also increases the turnover of phosphatidylinositols in [3H]inositol-labeled guinea pig cerebral cortical slices. Norepinephrine causes a 5-fold, serotonin a 1.2-fold, and histamine a 2.5-fold increase in accumulations of [3H]inositol phosphates. 2-Chloroadenosine, vasoactive intestinal peptide, baclofen, and somatostatin have no effect on phosphatidylinositol turnover, nor do the last two agents augment accumulations of cyclic AMP elicited by 2-chloroadenosine. The data suggest a possible relationship between turnover of phosphatidylinositol and the augmentations of the cyclic AMP accumulations elicited by biogenic amines in brain slices.  相似文献   

14.
Abstract— Norepinephrine, epinephrine, isoproterenol, and adenosine elicit enhanced accumulations of cyclic AMP in incubated slices of rat cerebral cortex. Combinations of norepinephrine, epinephrine, isoproterenol, or histamine with adenosine have a greater than additive effect on cyclic AMP levels. The effects of isoproterenol appear to be mediated via a classical β-adrenergic receptor whereas the effects of norepinephrine appear due to interactions with both α- and β-adrenergic receptors. The presence of the phosphodiesterase inhibitor, isobutylmethylxanthine, potentiates the effects of the catecholamines and reveals a histamine-mediated increase in cyclic AMP levels. After an initial stimulation of cyclic AMP formation with norepinephrine, followed by washing of the slices, the cyclic AMP-generating system is unresponsive to norepinephrine but does respond to an adenosine-norepinephrine combination. In mouse cerebral cortical slices, catecholamines appear to elicit an accumulation of cyclic AMP primarily via interaction with a β-adrenergic receptor.  相似文献   

15.
Cyclic adenosine 3′, 5′-monophosphate (cyclic AMP) accumulates in guinea pig cerebral cortical slices during incubation with histamine, histamine + noradrenaline and adenosine. Noradrenaline does not enhance cyclic AMP formation. In the absence of Ca2+ ions and presence of 1 mM-EGTA in the Krebs-Ringer bicarbonate medium the effects of histamine, histamine + noradrenaline and adenosine are significantly enhanced and noradrenaline elicits an increase in cyclic AMP over control levels. When histamine is used as stimulant, cyclic AMP levels start to decline after only 5 min. However, in the absence of calcium and in the presence of EGTA in the medium this decline is not observed and cyclic AMP levels continue to rise for a considerable period of time. In normal medium, responses to restimulation by histamine or histamine + noradrenaline are greatly reduced in magnitude after a prior stimulation by these putative neurotransmitters. In contrast, when calcium is omitted from the incubation medium and 1 mM-EGTA is included, cyclic AMP levels increase to normal values at a second stimulation with histamine or histamine + noradrenaline. When slices are preincubated for various periods of time with histamine before addition of noradrenaline, the accumulation of cyclic AMP is significantly reduced as compared to levels obtained when histamine + noradrenaline were added simultanously. This decline in the overall response to histamine + noradrenaline is not observed when preincubation with histamine and subsequent incubations with histamine + noradrenaline are performed in Ca2+-free, 1 mM-EGTA containing buffer. Also preincubation with noradrenaline in normal, calcium-containing medium does not affect the total amount of cyclic AMP accumulating in the brain slices. The results are discussed in terms of an activation of phosphodiesterase within the cerebral cortical slices by increased levels of intracellular, freely available calcium which is mediated by the elevation of cyclic AMP concentration following hormonal stimulation.  相似文献   

16.
The P2 contents of nervous tissues from the human, rabbit, guinea pig, and Lewis rat were measured by radioimmunoassay. The ventral spinal roots contained more P2 than any other tissue. Human dorsal roots and peripheral nerves contained 41-65% of the amount in human ventral roots. Human olfactory and optic nerves and brain contained 1.1-2.7%, spinal cord, 2.8%, cranial nerve VIII, 11%, and cerebral grey matter, 0%. The relative amounts in the rabbit nervous system were similar except that the spinal cord contained 20% of the amount in the ventral roots. Qualitative estimates in the guinea pig showed that the spinal roots and peripheral nerves contained more P2 than the spinal cord, and that none was present in the brain. In the Lewis rat, P2 could be detected in the spinal roots and peripheral nerves but not in the CNS. The distribution of P2 in the human nervous system parallels the incidence and severity of lesions in acute polyradiculoneuritis. It also explains the absence of any lesions in the CNS when experimental allergic neuritis is induced in the Lewis rat.  相似文献   

17.
Summary A dorsal-horn fiber system is revealed in the thoracic spinal cord of guinea pig by means of substance P immunocytochemistry. This system has repeated craniocaudal and/or caudo-cranial extensions and possesses five main components: (1) a superficial network, situated beneath the dorsolateral surface of the spinal cord. This network is connected with the dorsal root fibers and the accumulations of substance P-like immunoreactive (SP-LI) fibers in the Lissauer's tract; (2) an accumulation of SP-LI fibers in the Lissauer's tract at the border of the dorsal horn; (3) two collateral SP-LI fascicles (one lateral and one medial) emerging from the SP-LI fiber accumulation in the Lissauer's tract; (4) a transversal fascicle running through laminae III–V, and (5) an SP-LI network in the region of the lateral spinal cord nucleus. These components of the dorsal-horn fiber system show widespread connections with ipsi-and contralateral spinal cord areas, connecting them in cranio-caudal and/or caudo-cranial directions. The SP-LI dorsal-horn system has close relationship with groups of preganglionic sympathetic cells in the intermediate zone of the spinal cord, respective with the vegetative network of this zone. It is suggested that some fibers of the dorsal-horn system that originate from dorsal-root ganglia may represent primary sensory or visceral afferents. It is likely that the dorsal-horn fiber system and the vegetative network of the thoracic spinal cord may represent the morphological basis for the integration of (1) the central and peripheral vegetative nervous systems, and (2) the somatic and vegetative nervous system.  相似文献   

18.
Abstract: The effect of linoleic acid on the formation of cyclic AMP in the slices of guinea pig cerebral cortex was examined. Treatment of the slices with linoleic acid resulted in an increase of basal and of norepinephrine-stimulated formation of cyclic AMP. The stimulatory effect on the basal level of cyclic AMP was not specific for linoleic acid: the potency of the fatty acid was related to the magnitude of unsaturation. In contrast, the enhancement of norepinephrine-stimulated formation of cyclic AMP seemed relatively specific for linoleic acid and arachidonic acid. Linoleic acid markedly enhanced the stimulated formation of cyclic AMP by histamine and adenosine, as well that by norepinephrine, without affecting that by excitatory amino acids and veratridine. Theophylline, adenosine deaminase, and 2'-deoxyadenosine antagonized the effect of linoleic acid. Linoleic acid enhanced the maximum responses to norepinephrine and adenosine without altering the ED50 values for these agonists. When linoleic acid-treated slices were washed with Krebs-Ringer containing defatted bovine serum albumin, both enhancement of the response to norepinephrine and the amount of [14C]linoleic acid incorporated in a free form significantly diminished.  相似文献   

19.
—The accumulation of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) was studied in cell-free homogenates of guinea pig brain. Homogenates, prepared in Krebs-Ringer buffer, responded markedly to the addition of neurohormones with an increased rate of cyclic AMP synthesis; preparations from cerebellum, cerebral cortex, and hippocampus responded to a degree approximating that achieved with slices of these areas of guinea pig brain. Adenylatc cyclase activity was seen only when cyclic AMP was measured by a [3H]adenine prelabelling technique or when total cyclic AMP was measured by radioimmunoassay; [32P]ATP did not serve as a substrate for this preparation of the enzyme. The adenylate cyclase was paniculate and required a Krebs Ringer buffer; use of tris, or tris with Mg2+ and Ca2+, resulted in a preparation totally devoid of hormonal stimulation. Digestion by purified beef heart cyclic nucleotide phosphodiesterase, Dowex chromatography, solubility in Ba(OH)2-ZnSO4 mixtures, and two thin layer chromatographic systems demonstrated that the product of the hormonally stimulated adenylate cyclase preparation was cyclic AMP. The selectivity of hormonal stimulation and the adrenergic character of the hormonal receptors from different brain areas were maintained in the cell-free preparation. However, simultaneous stimulation with two different neurohormones resulted in additive responses, rather than in the potentiation observed in preparations of slices of brain.  相似文献   

20.
Calcitonin gene-related peptide (CGRP) is cleaved by an endopeptidase, also known to hydrolyze substance P (SP). The enzyme which was isolated from human cerebrospinal fluid, converted rCGRP into two products, clearly separable on HPLC. Amino acid analysis showed cleavage to occur at Leu16-Ser17. The carboxy-terminal fragment, rCGRP-(17-37), was weakly active in inhibiting 125I-rCGRP binding to a rat medulla oblongata membrane preparation, but it showed no binding to spinal cord membranes. The N-terminal fragment, rCGRP-(1-16), had very low or no affinity. Autoradiography with 125I-rCGRP showed distinct labelling of rat dorsal spinal cord, while there was no consistent pattern with 125I-rCGRP-(1-16). In the isolated guinea pig ileum preparation, the two fragments showed no CGRP-like activity. The ability of CGRP to interfere with SP degradation is offered as the explanation why CGRP has been reported to potentiate several biologic actions of SP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号