首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The risk for lethal ventricular arrhythmias is increased in individuals who carry mutations in genes that encode cardiac ion channels. Loss-of-function mutations in SCN5A, the gene encoding the cardiac sodium channel, are linked to Brugada syndrome (BrS). Arrhythmias in BrS are often preceded by coved-type ST-segment elevation in the right-precordial leads V1 and V2. Loss-of-function mutations in KCNH2, the gene encoding the cardiac ion channel that is responsible for the rapidly activating delayed rectifying potassium current, are linked to long-QT syndrome type 2 (LQT-2). LQT-2 is characterised by delayed cardiac repolarisation and rate-corrected QT interval (QTc) prolongation. Here, we report that the risk for ventricular arrhythmias in BrS and LQT-2 is further increased during fever. Moreover, we demonstrate that fever may aggravate coved-type ST-segment elevation in BrS, and cause QTc lengthening in LQT-2. Finally, we describe molecular mechanisms that may underlie the proarrhythmic effects of fever in BrS and LQT-2. (Neth Heart J 2010;18:165-9.)  相似文献   

2.
The human ether-a-go-go-related gene potassium channel (hERG, Kv11.1, KCNH2) has an essential role in cardiac action potential repolarization. Electrical dysfunction of the voltage-sensitive ion channel is associated with potentially lethal ventricular arrhythmias in humans. hERG K+ channels are also expressed in a variety of cancer cells where they control cell proliferation and apoptosis. In this review, we discuss molecular mechanisms of hERG-associated cell cycle regulation and cell death. In addition, the significance of hERG K+ channels as future drug target in anticancer therapy is highlighted.  相似文献   

3.
Patients with congenital long-QT syndrome (LQTS) are at increased risk of ventricular arrhythmias during stressful situations. Large-scale studies have pointed out that affected individuals are particularly at risk in the period following pregnancy (post-partum). This is recognised especially for women with an LQTS type 2. Here, we describe two cases of young women with LQTS type 2, both admitted to our institution with symptomatic torsades de pointes a few weeks after delivery. Both patients carried a mutation in the KCNH2 gene. One patient was nullipara, while the other had had an uneventful previous pregnancy. In both cases treatment with a β-blocker did not prevent life-threatening cardiac arrhythmias. The risk of arrhythmias is thought to gradually decrease to pre-pregnancy values in the nine months after delivery. Considering the difficulties related to continuous monitoring of a patient for such a long period and the desire of these patients to have more children in the foreseeable future, ICD implantation was performed. (Neth Heart J 2008;16:422-5.)  相似文献   

4.
The Short QT Syndrome is a recently described new genetic disorder, characterized by abnormally short QT interval, paroxysmal atrial fibrillation and life threatening ventricular arrhythmias. This autosomal dominant syndrome can afflict infants, children, or young adults; often a remarkable family background of cardiac sudden death is elucidated. At electrophysiological study, short atrial and ventricular refractory periods are found, with atrial fibrillation and polymorphic ventricular tachycardia easily induced by programmed electrical stimulation. Gain of function mutations in three genes encoding K+ channels have been identified, explaining the abbreviated repolarization seen in this condition: KCNH2 for Ikr (SQT1), KCNQ1 for Iks (SQT2) and KCNJ2 for Ik1 (SQT3). The currently suggested therapeutic strategy is an ICD implantation, although many concerns exist for asymptomatic patients, especially in pediatric age. Pharmacological treatment is still under evaluation; quinidine has shown to prolong QT and reduce the inducibility of ventricular arrhythmias, but awaits additional confirmatory clinical data.  相似文献   

5.
Long QT syndrome is a disorder that is characterised by a prolonged QT-interval and can lead to fatal cardiac arrhythmias. Many animal models have been created to study congenital long QT syndrome. Of these, zebrafish models have involved targeting two different KCNH2 gene (long QT syndrome 2) orthologues, termed zerg-2 and zerg-3, with differing cardiac phenotypes. In order to clarify this situation, this study uses a bioinformatic approach to search the current zebrafish genome sequence (Zv7 and Zv8 builds) to investigate and locate all likely zebrafish orthologues of the human KCNH2 gene. Quantitative real-time RT-PCR was also used to determine the temporal and spatial gene expression profile of the zebrafish orthologues. The data support the conclusion that zerg-2 and zerg-3 are apparent orthologues of different human genes encoding potassium ion channels, but that their functions have switched compared to the respective human proteins.  相似文献   

6.

Background

It is estimated that approximately half of the deaths in patients with HF are sudden and that the most likely causes of sudden death are lethal ventricular tachyarrhythmias such as ventricular tachycardia (VT) or fibrillation (VF). However, the precise mechanism of ventricular tachyarrhythmias remains unknown. The KCNH2 channel conducting the delayed rectifier K+ current (IKr) is recognized as the most susceptible channel in acquired long QT syndrome. Recent findings have revealed that not only suppression but also enhancement of IKr increase vulnerability to major arrhythmic events, as seen in short QT syndrome. Therefore, we investigated the existence of a circulating KCNH2 current-modifying factor in patients with HF.

Methodology/Principal Findings

We examined the effects of serum of HF patients on recombinant IKr recorded from HEK 293 cells stably expressing KCNH2 by using the whole-cell patch-clamp technique. Study subjects were 14 patients with non-ischemic HF and 6 normal controls. Seven patients had a history of documented ventricular tachyarrhythmias (VT: 7 and VF: 1). Overnight treatment with 2% serum obtained from HF patients with ventricular arrhythmia resulted in a significant enhancement in the peaks of IKr tail currents compared to the serum from normal controls and HF patients without ventricular arrhythmia.

Conclusions/Significance

Here we provide the first evidence for the presence of a circulating KCNH2 channel activator in patients with HF and ventricular tachyarrhythmias. This factor may be responsible for arhythmogenesis in patients with HF.  相似文献   

7.
KCNH2 (hERG1) encodes the alpha-subunit proteins for the rapidly activating delayed rectifier K+ current (I(Kr)), a major K+ current for cardiac myocyte repolarization. In isolated myocytes I(Kr) frequently is small in amplitude or absent, yet KCNH2 channels and I(Kr) are targets for drug block or mutations to cause long QT syndrome. We hypothesized that KCNH2 channels and I(Kr) are uniquely sensitive to enzymatic damage. To test this hypothesis, we studied heterologously expressed K+, Na+, and L-type Ca2+ channels, and in ventricular myocytes I(Kr), slowly activating delayed rectifier K+ current (I(Ks)), and inward rectifier K+ current (I(K1)), by using electrophysiological and biochemical methods. 1) Specific exogenous serine proteases (protease XIV, XXIV, or proteinase K) selectively degraded KCNH2 current (I(KCNH2)) and its mature channel protein without damaging cell integrity and with minimal effects on the other channel currents; 2) immature KCNH2 channel protein remained intact; 3) smaller molecular mass KCNH2 degradation products appeared; 4) protease XXIV selectively abolished I(Kr); and 5) reculturing HEK-293 cells after protease exposure resulted in the gradual recovery of I(KCNH2) and its mature channel protein over several hours. Thus the channel protein for I(KCNH2) and I(Kr) is uniquely sensitive to proteolysis. Analysis of the degradation products suggests selective proteolysis within the S5-pore extracellular linker, which is structurally unique among Kv channels. These data provide 1) a new mechanism to account for low I(Kr) density in some isolated myocytes, 2) evidence that most complexly glycosylated KCNH2 channel protein is in the plasma membrane, and 3) new insight into the rate of biogenesis of KCNH2 channel protein within cells.  相似文献   

8.
The Elk subfamily of the Eag K+ channel gene family is represented in mammals by three genes that are highly conserved between humans and rodents. Here we report the distribution and functional properties of a member of the human Elk K+ channel gene family, KCNH8. Quantitative RT-PCR analysis of mRNA expression patterns showed that KCNH8, along with the other Elk family genes, KCNH3 and KCNH4, are primarily expressed in the human nervous system. KCNH8 was expressed at high levels, and the distribution showed substantial overlap with KCNH3. In Xenopus oocytes, KCNH8 gives rise to slowly activating, voltage-dependent K+ currents that open at hyperpolarized potentials (half-maximal activation at -62 mV). Coexpression of KCNH8 with dominant-negative KCNH8, KCNH3, and KCNH4 subunits led to suppression of the KCNH8 currents, suggesting that Elk channels can form heteromultimers. Similar experiments imply that KCNH8 subunits are not able to form heteromultimers with Eag, Erg, or Kv family K+ channels. electrophysiology; human nervous system; potassium current  相似文献   

9.
Previous studies suggest that ether-a-go-go related gene (ERG) KCNH2 potassium channels contribute to the control of motility patterns in the gastrointestinal tract of animal models. The present study examines whether these results can be translated into a role in human gastrointestinal muscles. Messages for two different variants of the KCNH2 gene were detected: KCNH2 V1 human ERG (HERG) (28) and KCNH2 V2 (HERG(USO)) (13). The amount of V2 message was greater than V1 in both human jejunum and brain. The base-pair sequence that gives rise to domains S3-S5 of the channel was identical to that previously published for human KCNH2 V1 and V2. KCNH2 protein was detected immunohistochemically in circular and longitudinal smooth muscle and enteric neurons but not in interstitial cells of Cajal. In the presence of TTX (10(-6) M), atropine (10(-6) M). and l-nitroarginine (10(-4) M) human jejunal circular muscle strips contracted phasically (9 cycles/min) and generated slow waves with superimposed spikes. Low concentrations of the KCNH2 blockers E-4031 (10(-8) M) and MK-499 (3 x 10(-8) M) increased phasic contractile amplitude and the number of spikes per slow wave. The highest concentration of E-4031 (10(-6) M) produced a 10-20 mV depolarization, eliminated slow waves, and replaced phasic contractions with a small tonic contracture. E-4031 (10(-6) M) did not affect [(14)C]ACh release from enteric neurons. We conclude that KCNH2 channels play a fundamental role in the control of motility patterns in human jejunum through their ability to modulate the electrical behavior of smooth muscle cells.  相似文献   

10.
Romano-Ward syndrome (RWS), the autosomal dominant form of the congenital long QT syndrome, is characterised by prolongation of the cardiac repolarisation process associated with ventricular tachyarrhythmias of the torsades de pointes type. Genetic studies have identified mutations in six ion channel genes, KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2 and the accessory protein Ankyrin-B gene, to be responsible for this disorder. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequence analysis have identified a KCNQ1 mutation in a family that were clinically conspicuous due to several syncopes and prolonged QTc intervals in the ECG. The mutant subunit was expressed and functionally characterised in the Xenopus oocyte expression system. A novel heterozygous missense mutation with a C to T transition at the first position of codon 343 (CCA) of the KCNQ1 gene was identified in three concerned family members (QTc intervals: 500, 510 and 530 ms, respectively). As a result, proline 343 localised within the highly conserved transmembrane segment S6 of the KCNQ1 channel is replaced by a serine. Co-expression of mutant (KCNQ1-P343S) and wild-type (KCNQ1) cRNA in Xenopus oocytes produced potassium currents reduced by approximately 92%, while IKs reconstitution experiments with a combination of KCNQ1 mutant, wild-type and KCNE1 subunits yielded currents reduced by approximately 60%. A novel mutation (P343S) identified in the KCNQ1 subunit gene of three members of a RWS family showed a dominant-negative effect on native IKs currents leading to prolongation of the heart repolarisation and possibly increases the risk of malign arrhythmias with sudden cardiac death.  相似文献   

11.
Co-chaperone FKBP38 promotes HERG trafficking   总被引:1,自引:0,他引:1  
The Long QT Syndrome is a cardiac disorder associated with ventricular arrhythmias that can lead to syncope and sudden death. One prominent form of the Long QT syndrome has been linked to mutations in the HERG gene (KCNH2) that encodes the voltage-dependent delayed rectifier potassium channel (I(Kr)). In order to search for HERG-interacting proteins important for HERG maturation and trafficking, we conducted a proteomics screen using myc-tagged HERG transfected into cardiac (HL-1) and non-cardiac (human embryonic kidney 293) cell lines. A partial list of putative HERG-interacting proteins includes several known components of the cytosolic chaperone system, including Hsc70 (70-kDa heat shock cognate protein), Hsp90 (90-kDa heat shock protein), Hdj-2, Hop (Hsp-organizing protein), and Bag-2 (BCL-associated athanogene 2). In addition, two membrane-integrated proteins were identified, calnexin and FKBP38 (38-kDa FK506-binding protein, FKBP8). We show that FKBP38 immunoprecipitates and co-localizes with HERG in our cellular system. Importantly, small interfering RNA knock down of FKBP38 causes a reduction of HERG trafficking, and overexpression of FKBP38 is able to partially rescue the LQT2 trafficking mutant F805C. We propose that FKBP38 is a co-chaperone of HERG and contributes via the Hsc70/Hsp90 chaperone system to the trafficking of wild type and mutant HERG potassium channels.  相似文献   

12.
Long QT syndrome (LQTS) is an inherited disorder characterized by prolonged QT intervals and potentially life-threatening arrhythmias. Mutations in 12 different genes have been associated with LQTS. Here we describe a patient with LQTS who has a mutation in KCNQ1 as well as a polymorphism in KCNH2. The proband (MMRL0362), a 32-year-old female, exhibited multiple ventricular extrasystoles and one syncope. Her ECG (QT interval corrected for heart rate (QTc) = 518ms) showed an LQT2 morphology in leads V4-V6 and LQT1 morphology in leads V1-V2. Genomic DNA was isolated from lymphocytes. All exons and intron borders of 7 LQTS susceptibility genes were amplified and sequenced. Variations were detected predicting a novel missense mutation (V110I) in KCNQ1, as well as a common polymorphism in KCNH2 (K897T). We expressed wild-type (WT) or V110I Kv7.1 channels in CHO-K1 cells cotransfected with KCNE1 and performed patch-clamp analysis. In addition, WT or K897T Kv11.1 were also studied by patch clamp. Current-voltage (I-V) relations for V110I showed a significant reduction in both developing and tail current densities compared with WT at potentials >+20 mV (p < 0.05; n = 8 cells, each group), suggesting a reduction in IKs currents. K897T- Kv11.1 channels displayed a significantly reduced tail current density compared with WT-Kv11.1 at potentials >+10 mV. Interestingly, channel availability assessed using a triple-pulse protocol was slightly greater for K897T compared with WT (V0.5 = -53.1 ± 1.13 mV and -60.7 ± 1.15 mV for K897T and WT, respectively; p < 0.05). Comparison of the fully activated I-V revealed no difference in the rectification properties between WT and K897T channels. We report a patient with a loss-of-function mutation in KCNQ1 and a loss-of-function polymorphism in KCNH2. Our results suggest that a reduction of both IKr and IKs underlies the combined LQT1 and LQT2 phenotype observed in this patient.  相似文献   

13.
The congenital long QT syndrome is a cardiac disease characterized by an increased susceptibility to ventricular arrhythmias. The clinical hallmark is a prolongation of the QT interval, which reflects a delay in repolarization caused by mutations in cardiac ion channel genes. Mutations in the HERG (human ether-à-go-go-related gene KCNH2 can cause a reduction in I(Kr), one of the currents responsible for cardiac repolarization. We describe the identification and characterization of a novel missense mutation T65P in the PAS (Per-Arnt-Sim) domain of HERG, resulting in defective trafficking of the protein to the cell membrane. Defective folding of the mutant protein could be restored by decreased cell incubation temperature and pharmacologically by cisapride and E-4031. When trafficking was restored by growing cells at 27 degrees C, the kinetics of the mutated channel resembled that of wild-type channels although the rate of activation, deactivation, and recovery from inactivation were accelerated. No positive evidence for the formation of heterotetramers was obtained by co-expression of wild-type with mutant subunits at 37 degrees C. As a consequence the clinical symptoms may be explained rather by haploinsufficiency than by dominant negative effects. This study is the first to relate a PAS domain mutation in HERG to a trafficking deficiency at body temperature, apart from effects on channel deactivation.  相似文献   

14.
Understanding the basis for differential responses to drug therapies remains a challenge despite advances in genetics and genomics. Induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to investigate the pharmacology of disease processes in therapeutically and genetically relevant primary cell types in vitro and to interweave clinical and basic molecular data. We report here the derivation of iPSCs from a long QT syndrome patient with complex genetics. The proband was found to have a de novo SCN5A LQT-3 mutation (F1473C) and a polymorphism (K897T) in KCNH2, the gene for LQT-2. Analysis of the biophysics and molecular pharmacology of ion channels expressed in cardiomyocytes (CMs) differentiated from these iPSCs (iPSC-CMs) demonstrates a primary LQT-3 (Na+ channel) defect responsible for the arrhythmias not influenced by the KCNH2 polymorphism. The F1473C mutation occurs in the channel inactivation gate and enhances late Na+ channel current (INaL) that is carried by channels that fail to inactivate completely and conduct increased inward current during prolonged depolarization, resulting in delayed repolarization, a prolonged QT interval, and increased risk of fatal arrhythmia. We find a very pronounced rate dependence of INaL such that increasing the pacing rate markedly reduces INaL and, in addition, increases its inhibition by the Na+ channel blocker mexiletine. These rate-dependent properties and drug interactions, unique to the proband’s iPSC-CMs, correlate with improved management of arrhythmias in the patient and provide support for this approach in developing patient-specific clinical regimens.  相似文献   

15.
KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (I Kr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing I Kr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (I Kv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients’ genotypes) mostly corrected the changes in I Kv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing I Kr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease I Kr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient.  相似文献   

16.
17.
Andersen-Tawil syndrome (ATS) is a rare condition consisting of ventricular arrhythmias, periodic paralysis, and dysmorphic features. In 2001, mutations in KCNJ2, which encodes the a subunit of the potassium channel Kir2.1, were identified in patients with ATS. To date, KCNJ2 is the only gene implicated in ATS, accounting for approximately 60% of cases. ATS is a unique channelopathy, and represents the first link between cardiac and skeletal muscle excitability. The arrhythmias observed in ATS are distinctive; patients may be asymptomatic, or minimally symptomatic despite a high arrhythmia burden with frequent ventricular ectopy and bidirectional ventricular tachycardia. However, patients remain at risk for life-threatening arrhythmias, including torsades de pointes and ventricular fibrillation, albeit less commonly than observed in other genetic arrhythmia syndromes. The characteristic heterogeneity at both the genotypic and phenotypic levels contribute to the continued difficulties with appropriate diagnosis, risk stratification, and effective therapy. The initial recognition of a syndromic association of clinically diverse symptoms, and the subsequent identification of the underlying molecular genetic basis of ATS has enhanced both clinical care, and our understanding of the critical function of Kir2.1 on skeletal muscle excitability and cardiac action potential.  相似文献   

18.
Congenital long QT syndrome (LQTS) is a primary cardiac channelopathy. Genetic testing has not only diagnostic but also prognostic and therapeutic implications. At present, 15 genes have been associated with the disease, with most mutations located in 3 major LQTS-susceptibility genes. During a routine genetic screening for KCNQ1, KCNH2 and SCN5A genes in index cases with LQTS, seven novel variants in KCNH2 and SCN5A genes were found. Genotype-phenotype correlations were analysed in these patients and their families. An open reading frame and splice site analysis of the exons was conducted using next-generation sequencing. In novel variants, phenotypes of carriers and their affected relatives were analysed. In 39 unrelated patients, 40 pathogenic/putative pathogenic mutations were found. Thirty-three of them, predominantly missense, were reported previously: 11 were in the KCNQ, 17 in the KCNH2 and 5 in the SCN5A gene. Seven novel missense variants were found in eight families. Among them, four variants were in typical for LQTS location. Two variants in the KCNH2 gene (p.D803Y and p.D46F) and one in the SCN5A gene (G1391R) were in amino acid (AA) position which up to present has not been reported in LQTS. Phenotype analysis showed the life-threatening course of the disease in index cases with a history of sudden cardiac death in six families. Mutation carriers presented with ECG abnormalities and some of them received beta-blocker therapy. We report three novel variants (KCNQ1 p.46, KCNH2 p.D803Y, SCN5A p.G1391R) which have never been reported for this AA location in LQTS; the phenotype-genotype correlation suggests their pathogenicity.  相似文献   

19.
In this part of a series on founder mutations in the Netherlands, we review familial idiopathic ventricular fibrillation linked to the DPP6 gene. Familial idiopathic ventricular fibrillation determines an intriguing subset of the inheritable arrhythmia syndromes as there is no recognisable phenotype during cardiological investigation other than ventricular arrhythmias highly associated with sudden cardiac death. Until recently, it was impossible to identify presymptomatic family members at risk for fatal events. We uncovered several genealogically linked families affected by numerous sudden cardiac deaths over the past centuries, attributed to familial idiopathic ventricular fibrillation. Notably, ventricular fibrillation in these families was provoked by very short coupled monomorphic extrasystoles. We were able to associate their phenotype of lethal arrhythmic events with a haplotype harbouring the DPP6 gene. While this gene has not earlier been related to cardiac arrhythmias, we are now able, for the first time, to identify and to offer timely treatment to presymptomatic family members at risk for future fatal events solely by genetic analysis. Therefore, when there is a familial history of unexplained sudden cardiac deaths, a link to the DPP6 gene may be explored as it may enable risk evaluation of the remaining family members. In addition, when closely coupled extrasystoles initiate ventricular fibrillation in the absence of other identifiable causes, a link to the DPP6 gene should be suspected.  相似文献   

20.
The Kv11.1 (hERG) K+ channel plays a fundamental role in cardiac repolarization. Missense mutations in KCNH2, the gene encoding Kv11.1, cause long QT syndrome (LQTS) and frequently cause channel trafficking-deficiencies. This study characterized the properties of a novel KCNH2 mutation discovered in a LQT2 patient resuscitated from a ventricular fibrillation arrest. Proband genotyping was performed by SSCP and DNA sequencing. The electrophysiological and biochemical properties of the mutant channel were investigated after expression in HEK293 cells. The proband manifested a QTc of 554 ms prior to electrolyte normalization. Mutation analysis revealed an autosomal dominant frameshift mutation at proline 1086 (P1086fs+32X; 3256InsG). Co-immunoprecipitation demonstrated that wild-type Kv11.1 and mutant channels coassemble. Western blot showed that the mutation did not produce mature complex-glycosylated Kv11.1 channels and coexpression resulted in reduced channel maturation. Electrophysiological recordings revealed mutant channel peak currents to be similar to untransfected cells. Co-expression of channels in a 1∶1 ratio demonstrated dominant negative suppression of peak Kv11.1 currents. Immunocytochemistry confirmed that mutant channels were not present at the plasma membrane. Mutant channel trafficking rescue was attempted by incubation at reduced temperature or with the pharmacological agents E-4031. These treatments did not significantly increase peak mutant currents or induce the formation of mature complex-glycosylated channels. The proteasomal inhibitor lactacystin increased the protein levels of the mutant channels demonstrating proteasomal degradation, but failed to induce mutant Kv11.1 protein trafficking. Our study demonstrates a novel dominant-negative Kv11.1 mutation, which results in degraded non-functional channels leading to a LQT2 phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号