首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-dependent orientation of membrane proteins   总被引:1,自引:0,他引:1  
In order to study the influence of electrostatic forces on the disposition of proteins in membranes, we have examined the interaction of a receptor protein and of a membrane-active peptide with black lipid membranes. In the first study we show that the hepatic asialoglycoprotein receptor can insert spontaneously into lipid bilayers from the aqueous medium. Under the influence of a trans-positive membrane potential, the receptor, a negatively charged protein, appears to change its disposition with respect to the membrane. In the second study we consider melittin, an amphipathic peptide containing a generally hydrophobic stretch of 19 amino acids followed by a cluster of four positively charged residues at the carboxy terminus. The hydrophobic region contains two positively charged residues. In response to trans-negative electrical potential, melittin appears to assume a transbilayer position. These findings indicate that electrostatic forces can influence the disposition, and perhaps the orientation, of membrane proteins. Given the inside-negative potential of most or all cells, we would expect transmembrane proteins to have clusters of positively charged residues adjacent to the cytoplasmic ends of their hydrophobic transmembrane segments, and clusters of negatively charged residues just to the extracytoplasmic side. This expectation has been borne out by examination of the few transmembrane proteins for which there is sufficient information on both sequence and orientation. Surface and dipole potentials may similarly affect the orientation of membrane proteins.  相似文献   

2.
Core peptide (CP) is a unique peptide derived from the transmembrane sequence of T cell antigen receptor (TCR)-alpha chain that is capable of inhibiting the immune response both in vitro and in animal models of T cell mediated inflammation. CP contains two basic amino acids (lysine and arginine) in its sequence. The presence of these charged residues interspersed between hydrophobic amino acids is important for function. Here in an attempt to understand CP’s biophysical properties leading to activity we have synthesized a number of CP analogues and correlated their model structure with their biological activity. It became apparent that it is not only the charge of the amino acids but also the nature of the polar amino acids themselves and the topography and spacing between them by hydrophobic amino acids, creating a hydrophobic face, that are critical for CP function.Australian Peptide Conference Issue.  相似文献   

3.
The structural gene for the major outer membrane protein (MOMP) from Chlamydia trachomatis was cloned and sequenced. A lambda gt11 recombinant (lambda gt11/L2/33) that contains a portion of the MOMP coding sequence was used to probe a lambda 1059 library constructed from DNA obtained from C. trachomatis serovar L2. Selected lambda 1059 recombinants were mapped with endonuclease restriction enzymes. The MOMP gene was mapped to the 5' end of a BamHI fragment of approximately 9 kilobases. Contiguous endonuclease restriction fragments identified within this region permitted the selection of specific fragments for subcloning and DNA sequencing. The MOMP gene consisted of a 1,182-base-pair open reading frame that encoded 394 amino acids and ended with three stop codons. The known amino-terminal amino acid was preceded by 22 amino acids whose sequence was compatible with a leader or signal sequence. The primary structure of MOMP determined from the translated DNA sequence demonstrated nine cysteine residues and a remarkably homogeneous distribution of charged and hydrophobic residues.  相似文献   

4.
Reproductive proteins commonly show signs of rapid divergence driven by positive selection. The mechanisms driving these changes have remained ambiguous in part because interacting male and female proteins have rarely been examined. We isolate an egg protein the vitelline envelope receptor for lysin (VERL) from Tegula, a genus of free-spawning marine snails. Like VERL from abalone, Tegula VERL is a major component of the VE surrounding the egg, includes a conserved zona pellucida (ZP) domain at its C-terminus, and possesses a unique, negatively charged domain of about 150 amino acids implicated in interactions with the positively charged lysin. Unlike for abalone VERL, where this unique VERL domain occurs in a tandem array of 22 repeats, Tegula VERL has just one such domain. Interspecific comparisons show that both lysin and the VERL domain diverge via positive selection, whereas the ZP domain evolves neutrally. Rates of nonsynonymous substitution are correlated between lysin and the VERL domain, consistent with sexual antagonism, although lineage-specific effects, perhaps owing to different ecologies, may alter the relative evolutionary rates of sperm- and egg-borne proteins.  相似文献   

5.
6.
Abalone sperm lysin is a 16 kDa protein that creates a hole in the egg vitelline envelope (VE) to allow the sperm to fuse with the egg. Purified lysin exhibits quantitative species-specificity in the dissolution of isolated VE. The molecular basis for this specificity has been studied by sequencing lysin cDNA and by solving the lysin crystal structure. In the deduced amino acid sequences of lysins of seven species of California abalones 50% of the positions are invariant. The most highly variable and strictly species-specific region is the amino-terminal domain of residues 2-12. The crystal structure of lysin reveals a highly α-helical protein with a novel fold. Two tracks of basic amino acids run the length of the molecule. A hydrophobic patch of 11 residues lies on the opposite surface from the basic tracks. The species-specific domain of positions 2-12 extends away from the helical core. Mapping the species-variable positions onto the lysin structure indicates regions which could be involved in species-specific molecular recognition.  相似文献   

7.
Placental alkaline phosphatase (PLAP) is anchored in the plasma membrane by a phosphatidylinositol-glycan moiety (PI-glycan). PI-glycan is added posttranslationally to the nascent peptide chain after the removal of 29 amino acids from the COOH-terminus. The contribution of selected COOH-terminal amino acids to the signal for PI-glycan addition was tested by creating a fusion protein with the COOH-terminus of PLAP and a secreted protein and by mutagenesis of specific PLAP COOH-terminal amino acids. The cDNA encoding the COOH-terminus of PLAP was fused in frame to the cDNA for human clotting Factor X and expressed in transfected COS-1 cells. Fusion proteins containing 32 amino acids of the PLAP COOH-terminus were modified by PI-glycan addition. Thus, the signal for PI-glycan modification must reside in these amino acids. Next, the region between the hydrophobic domain and the cleavage site was examined for additional determinants. Mutations of the hydrophilic residues in the spacer region demonstrated that these amino acids do not contribute to the signal for PI-glycan addition. Deletion of amino acids in the spacer region prevented the addition of PI-glycan suggesting that the length of the spacer domain or the amino acids around the cleavage site are important determinants. Finally, we demonstrated that interruption of the hydrophobic domain by a charged residue prevents PI-glycan addition and results in a protein that is secreted into the medium. The finding that a single Leu to Arg substitution in the hydrophobic domain converts a PI-glycan anchored, membrane protein to a secreted protein suggests that an essential signal for the correct sorting of PI-glycan anchored proteins versus secreted proteins resides in the hydrophobic domain. Substitution of a charged amino acid for a hydrophobic amino acid may be a mechanism for producing membrane bound and secreted forms of the same protein.  相似文献   

8.
Bacteriophage M13 major coat protein is extensively used as a biophysical, biochemical, and molecular biology reference system for studying membrane proteins. The protein has several elements that control its position and orientation in a lipid bilayer. The N-terminus is dominated by the presence of negatively charged amino acid residues (Glu2, Asp4, and Asp5), which will always try to extend into the aqueous phase and therefore act as a hydrophilic anchor. The amphipathic and the hydrophobic transmembrane part contain the most important hydrophobic anchoring elements. In addition there are specific aromatic and charged amino acid residues in these domains (Phe 11, Tyr21, Tyr24, Trp26, Phe42, Phe45, Lys40, Lys43, and Lys44) that fine-tune the association of the protein to the lipid bilayer. The interfacial Tyr residues are important recognition elements for precise protein positioning, a function that cannot be performed optimally by residues with an aliphatic character. The Trp26 anchor is not very strong: depending on the context, the tryptophan residue may move in or out of the membrane. On the other hand, Lys residues and Phe residues at the C-terminus of the protein act in a unique concerted action to strongly anchor the protein in the lipid bilayer.  相似文献   

9.
Presecretory signal peptides of 39 proteins from diverse prokaryotic and eukaryotic sources have been compared. Although varying in length and amino acid composition, the labile peptides share a hydrophobic core of approximately 12 amino acids. A positively charged residue (Lys or Arg) usually precedes the hydrophobic core. Core termination is defined by the occurrence of a charged residue, a sequence of residues which may induce a beta-turn in a polypeptide, or an interruption in potential alpha-helix or beta-extended strand structure. The hydrophobic cores contain, by weight average, 37% Leu: 15% Ala: 10% Val: 10% Phe: 7% Ile plus 21% other hydrophobic amino acids arranged in a non-random sequence. Following the hydrophobic cores (aligned by their last residue) a highly non-random and localized distribution of Ala is apparent within the initial eight positions following the core: (formula; see text) Coincident with this observation, Ala-X-Ala is the most frequent sequence preceding signal peptidase cleavage. We propose the existence of a signal peptidase recognition sequence A-X-B with the preferred cleavage site located after the sixth amino acid following the core sequence. Twenty-two of the above 27 underlined Ala residues would participate as A or B in peptidase cleavage. Position A includes the larger aliphatic amino acids, Leu, Val and Ile, as well as the residues already found at B (principally Ala, Gly and Ser). Since a preferred cleavage site can be discerned from carboxyl and not amino terminal alignment of the hydrophobic cores it is proposed that the carboxyl ends are oriented inward toward the lumen of the endoplasmic reticulum where cleavage is thought to occur. This orientation coupled with the predicted beta-turn typically found between the core and the cleavage site implies reverse hairpin insertion of the signal sequence. The structural features which we describe should help identify signal peptides and cleavage sites in presumptive amino acid sequences derived from DNA sequences.  相似文献   

10.
It is an important goal of computational biology to correctly predict the association state of a protein based on its amino acid sequence and the structures of known homologues. We have pursued this goal on the example of anthranilate phosphoribosyltransferase (AnPRT), an enzyme that is involved in the biosynthesis of the amino acid tryptophan. Firstly, known crystal structures of naturally occurring homodimeric AnPRTs were analyzed using the Protein Interfaces, Surfaces, and Assemblies (PISA) service of the European Bioinformatics Institute (EBI). This led to the identification of two hydrophobic “hot spot” amino acids in the protein-protein interface that were predicted to be essential for self-association. Next, in a comprehensive multiple sequence alignment (MSA), naturally occurring AnPRT variants with hydrophilic or charged amino acids in place of hydrophobic residues in the two hot spot positions were identified. Representative variants were characterized in terms of thermal stability, enzymatic activity, and quaternary structure. We found that AnPRT variants with charged residues in both hot spot positions exist exclusively as monomers in solution. Variants with hydrophilic amino acids in one hot spot position occur in both forms, monomer and dimer. The results of the present study provide a detailed characterization of the determinants of the AnPRT monomer-dimer equilibrium and show that analysis of hot spots in combination with MSAs can be a valuable tool in prediction of protein quaternary structures.  相似文献   

11.
Across the streptophyte lineage, which includes charophycean algae and embryophytic plants, there have been at least four independent transitions to the terrestrial habitat. One of these involved the evolution of embryophytes (bryophytes and tracheophytes) from a charophycean ancestor, while others involved the earliest branching lineages, containing the monotypic genera Mesostigma and Chlorokybus, and within the Klebsormidiales and Zygnematales lineages. To overcome heat, water stress, and increased exposure to ultraviolet radiation, which must have accompanied these transitions, adaptive mechanisms would have been required. During periods of dehydration and/or desiccation, proteomes struggle to maintain adequate cytoplasmic solute concentrations. The increased usage of charged amino acids (DEHKR) may be one way of maintaining protein hydration, while increased use of aromatic residues (FHWY) protects proteins and nucleic acids by absorbing damaging UV, with both groups of residues thought to be important for the stabilization of protein structures. To test these hypotheses we examined amino acid sequences of orthologous proteins representing both mitochondrion- and plastid-encoded proteomes across streptophytic lineages. We compared relative differences within categories of amino acid residues and found consistent patterns of amino acid compositional fluxuation in extra-membranous regions that correspond with episodes of terrestrialization: positive change in usage frequency for residues with charged side-chains, and aromatic residues of the light-capturing chloroplast proteomes. We also found a general decrease in the usage frequency of hydrophobic, aliphatic, and small residues. These results suggest that amino acid compositional shifts in extra-membrane regions of plastid and mitochondrial proteins may represent biochemical adaptations that allowed green plants to colonize the land.  相似文献   

12.
Molecular cloning of the human thyrotropin-beta subunit gene   总被引:5,自引:0,他引:5  
Genomic DNA fragments that carried a gene for human thyrotropin-beta (hTSH beta) subunit were isolated. Nucleotide sequence analysis of the gene showed that the hTSH beta subunit precursor consists of 138 amino acid residues. There is an N-terminal sequence of 20 amino acids as a signal peptide, followed by 112 amino acids, whose sequence is in agreement with that known for the secretory form of hTSH beta subunit. This is followed by an additional stretch of 6 hydrophobic amino acids, which may be eliminated post-translationally. The coding region is separated by an intron of about 460 bp. Genomic Southern blot hybridization analysis suggested that the hTSH beta gene is a unique single copy gene.  相似文献   

13.
Most membrane proteins contain a transmembrane (TM) domain made up of a bundle of lipid-bilayer-spanning α-helices. TM α-helices are generally composed of a core of largely hydrophobic amino acids, with basic and aromatic amino acids at each end of the helix forming interactions with the lipid headgroups and water. In contrast, the S4 helix of ion channel voltage sensor (VS) domains contains four or five basic (largely arginine) side chains along its length and yet adopts a TM orientation as part of an independently stable VS domain. Multiscale molecular dynamics simulations are used to explore how a charged TM S4 α-helix may be stabilized in a lipid bilayer, which is of relevance in the context of mechanisms of translocon-mediated insertion of S4. Free-energy profiles for insertion of the S4 helix into a phospholipid bilayer suggest that it is thermodynamically favorable for S4 to insert from water to the center of the membrane, where the helix adopts a TM orientation. This is consistent with crystal structures of Kv channels, biophysical studies of isolated VS domains in lipid bilayers, and studies of translocon-mediated S4 helix insertion. Decomposition of the free-energy profiles reveals the underlying physical basis for TM stability, whereby the preference of the hydrophobic residues of S4 to enter the bilayer dominates over the free-energy penalty for inserting charged residues, accompanied by local distortion of the bilayer and penetration of waters. We show that the unique combination of charged and hydrophobic residues in S4 allows it to insert stably into the membrane.  相似文献   

14.
Uversky VN 《FEBS letters》2002,514(2-3):181-183
Many, but not all, globular proteins have been shown to have compact intermediate state(s) under equilibrium conditions in vitro, giving rise to the question: why do some proteins adopt partially folded conformations, whereas other do not? Here we show that charge to hydrophobicity ratio of a polypeptide chain may represent a key determinant in this respect, as proteins known to form equilibrium partially folded intermediates are specifically localized within a unique region of charge-hydrophobicity space. Thus, the competence of a protein to form equilibrium intermediate(s) may be determined by the bulk content of hydrophobic and charged amino acid residues rather than by the positioning of amino acids within the sequence.  相似文献   

15.
Sadler K  Eom KD  Yang JL  Dimitrova Y  Tam JP 《Biochemistry》2002,41(48):14150-14157
The intracellular delivery of most peptides, proteins, and nucleotides to the cytoplasm and nucleus is impeded by the cell membrane. To allow simplified, noninvasive delivery of attached cargo, cell-permeant peptides that are either highly cationic or hydrophobic have been utilized. Because cell-permeable peptides share half of the structural features of antimicrobial peptides containing clusters of charge and hydrophobic residues, we have explored antimicrobial peptides as templates for designing cell-permeant peptides. We prepared synthetic fragments of Bac 7, an antimicrobial peptide with four 14-residue repeats from the bactenecin family. The dual functions of cell permeability and antimicrobial activity of Bac 7 were colocalized at the N-terminal 24 residues of Bac 7. In general, long fragments of Bac(1-24) containing both regions were bactericidal and cell-permeable, whereas short fragments with only a cationic or hydrophobic region were cell-permeant without the attendant microbicidal activity when measured in a fluorescence quantitation assay and by confocal microscopy. In addition, the highly cationic fragments were capable of traversing the cell membrane and residing within the nucleus. A common characteristic shared by the cell-permeant Bac(1-24) fragments, irrespective of their number of charged cationic amino acids, is their high proline content. A 10-residue proline-rich peptide with two arginine residues was capable of delivering a noncovalently linked protein into cells. Thus, the proline-rich peptides represent a potentially new class of cell-permeant peptides for intracellular delivery of protein cargo. Furthermore, our results suggest that antimicrobial peptides may represent a rich source of templates for designing cell-permeant peptides.  相似文献   

16.
The gene for protein L, an immunoglobulin (Ig) light chain-binding protein expressed by some strains of the anaerobic bacterial species Peptostreptococcus magnus, was cloned and sequenced. The gene translates into a protein of 719 amino acid residues. Following a signal sequence of 18 amino acids and a NH2-terminal region ("A") of 79 residues, the molecule contains five homologous "B" repeats of 72-76 amino acids each. Further, toward the COOH terminus, two additional repeats ("C") were found. These are not related to the "B" repeats, but are highly homologous to each other. After the C repeats (52 amino acids each), a hydrophilic, proline-rich putative cell wall-spanning region ("W") was found, followed at the COOH-terminal end by a hydrophobic membrane anchor ("M"). Fragments of the gene were expressed, and the corresponding peptides were analyzed for Ig-binding activity. The B repeats were found to be responsible for the interaction with Ig light chains. An Escherichia coli high level expression system was adapted for the production of large amounts of two Ig-binding protein L fragments comprising one and four B repeats, respectively.  相似文献   

17.
The complete nucleotide sequences of the vesicular stomatitis virus mRNA's encoding the glycoprotein (G) and the matrix protein (M) have been determined from cDNA clones that contain the complete coding sequences from each mRNA. The G protein mRNA is 1,665 nucleotides long, excluding polyadenylic acid, and encodes a protein of 511 amino acids including a signal peptide of 16 amino acids. G protein contains two large hydrophobic domains, one in the signal peptide and the other in the transmembrane segment near the COOH terminus. Two sites of glycosylation are predicted at amino acid residues 178 and 335. The close correspondence of the positions of these sites with the reported timing of the addition of the two oligosaccharides during synthesis of G suggests that glycosylation occurs as soon as the appropriate asparagine residues traverse the membrane of the rough endoplasmic reticulum. The mRNA encoding the vesicular stomatitis virus M protein is 831 nucleotides long, excluding polyadenylic acid, and encodes a protein of 229 amino acids. The predicted M protein sequence does not contain any long hydrophobic or nonpolar domains that might promote membrane association. The protein is rich in basic amino acids and contains a highly basic amino terminal domain. Details of construction of the nearly full-length cDNA clones are presented.  相似文献   

18.
The amino acid sequence of rubber elongation factor, a recently discovered protein tightly bound to rubber particles isolated from the commercial rubber tree Hevea brasiliensis, is presented. The role of this protein in rubber elongation and its interaction with prenyltransferase and rubber particles have been discussed in the preceding paper in this series (Dennis, M. S., and Light, D. R. (1989) J. Biol. Chem. 264, 18608-18617). Trypsin, Staphylococcus protease, chymotrypsin, acetic acid, and hydroxylamine cleavage were used to generate peptide fragments that were isolated by reverse phase high pressure liquid chromatography and analyzed by amino acid composition and automated Edman degradation. Each digest contained one blocked peptide identified as the amino terminus. The blocked amino-terminal peptide from the tryptic digest was analyzed by amino acid composition, fast atom bombardment mass spectrometry (molecular ion 1659.9), subdigested with Staphylococcus protease for partial sequence analysis, and finally deblocked with bovine liver acyl-peptide hydrolase removing an acetylalanine to allow analysis by Edman degradation. Rubber elongation factor is 137 amino acids long, has a molecular mass of 14,600 daltons, and lacks four amino acids: cysteine, methionine, histidine, and tryptophan. The NH2 terminus is highly charged and contains only acidic residues (5 of the first 12 amino acids). The first four amino acids are highly represented in other known NH2-terminally acetylated proteins. Comparison of the sequence of rubber elongation factor with other known sequences does not reveal significant sequence similarities that would suggest an evolutionary relationship.  相似文献   

19.
The complete primary structure of the cytoplasmically synthesized polypeptide VIc from beef heart cytochrome c oxidase was determined via isolation and sequencing of overlapping methionine and glutamic acid fragments. The protein consists of 73 amino acids (Mr 8 480). Through the protein contains, from residues 21 to 40, a hydrophobic sequence interrupted by one lysine it may not penetrate the membrane. A sequence of 33 amino acids highly homologous to the C-terminal part of VIc has been translated from a cDNA clone of a nuclear coded subunit of the enzyme from rat liver. The function of this component of the terminal oxidase is yet unknown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号