首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.  相似文献   

3.
Study of two recently isolated giant bacteriophages Lu11 and OBP that are active on Pseudomonas putida var. Manila and Pseudomonas fluorescens, respectively, demonstrated their similarity in morphotype, genome size, and size of phage particles, with giant bacteriophages of Pseudomonas aeruginosa assigned to the supergroup of ?KZ-like phages of the family Myoviridae. This supergroup was designated in this manner according to the best studied phage ?KZ that belongs to the species of this group widely distributed in nature. Comparison of major polypeptide sizes of mature particles suggests similarity of certain proteins in the phages examined. In OBP particles visualized with an electron microscope, an “inner body” was detected, which points to specific DNA package intrinsic to phages of ?KZ group. In the meantime, phages Lu11 and OBP do not exhibit resemblance among themselves or with any of earlier described ?KZ-like phages in respect to detectable DNA homology. Note that phage Lu11 of P. putida var. Manila exhibits very slight homology with phage Lin68 of the family of P. aeruginosa ?KZ-like phages detected only in blot hybridization. This suggests the possible involvement of these phages in interspecies recombination (“gene shuffling”) between phages of various bacterial species. Results of partial sequencing of phage genomes confirmed the phylogenetic relatedness of phage OBP to phages of the ?KZ supergroup, whereas phage Lu11 most probably belongs to a novel species that is not a member of supergroup ?KZ composition. The results of the study are discussed in terms of the evolution of these phages.  相似文献   

4.
Bacterial capsules are not only important virulence factors, but also provide attachment sites for bacteriophages that possess capsule degrading enzymes as tailspike proteins. To gain insight into the evolution of these specialized viruses, we studied a panel of tailed phages specific for Escherichia coli K1, a neuroinvasive pathogen with a polysialic acid capsule. Genome sequencing of two lytic K1-phages and comparative analyses including a K1-prophage revealed that K1-phages did not evolve from a common ancestor. By contrast, each phage is related to a different progenitor type, namely T7-, SP6-, and P22-like phages, and gained new host specificity by horizontal uptake of an endosialidase gene. The new tailspikes emerged by combining endosialidase domains with the capsid binding module of the respective ancestor. For SP6-like phages, we identified a degenerated tailspike protein which now acts as versatile adaptor protein interconnecting tail and newly acquired tailspikes and demonstrate that this adapter utilizes an N-terminal undecapeptide interface to bind otherwise unrelated tailspikes. Combining biochemical and sequence analyses with available structural data, we provide new molecular insight into basic mechanisms that allow changes in host specificity while a conserved head and tail architecture is maintained. Thereby, the present study contributes not only to an improved understanding of phage evolution and host-range extension but may also facilitate the on purpose design of therapeutic phages based on well-characterized template phages.  相似文献   

5.
A 3-week coliphage survey was conducted in stool samples from 140 Bangladeshi children hospitalized with severe diarrhea. On the Escherichia coli indicator strain K803, all but one phage isolate had 170-kb genomes and the morphology of T4 phage. In spot tests, the individual T4-like phages infected up to 27 out of 40 diarrhea-associated E. coli, representing 22 O serotypes and various virulence factors; only five of them were not infected by any of these new phages. A combination of diagnostic PCR based on g32 (DNA binding) and g23 (major capsid protein) and Southern hybridization revealed that half were T-even phages sensu strictu, while the other half were pseudo-T-even or even more distantly related T4-like phages that failed to cross-hybridize with T4 or between each other. Nineteen percent of the acute stool samples yielded T4-like phages, and the prevalence was lower in convalescent stool samples. T4-like phages were also isolated from environmental and sewage water, but with low frequency and low titers. On the enteropathogenic E. coli strain O127:K63, 14% of the patients yielded phage, all of which were members of the phage family Siphoviridae with 50-kb genomes, showing the morphology of Jersey- and beta-4 like phages and narrow lytic patterns on E. coli O serotypes. Three siphovirus types could be differentiated by lack of cross-hybridization. Only a few stool samples were positive on both indicator strains. Phages with closely related restriction patterns and, in the case of T4-like phages, identical g23 gene sequences were isolated from different patients, suggesting epidemiological links between the patients.  相似文献   

6.
Bacteriophages are considered to be the most abundant biological entities on the planet. The Siphoviridae are the most commonly encountered tailed phages and contain double-stranded DNA with an average genome size of ~50 kb. This paper describes the isolation from four different activated sludge plants of the phage RRH1, which is polyvalent, lysing five Rhodococcus species. It has a capsid diameter of only ~43 nm. Whole-genome sequencing of RRH1 revealed a novel circularly permuted DNA sequence (14,270 bp) carrying 20 putative open reading frames. The genome has a modular arrangement, as reported for those of most Siphoviridae phages, but appears to encode only structural proteins and carry a single lysis gene. All genes are transcribed in the same direction. RRH1 has the smallest genome yet of any described functional Siphoviridae phage. We demonstrate that lytic phage can be recovered from transforming naked DNA into its host bacterium, thus making it a potentially useful model for studying gene function in phages.  相似文献   

7.
The genes lukS-PV and lukF-PV for Panton-Valentine leukocidin (PVL) that confers high virulence to Staphylococcus aureus are located on the prophages (PVL phages) which have been classified into group 1 and 2 sfi21-like Siphoviridae. We report novel PVL phages lysogenized in ST59 methicillin-resistant Staphylococcus aureus (MRSA) strains isolated in Japan (JCSC7247) and Taiwan (JCSC5967). The genomes of φ7247PVL and φ5967PVL showed more than 99% identity, and the regions containing the five genes located at both ends of the prophages, int (integrase), hol (holin), ami (amidase), lukS-PV, and lukF-PV, are highly homologous to extant PVL phages. The genes for the structural module are less homologous to these phages, but are highly homologous to non-PVL phages belonging to group 3 Sfi21-like Siphoviridae, for example φN315. Subsequent PCR identification and nucleotide sequencing of an additional 11 Taiwanese ST59 MRSA isolates suggested they all carry the same phage as φ5967PVL, which differed from φ7247PVL by a single base. This study adds evidence to the notion that novel PVL phages would be generated through illegitimate recombination events by acquiring the region at which hol, ami, luk, and int genes would line up upon lytic growth, and suggests that the PVL-positive MRSA clones that have emerged worldwide may carry distinct phages.  相似文献   

8.
Study of two recently isolated giant bacteriophages Lu11 and OBP that are active on Pseudomonas putida var. Manila and Pseudomonas fluorescens, respectively, demonstrated their similarity in morphology, genome size, and size of phage particles, with giant bacteriophages of Pseudomonas aeruginosa assigned to the supergroup of phiKZ-like phages of the family Myoviridae designated in this manner according to the best studied phage phiKZ that belongs to the species of this group widely distributed in nature. Comparison of major polypeptide sizes of mature particles suggests the similarity of certain proteins in the phages examined. In OBP particles visualized with an electron microscope, an "inner body" was detected, which points to the specific DNA package intrinsic to phages of phiKZ group. In the meantime, phages Lul11 and OBP do not exhibit resemblance among themselves or with any of earlier described phiKZ-like phages in respect to other traits; particularly, they have no detectable DNA homology. Note that phage Lu11 of P. putida var. Manila exhibits very slight homology with phage Lin68 of the family of P. aeruginosa phiKZ-like phages detected only in blot hybridization. This suggests the possible involvement of these phages in interspecies recombination ("gene shuffling") between phages of various bacterial species. Results of partial sequencing of phage genomes confirmed the phylogenetic relatedness of phage OBP to phages of the phiKZ-supergroup, whereas phage Lu11 most probably belongs to a novel species that is not a member of supergroup phiKZ composition. The results of the study are discussed in terms of the evolution of these phages.  相似文献   

9.
The virulent Lactobacillus plantarum myophage LP65 was isolated from industrial meat fermentation. Tail contraction led to reorganization of the tail sheath and the baseplate; a tail tube was extruded. In ultrathin section the phage adsorbed via its baseplate to the exterior of the cell, while the tail tube tunneled through the thick bacterial cell wall. Convoluted membrane structures were induced in the infected cell. Progeny phage was detected 100 min postinfection, and lysis occurred after extensive digestion of the cell wall. Sequence analysis revealed a genome of 131,573 bp of nonredundant DNA. Four major genome regions and a large tRNA gene cluster were observed. One module corresponded to DNA replication genes. Helicase/primase and two replication/recombination enzymes represented the only links to T4-like Myoviridae from gram-negative bacteria. Another module corresponded to the structural genes. Sequence relatedness identified links with Listeria phage A511, Staphylococcus phage K, and Bacillus phage SPO1. LP65 structural proteins were identified by two-dimensional proteome analysis and mass spectrometry. The putative tail sheath protein showed a shear-induced change in electrophoretic migration behavior. The genome organization of the structural module in LP65 resembled that of Siphoviridae from the lambda supergroup.  相似文献   

10.
11.
The complete genome of phiEcoM-GJ1, a lytic phage that attacks porcine enterotoxigenic Escherichia coli of serotype O149:H10:F4, was sequenced and analyzed. The morphology of the phage and the identity of the structural proteins were also determined. The genome consisted of 52,975 bp with a G+C content of 44% and was terminally redundant and circularly permuted. Seventy-five potential open reading frames (ORFs) were identified and annotated, but only 29 possessed homologs. The proteins of five ORFs showed homology with proteins of phages of the family Myoviridae, nine with proteins of phages of the family Podoviridae, and six with proteins of phages of the family Siphoviridae. ORF 1 encoded a T7-like single-subunit RNA polymerase and was preceded by a putative E. coli sigma(70)-like promoter. Nine putative phage promoters were detected throughout the genome. The genome included a tRNA gene of 95 bp that had a putative 18-bp intron. The phage morphology was typical of phages of the family Myoviridae, with an icosahedral head, a neck, and a long contractile tail with tail fibers. The analysis shows that phiEcoM-GJ1 is unique, having the morphology of the Myoviridae, a gene for RNA polymerase, which is characteristic of phages of the T7 group of the Podoviridae, and several genes that encode proteins with homology to proteins of phages of the family Siphoviridae.  相似文献   

12.
13.
Three genetically distinct groups of Lactococcus lactis phages are encountered in dairy plants worldwide, namely, the 936, c2, and P335 species. The multiplex PCR method was adapted to detect, in a single reaction, the presence of these species in whey samples or in phage lysates. Three sets of primers, one for each species, were designed based on conserved regions of their genomes. The c2-specific primers were constructed using the major capsid protein gene (mcp) as the target. The mcp sequences for three phages (eb1, Q38, and Q44) were determined and compared with the two available in the databases, those for phages c2 and bIL67. An 86.4% identity was found over the five mcp genes. The gene of the only major structural protein (msp) was selected as a target for the detection of 936-related phages. The msp sequences for three phages (p2, Q7, and Q11) were also established and matched with the available data on phages sk1, bIL170, and F4-1. The comparison of the six msp genes revealed an 82. 2% identity. A high genomic diversity was observed among structural proteins of the P335-like phages suggesting that the classification of lactococcal phages within this species should be revised. Nevertheless, we have identified a common genomic region in 10 P335-like phages isolated from six countries. This region corresponded to orfF17-orf18 of phage r1t and orf20-orf21 of Tuc2009 and was sequenced for three additional P335 phages (Q30, P270, and ul40). An identity of 93.4% within a 739-bp region of the five phages was found. The detection limit of the multiplex PCR method in whey was 10(4) to 10(7) PFU/ml and was 10(3) to 10(5) PFU/ml with an additional phage concentration step. The method can also be used to detect phage DNA in whey powders and may also detect prophage or defective phage in the bacterial genome.  相似文献   

14.
In a cross-test, we examined 55 strains of Citrobacter youngae against each other as potential producers of temperate bacteriophages and as potential sensitive indicators for them. Ten strains (18.2 %) showed the production of phages. Seven different strain-specific spectra of activity (from 1 to 11 strains each) were found. Phage production by 6 strains was inducible with mitomycin C, in 4 strains it was not inducible. The plaques of the phages were more or less turbid, without a lytic halo, tiny to small, 0.2-1.3 mm in diameter. Using a polyclonal, specific anti-lambda serum, all 10 phages were found to be clearly distinct from E. coli lambda phage, the phage 31/47 showing the highest neutralization titre of all. Interspecific tests with 15 strains of 8 species of Enterobacteriaceae revealed not a single case of activity of Citrobacter phages towards any of them. Five phage-immune clones lysogenized with 5 of the phages kept their remaining phage sensitivity spectra, though extended by sensitivity to 1-3 phages; 2 of these strains acquired also sensitivity to phage lambda. The phages belong to the morphotypes of Myoviridae (6 phages) and Siphoviridae (4 phages), with head diameters of 51-58 nm and tail length of 97-173 nm. Three strains produced corpuscular bacteriocins.  相似文献   

15.
The development of bacteriophage lambda and double-stranded DNA viruses in general involves the convergence of two separate pathways: DNA replication and head assembly. Clearly, packaging will proceed only if an empty capsid shell, the prohead, is present to receive the DNA, but genetic evidence suggests that proheads play another role in the packaging process. For example, lambda phages with an amber mutation in any head gene or in FI, the gene encoding the accessory packaging protein gpFI, are able to produce normal amounts of DNA concatemers but they are not cut, or matured, into unit length chromosomes for packaging. Similar observations have been made for herpes simplex 1 virus. In the case of lambda, a negative model proposes that in the amber phages, unassembled capsid components are inhibitory to maturation, and a positive model suggests that assembled proheads are required for cutting. We tested the negative model by using a deletion mutant devoid of all prohead genes and FI in an in vivo cos cleavage assay; in this deleted phage, the cohesive ends were not cut. When lambda proheads and gpFI were provided in vivo via a second prophage, cutting was restored, and gpFI was required, results that support the positive model. Phage 21 is a sister phage of lambda, and although its capsid proteins share approximately 60% residue identity with lambda's, phage 21 proheads did not restore cutting, even when provided with the accessory protein gpFI. Models for the role of proheads and gpFI in cos cutting are discussed.  相似文献   

16.
17.
The diversity of temperate bacteriophages was examined in 32 Mannheimia haemolytica, six Mannheimia glucosida and four Pasteurella trehalosi isolates. Phage particles were induced and identified by electron microscopy in 24 (75%) M. haemolytica isolates, but in only one (17%) M. glucosida and one (25%) P. trehalosi isolate. The M. haemolytica phages were relatively diverse as seven Siphoviridae, 15 Myoviridae and two Podoviridae-like phages were identified; the Myoviridae-type phages also exhibited structural variation of their tails. The bacteriophages induced in M. glucosida and P. trehalosi were of the Myoviridae type. Restriction endonuclease (RE) analysis identified nine distinct RE types among the M. haemolytica bacteriophages, providing further evidence of their relative diversity. A limited number of phages caused plaques on indicator strains and the phages exhibited a narrow host range. A subgroup of 11 bovine serotype A1 and A6 isolates contained Myoviridae-type phages of the same RE type (type A), but these differed in their abilities to infect and form plaques on the same panel of indicator strains. A P2-like phage (phiPHL213.1), representative of the RE type A phages, was identified from the incomplete M. haemolytica genome sequence. The phiPHL213.1 genome contains previously unidentified genes and represents a new member of the P2 phage family.  相似文献   

18.
Plaque-forming, biotin-transducing phages were constructed with the bio genes inserted between lambda genes P and Q. These phages were isolated for the eventual aim of fusing the lambda Q gene to the bio operon. The following steps were used to construct these phages: A defective temperature-sensitive lysogen was constructed with the bio genes adjacent to and to the left of lambda genes beta NcI857OPQSRA. Heat-resistant survivors were screened for deletions with endpoints in the bio operon and to the right of lambda P and to the left of lambda A. Five of approximately 1,600 heat-resistant survivors had these properties. Two had the gene order bioAB .... lambda QSRA. When these two strains were lysogenized with lambda cI857b221 and heat induced, the desired transducing phages were obtained. We characterized these phages and studied one in detail. Two-thirds of the plaque-forming transducing phages isolated carried the entire bioB gene and only part of the bioA gene, and one-third carried the entire bioA and bioB genes. The phages isolated lost the bio genes upon propagation, indicating that they contain a partial duplication of phage genes. The duplication was shown not to involve the entire lambda Q gene in one of these phages, lambda bioq1b221. A recombinant of this phage, lambda Nam7am53c17b221, failed to form plaques under biotin-derepression conditions. We conclude that if the lambda Q gene was fused to the bio operon in this phage, not enough lambda Q gene product was made to allow phage propagation.  相似文献   

19.
Results of studying the novel virulent phage phiPMG1 active on Pseudomonas aeruginosa are presented. It is shown that phiPMG1 exhibits significant homology and the similarity in the overall structure with the genome of a temperate phage converts D3. Phage phiPMG1 differs from D3 in that it fails to stably lysogenize bacteria and can grow on strains carrying plasmids that cause growth inhibition of phage D3 and some other phages. This significantly diminishes the probability of horizontal gene transfer with phage phiPMG1 and suggests the possible employment of this phage in phage therapy. A comparison of phages phiPMG1 and D3 structures of genomes in demonstrated not only high homology of 65 genes, but also the presence of 16 genes in the phiPMG1 genome that were not included in the in NCBI database. Apparently, the evolution of genomes in phages of this species is mostly associated with migrations into other species of bacteria, and recombinations with phages of other species (for example, F116). A detailed analysis of structure of one region genomes, which significant nonhomology for the three D3-like phages (D3, phiPMG1 and PAJU2), revealed that the phiPMG1 genome possible closest to a hypothetical genome of ancestral phage of this species.  相似文献   

20.
Bacteriophages are common viruses infecting prokaryotes. In addition to their deadly effect, phages are also involved in several evolutionary processes of bacteria, such as coding functional proteins potentially beneficial to them, or favoring horizontal gene transfer through transduction. The particular lifestyle of obligatory intracellular bacteria usually protects them from phage infection. However, Wolbachia, an intracellular alpha-proteobacterium, infecting diverse arthropod and nematode species and best known for the reproductive alterations it induces, harbors a phage named WO, which has recently been proven to be lytic. Here, phage infection was checked in 31 Wolbachia strains, which induce 5 different effects in their hosts and infect 25 insect species and 3 nematodes. Only the Wolbachia infecting nematodes and Trichogramma were found devoid of phage infection. All the 25 detected phages were characterized by the DNA sequence of a minor capsid protein gene. Based on all data currently available, phylogenetic analyses show a lack of congruency between Wolbachia or insect and phage WO phylogenies, indicating numerous horizontal transfers of phage among the different Wolbachia strains. The absence of relation between phage phylogeny and the effects induced by Wolbachia suggests that WO is not directly involved in these effects. Implications on phage WO evolution are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号