首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Karyotype analyses based on staining by acetocarmine followed by Giemsa N-banding of somatic metaphase chromosomes of Hordeum vulgare L. were carried out on 61 reciprocal translocations induced by X-irradiation. By means of computer-based karyotype analyses all of the 122 breakpoints could be localized to defined sites or segments distributed over the seven barley chromosomes. The pre-definition of translocations with respect to their rearranged chromosome arms from other studies rendered it possible to define the break positions even in translocations having exchanged segments equal in size and the breakpoints located distally to any Giemsa band or other cytological marker. The breakpoints were found to be non-randomly spaced along the chromosomes and their arms. All breaks but one occurred in interband regions of the chromosomes, and none of the breaks was located directly within a centromere. However, short and long chromosome arms recombined at random. An improved tester set of translocations depicting the known break positions of most distal location is presented.  相似文献   

2.
The physical distribution of translocation breakpoints was analyzed in homoeologous recombinants involving chromosomes 1A, 1B, 1D of wheat and 1R of rye, and the long arms of chromosome 7S of Aegilops speltoides and 7A of wheat. Recombination between homoeologues was induced by removal of the Ph1 gene. In all instances, translocation breakpoints were concentrated in the distal ends of the chromosome arms and were absent in the proximal halves of the arms. The relationship between the relative distance from the centromere and the relative homoeologous recombination frequency was best explained by the function f(x)=0.0091e0.0592x. The pattern of recombination in homoeologous chromosomes was essentially the same as in homologues except that there were practically no double exchanges. Among 313 recombinant chromosomes, only one resulted from a double crossing-over. The distribution of translocation breakpoints in translocated arms indicated that positive chiasma interference operated in homoeologous recombination. This implies that the reduction of the length of alien chromosome segments present in translocations with wheat chromosomes may be more difficult than the production of the original recombinants.  相似文献   

3.
Drosophila nasuta albomicans (with 2n = 6), contains a pair of metacentric neo-sex chromosomes. Phylogenetically these are products of centric fusion between ancestral sex (X, Y) chromosomes and an autosome (chromosome 3). The polytene chromosome complement of males with a neo-X- and neo-Y-chromosomes has revealed asynchrony in replication between the two arms of the neo-sex chromosomes. The arm which represents the ancestral X-chromosome is faster replicating than the arm which represents ancestral autosome. The latter arm of the neo-sex chromosome is synchronous with other autosomes of the complement. We conclude that one arm of the neo-X/Y is still mimicking the features of an autosome while the other arm has the features of a classical X/Y-chromosome. This X-autosome translocation differs from the other evolutionary X-autosome translocations known in certain species ofDrosophila.  相似文献   

4.
Molecular mapping of the centromeres of tomato chromosomes 7 and 9   总被引:4,自引:0,他引:4  
The centromeres of two tomato chromosomes have been precisely localized on the molecular linkage map through dosage analysis of trisomic stocks. To map the centromeres of chromosomes 7 and 9, complementary telo-, secondary, and tertiary trisomic stocks were used to assign DNA markers to their respective chromosome arms and thus to localize the centromere at the junction of the short and long arms. It was found that both centromeres are situated within a cluster of cosegregating markers. In an attempt to order the markers within the centric clusters, genetic maps of the centromeric regions of chromosomes 7 and 9 were constructed from F2 populations of 1620Lycopersicon esculentum × L. pennellii (E × P) plants and 1640L. esculentum × L. pimpinellifolium (E × PM) plants. Despite the large number of plants analyzed, very few recombination events were detected in the centric regions, indicating a significant suppression of recombination at this region of the chromosome. The fact that recombination suppression is equally strong in crosses between closely related (E × PM) and remotely related (E × P) parents suggests that centromeric suppression is not due to DNA sequence mismatches but to some other mechanism. The greatest number of centromeric markers was resolved in theL. esculentum × L. pennellii F2 population. The centromere of chromosome 7 is surrounded by eight cosegregating markers: three on the short arm, five on the long arm. Similarly, the centric region of chromosome 9 contains ten cosegregating markers including one short arm marker and nine long arm markers. The localization of centromeres to precise intervals on the molecular linkage map represents the first step towards the characterization and ultimate isolation of tomato centromeres.  相似文献   

5.
Cytogenetic maps involving chromosomes 1R, 3R, 4R and 6R have been developed from the analysis of offspring of crosses between multiple heterozygous rye plants. The maps include isozyme loci GpiR1, Mdh-R1 and Pgd2 (located in chromosome 1R), Mdh-R2 (located in chromosome 3R), Pgm-R1 (located in chromosome 4R) and Aco-R1 (located in chromosome 6R). Various telomeric and interstitial C-bands of these four chromosomes, the centromere split of chromosome 3R, and translocation TR01 were used as cytological markers. By means of electron microscope analysis of spread pachytene synaptonemal complexes, the breakpoint of TR01 was physically mapped in chromosome arms 4RS and 6RL. From the linkage data, conclusions were derived concerning the cytological locations of the isozyme loci and the physical extent of the evolutive translocations involving chromosome arm 6RL.  相似文献   

6.
Complete identification of the translocations involved in evolution of S. vavilovii, S. africanum and S. cereale from S. montanum was attained by meiotic analysis after Giemsa banding technique. Based on the original mitotic karyotype of S. montanum, the different chromosome arms were determined by centromere position and banding pattern of chromosomes for the four species and all of the possible interspecific hybrids. This first consistent scheme of cytogenetic relationships reveals: one translocation each, separating S. montanum from S. vavilovii and S. africanum, two translocations each, separating S. cereale from S. vavilovii and S. africanum, and three translocations each, separating S. cereale from S. montanum and S. africanum, respectively.  相似文献   

7.
Summary The nature of genome change during polyploid evolution was studied by analysing selected species within the tribe Triticeae. The levels of genome changes examined included structural alterations (translocations, inversions), heterochromatinization, and nucleotide sequence change in the rDNA regions. These analyses provided data for evaluating models of genome evolution in polyploids in the genus Triticum, postulated on the basis of chromosome pairing at metaphase I in interspecies hybrids.The significance of structural chromosome alterations with respect to reduced MI chromosome pairing in interspecific hybrids was assayed by determining the incidence of heterozygosity for translocations and paracentric inversions in the A and B genomes of T. timopheevii ssp. araraticum (referred to as T. araraticum) represented by two lines, 1760 and 2541, and T. aestivum cv. Chinese Spring. Line 1760 differed from Chinese Spring by translocations in chromosomes 1A, 3A, 4A, 6A, 7A, 3B, 4B, 7B and possibly 2B. Line 2541 differed from Chinese Spring by translocations in chromosomes 3A, 6A, 6B and possibly 2B. Line 1760 also differed from Chinese Spring by paracentric inversions in arms 1AL and 4AL whereas line 2541 differed by inversions in 1BL and 4AL (not all chromosomes arms were assayed). The incidence of structural changes in the A and B genomes did not coincide with the more extensive differentiation of the B genomes relative to the A genomes as reflected by chromosome pairing studies.To assay changing degrees of heterochromatinization among species of the genus Triticum, all the diploid and polyploid species were C-banded. No general agreement was observed between the amount of heterochromatin and the ability of the respective chromosomes to pair with chromosomes of the ancestral species. Marked changes in the amount of heterochromatin were found to have occurred during the evolution of some of the polyploids.The analysis of the rDNA region provided evidence for rapid fixation of new repeated sequences at two levels, namely, among the 130 bp repeated sequences of the spacer and at the level of the repeated arrays of the 9 kb rDNA units. These occurred both within a given rDNA region and between rDNA regions on nonhomologous chromosomes. The levels of change in the rDNA regions provided good precedent for expecting extensive nucleotide sequence changes associated with differentiation of Triticum genomes and these processes are argued to be the principal cause of genome differentiation as revealed by chromosome pairing studies.  相似文献   

8.
Using fluorescence in situ hybridization (FISH) with probe pScT7, three different 5S rDNA loci were detected in the satellite of rye chromosome 1R (5SDna-R1) and in the short arms of chromosomes 3R (5SDna-R3) and 5R (5SDna-R2) respectively. All three loci showed polymorphism for the hybridization signal intensity. In order to determine the localization of these rye 5S rDNA multigene loci with higher precision within the corresponding chromosome arms, the probe pScT7 was physically mapped by FISH in relation to the following five translocations (Wageningen Tester Set): T850W (1RS/4RL), T248W (1RS/6RS), T273W (1RS/5RL), T305W (2RS/5RS) and T240W (3RS/5RL). Accurate physical maps of the translocation breakpoints had previously been made using electron microscope analysis of spread pachytene synaptonemal complexes of heterozygotes for the different translocations. The results indicate that locus 5SDna-R3 is located between the breakpoint of translocation T240W and the telomere, whereas locus 5SDna-R2 is located between the breakpoint of translocation T305W and the centromere, the hybridization of probe pScT7 on T305W translocated chromosomes demonstrating the complex nature of this translocation. On the other hand, the simultaneous detection of probes pScT7 and pTA71 (18S-5.8S-26S rDNA) with two different fluorochromes, indicated that the breakpoints of translocations T850W and T248W are located between loci Nor-R1 and 5SDna-R1.  相似文献   

9.
As a prerequisite to determine physical gene distances in barley chromosomes by deletion mapping, a reliable, fast and inexpensive approach was developed to detect terminal deletions and translocations in individual barley chromosomes added to the chromosome complement of common wheat. A refined fluorescence in situ hybridization (FISH) technique subsequent to N-banding made it possible to detect subtelomeric repeat sequences (HvT01) on all 14 chromosome arms of barley. Some chromosome arms could be distinguished individually based on the number of FISH signals or the intensity of terminal FISH signals. This allowed the detection and selection of deletions and translocations of barley chromosomes (exemplified by 7H and 4HL), which occurred in the progeny of the wheat lines containing a pair of individual barley chromosomes (or telosomes) and a single so-called gametocidal chromosome (2C) of Aegilops cylindrica. This chromosome is known to cause chromosomal breakage in the gametes in which it is absent. Terminal deletions and translocations in barley chromosomes were easily recognized in metaphase and even in interphase nuclei by a decrease in the number of FISH signals specific to the subtelomeric repeat. These aberrations were verified by genomic in situ hybridization. The same approach can be applied to select deletions and translocations of other barley chromosomes in wheat lines that are monosomic for the Ae. cylindrica chromosome 2C.  相似文献   

10.
The Y chromosome of Lucilia cuprina was cytogenetically dissected by recovering adjacent segregation products from crosses with appropriate autosomal and Y-autosome translocations. By these means Y chromosomes lacking most of the short, long, or both arms were isolated. Only the centromeric portion of the Y chromosome was necessary for male determination and fertility, the bulk of the short and long arms having no role in sex determination. Additionally, it was shown that most of the short arm can be passed into the female line with no marked effect. These results, together with evidence from other studies, indicate that male determination in L. cuprina is centred in a discrete region near the Y chromosome centromere.  相似文献   

11.
The behavior of a translocation chromosome t(6; 19) in the lymphocytes of a mentally retarded woman with other anomalies has been analyzed. The two chromosomes were attached at the telomeres of their short arms without any apparent deletion. The centromere of chromosome 19 was marked by a primary constriction and the site of the centromere of chromosome 6 by a C-band, but no constriction. The translocation chromosome showed two primary constrictions once in 8,800 metaphases, probably resulting from mitotic crossing-over. One or both chromatids of the translocation chromosome were broken at the attachment point with a frequency of 1/733 cells. In addition, the chromosome was often bent at this point and the translocated chromosomes 19 and 6 showed a differential spiralization. In this characteristic as well as the weakness of the fusion point, this chromosome differed from other translocations; the fusion obviously was not as firm as in translocations in general. The broken-off chromosome 6 did not regain a primary constriction, but had the appearance of a large acentric fragment. The segregation of the translocation chromosome and the fragment gave rise to a complicated mosaicism with various levels of ploidy for the fragment lacking a functional centromere. The data are in quantitative agreement with the equilibrium expectations under the assumption that each fragment goes to either pole at random in mitosis and that cells divide at the same rate regardless of ploidy. The high rate of nondisjunction of the fragment showed that the inactivated centromere of the translocation chromosome did not regain its activity when chromosome 19 with the functional centromere became separated from it. — The fragility and the behavior of the translocation chromosome and the production of telomeric associations are briefly discussed.  相似文献   

12.
The segregation of the 75K gamma secalin locus (Sec-2) in combination with five interchanges (reciprocal translocations) and two marker genes was analyzed. The translocations involved chromosome arms 1RL, 1RS, 2RL, 2RS, 4RL, 5RL, 5RS, 6RL and 6RS. The gene loci were both on 2R, but the arm was not known. Although the Sec-2 locus was expected to be on chromosome 2RS, no linkage between Sec-2 and any of the markers was found. This is concluded to be the result of exceptionally frequent recombination between Sec-2 and the break point of one of the translocations, which is the only marker in 2RS.  相似文献   

13.
Summary Four of 1,240 cultivated barley lines collected from different regions of the world and 3 of 120 lines of wild barley, Hordeum spontaneum C. Koch, carry spontaneous reciprocal translocations. Break-point positions and rearrangements in the interchanged chromosomes have been examined by both test crosses and Giemsa banding techniques. The four translocation lines in cultivated barley were all of Ethiopian origin and have the same translocation involving chromosomes 2 and 4. The breakpoints are at the centromeres of both chromosomes, resulting in interchanged chromosomes 2S+4S and 2L+4L (S=short arm, L=long arm). A wild barley line, Spont.II, also has translocated chromosomes 2 and 4 which are broken at the centromeres. The resultant chromosomes are, however, 2S+4L and 2L+4S. Another wild barley line, Spont.S-4, has interchanged chromosomes with breakpoints in the short arm of chromosome 3 and the long arm of chromosome 7. In addition, this line has a paracentric inversion in the short arm of chromosome 7 that includes a part of nucleolar constriction, resulting in two tandemly arranged nucleolar constrictions. The third wild barley line, Spont.S-7, has interchanged chromosomes with breakpoints in the long arms of both chromosomes 3 and 6. The translocated chromosome 3 is metacentric and the translocated chromosome 6 has a long arm similar in length to the long arm of chromosome 7.  相似文献   

14.
M. S. Ramanna 《Genetica》1969,40(1):279-288
Six aneuploid tomato plants with 2n–1=23 chromosomes were observed in populations grown from the seedlings treated with thermal neutrons and from seeds treated with X-rays. Four of the aneuploids were tertiary monosomics in which, as a result of centromeric interchanges between two different chromosomes, two whole arms were missing from the complement and two arms connected at the centromere. In one aneuploid, as a result of centromeric breakage, the two short arms of a homologous pair were missing from the complement and the two long arms connected to the long arm and the short arm respectively of another chromosome in which breakage had occurred also at the centromere. In one aneuploid, the interchange has occurred in the arms, and not in the centromere. Here the aneuploid condition is due to the loss of an arm with a centromere and a short piece of the other arm.In most of the tertiary monosomics the missing arms were either the short arms of sub-metacentric chromosomes or any of the arms of metacentric chromosomes. However, in one case the long arms of two submetacentric chromosomes were lost from the complement. That in spite of such large chromosomal deletions the sporophyte can survive, may be due to the fact that the aberrant plants are mostly chimeras.This study was part of a project resulting from a contract between the Association Euratom-I.T.A.L., and the Agricultural University of Wageningen.  相似文献   

15.
The morphometric characteristics of the chromosomes and the variability of the C-heterochromatin blocks in the trematodes Echinoparyphium aconiatum, E. recurvatum, Echinostoma revolutum, E. echinatum, Hypoderaeum conoideum, Isthmiophora melis, Paryphostomum radiatum, Neoacanthoparyphium echinatoides, Plagiorchis maculosus and Opisthioglyphe ranae are determined. The terminal and subterminal localisation of the centromere is a characteristic of the taxa examined. Typical two-arm chromosomes are rare. The karyotype of the examined trematodes is asymmetrical, and this asymmetry is a result of differences in the lengths of the chromosome arms. It is proved that the regression of the lengths of the chromosome arms has a linear character with a similar angle of slope in the different species. Centric fusion and unreciprocal translocations are accepted as contributing significantly to chromosome changes. A hypothesis on the possible mechanism of chromosome changes in the trematode karyotype is proposed.  相似文献   

16.
Sheridan WF  Auger DL 《Genetics》2008,180(2):755-769
The B–A–A translocations have enabled us to simultaneously assess the possible dosage-sensitive interactions of two nonhomologous chromosome segments in affecting maize plant development. Maize B–A–A translocations contain segments of two nonhomologous essential A chromosomes in tandem arrangement attached to a segment of the long arm of a supernumerary B chromosome. By utilizing the frequent nondisjunction of the B centromere at the second pollen mitosis we produced plants containing an extra copy of the two A chromosome segments. We compared these hyperploid plants with nonhyperploid plants by measuring leaf width, plant height, ear height, internode length, stalk circumference, leaf length, and tassel-branch number in 20 paired families that involved one of the chromosome arms 1S, 1L, 4L, 5S, and 10L. One or more of the seven measured traits displayed dosage sensitivity among 17 of the 20 B–A–A translocations, which included the involvement of chromosome arms 2L, 3L, 5L, 6L, and 7L. The most obvious effect of an increased dosage of the B–A–A translocation was a significant decrease in the traits in the hyperploid plants. These effects may be either the additive effects of hyperploidy for the two chromosome segments or a result of gene interaction between them.  相似文献   

17.
Evolutionary conservatism in arrangement of genetic material   总被引:5,自引:0,他引:5  
The diploid number of the Rhesus macaque, Macaca mulatta, is 42. All chromosomes are biarmed and all constitutive heterochromatins are centromeric. The diploid number of the African Green monkey, Cercopithecus aethiops, is 60. Again all chromosomes are biarmed, but seven pairs possess very short second arms which are heterochromatic. The heterochromatins of remaining chromosomes are centromeric. Using G-banding and deleting the heterochromatic short arms, the chromosomes of the African Green monkey can be artificially fused to reconstruct a karyotype of the Rhesus with only one pair of unmatched small metacentrics. In addition to the Robertsonian type of translocations, several sets of centromere-telomere translocations were found. The latter type of translocation reduced three arms into two. Thus the fundamental number can be changed by two mechanisms: growing extra heterochromatic arms and the centromere-telomere fusions.  相似文献   

18.
Summary A new mechanism for changing chromosome numbers (preserving the fundamental number of long chromosome arms) during karyotype evolution is suggested. It includes: 1) Occurrence of individuals heterozygous for two interchanges between different arms of three chromosomes (a metacentric and two acrocentric ones). 2) Formation in heterokaryotypes of multivalents during meiosis between the chromosomes involved in the interchanges and their unchanged homologues. 3) Mis-segregation of chromosomes from these multivalents resulting in hypoploid (n-1) and hyperploid (n+1) simultaneously instead of euhaploid gametes. 4) Fusion of n-1 or n+1 gametes which gives rise to (zygotes and) individuals representing homokaryotypes with changed number of chromosomes (2n+2 or 2n-2), but preserves (as compared to the parental karyotypes) the number of long chromosome arms. Under definite conditions, chromosome numbers of the progeny may be changed by this process in both directions (upwards and downwards). The mechanism is free of the difficulties associated with the explanation for such changes by direct Robertsonian interchanges (see Discussion), which are usually considered to be responsible for such alterations in chromosome number. The above-mentioned process has been experimentally documented in Vicia faba and it probably also occurred naturally within the Vicia sativa group.  相似文献   

19.
Cytogenetics for the model system Arabidopsis thaliana   总被引:7,自引:5,他引:2  
A detailed karyotype of Arabidopsis thaliana is presented using meiotic pachytene cells in combination with fluorescence in situ hybridization. The lengths of the five pachytene bivalents varied between 50 and 80 μm, which is 20–25 times longer than mitotic metaphase chromosomes. The analysis confirms that the two longest chromosomes (1 and 5) are metacentric and the two shortest chromosomes (2 and 4) are acrocentric and carry NORs subterminally in their short arms, while chromosome 3 is submetacentric and medium sized. Detailed mapping of the centromere position further revealed that the length variation between the pachytene bivalents comes from the short arms. Individual chromosomes were unambiguously identified by their combinations of relative lengths, arm-ratios, presence of NOR knobs and FISH signals with a 5S rDNA probe and chromosome specific DNA probes. Polymorphisms were found among six ecotypes with respect to the number and map positions of 5S rDNA loci. All ecotypes contain 5S rDNA in the short arms of chromosomes 4 and 5. Three different patterns were observed regarding the presence and position of a 5S rDNA locus on chromosome 3. Repetitive DNA clones enabled us to subdivide the pericentromeric heterochromatin into a central domain, characterized by pAL1 and 106B repeats, which accommodate the functional centromere and two flanking domains, characterized by the 17 A20 repeat sequences. The upper flanking domains of chromosomes 4 and 5, and in some ecotypes also chromosome 3, contain a 5S rDNA locus. The detection of unique cosmids and YAC sequences demonstrates that detailed physical mapping of Arabidopsis chromosomes by cytogenetic techniques is feasible. Together with the presented karyotype this makes Arabidopsis a model system for detailed cytogenetic mapping.  相似文献   

20.
Summary Measurements of distances between telocentric chromosomes, either homologous or representing the opposite arms of a metacentric chromosome (complementary telocentrics), were made at metaphase in root tip cells of common wheat carrying two homologous pairs of complementary telocentrics of chromosome 1 B or 6 B (double ditelosomic 1 B or 6 B). The aim was to elucidate the relative locations of the telocentric chromosomes within the cell. The data obtained strongly suggest that all four telocentrics of chromosome 1 B or 6 B are spacially and simultaneously co-associated. In plants carrying two complementary (6 B S and 6 B L) and a non-related (5 B L) telocentric, only the complementary chromosomes were found to be somatically associated. It is thought, therefore, that the somatic association of chromosomes may involve more than two chromosomes in the same association and, since complementary telocentrics are as much associated as homologous, that the homology between centromeres (probably the only homologous region that exists between complementary telocentrics) is a very important condition for somatic association of chromosomes. The spacial arrangement of chromosomes was studied at anaphase and prophase and the polar orientation of chromosomes at prophase was found to resemble anaphase orientation. This was taken as good evidence for the maintenance of the chromosome arrangement — the Rabl orientation — and of the peripheral location of the centromere and its association with the nuclear membrane. Within this general arrangement homologous telocentric chromosomes were frequently seen to have their centromeres associated or directed towards each other. The role of the centromere in somatic association as a spindle fibre attachment and chromosome binder is discussed. It is suggested that for non-homologous chromosomes to become associated in root tips, the only requirement needed should be the homology of centromeres such as exists between complementary telocentrics, or, as a possible alternative, common repeated sequences of DNA molecules around the centromere region.Dedicated to Professor Dr. Marcus M. Rhoades on his 70th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号