首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Cascio  B A Wallace 《Proteins》1988,4(2):89-98
The secondary structure of alamethicin, a membrane channel-forming polypeptide, has been examined by circular dichroism spectroscopy to determine the relationship of its conformation in organic solution to its conformation in a membrane-bound state. The spectrum of alamethicin in small unilamellar dimyristoyl phosphatidylcholine vesicles is significantly different from its spectrum in 10% methanol/acetonitrile, the solvent from which it was crystallized (Fox and Richards: Nature 300:325-330, 1982), as well as its spectrum in methanol, the solvent in which NMR studies have been done (Banerjee and Chan: Biochemistry 22:3709-3713, 1983). This suggests that structural models based on studies of the molecule in organic solvents may not be entirely appropriate for the membrane-bound state. To distinguish between different models for channel formation and insertion, two different methods were used to associate the alamethicin with vesicles; in addition, the effect of oligomerization on the conformation of the membrane-bound state was investigated. These studies are consistent with a modified insertion model in which alamethicin monomers, dimers, or trimers associate with the bilayer and then spontaneously oligomerize to form a prechannel with a higher helix content. This aggregate could then "open" upon application of an appropriate gating transmembrane potential.  相似文献   

2.
When excised inside-out membrane patches are bathed in symmetrical Cl--rich solutions, the current-voltage (I-V) relationship of macroscopic cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents inwardly rectifies at large positive voltages. To investigate the mechanism of inward rectification, we studied CFTR Cl- channels in excised inside-out membrane patches from cells expressing wild-type human and murine CFTR using voltage-ramp and -step protocols. Using a voltage-ramp protocol, the magnitude of human CFTR Cl- current at +100 mV was 74 +/- 2% (n = 10) of that at -100 mV. This rectification of macroscopic CFTR Cl- current was reproduced in full by ensemble currents generated by averaging single-channel currents elicited by an identical voltage-ramp protocol. However, using a voltage-step protocol the single-channel current amplitude (i) of human CFTR at +100 mV was 88 +/- 2% (n = 10) of that at -100 mV. Based on these data, we hypothesized that voltage might alter the gating behavior of human CFTR. Using linear three-state kinetic schemes, we demonstrated that voltage has marked effects on channel gating. Membrane depolarization decreased both the duration of bursts and the interburst interval, but increased the duration of gaps within bursts. However, because the voltage dependencies of the different rate constants were in opposite directions, voltage was without large effect on the open probability (Po) of human CFTR. In contrast, the Po of murine CFTR was decreased markedly at positive voltages, suggesting that the rectification of murine CFTR is stronger than that of human CFTR. We conclude that inward rectification of CFTR is caused by a reduction in i and changes in gating kinetics. We suggest that inward rectification is an intrinsic property of the CFTR Cl- channel and not the result of pore block.  相似文献   

3.
Understanding the binding and insertion of peptides in lipid bilayers is a prerequisite for understanding phenomena such as antimicrobial activity and membrane-protein folding. We describe molecular dynamics simulations of the antimicrobial peptide alamethicin in lipid/water and octane/water environments, taking into account an external electric field to mimic the membrane potential. At cis-positive potentials, alamethicin does not insert into a phospholipid bilayer in 10 ns of simulation, due to the slow dynamics of the peptide and lipids. However, in octane N-terminal insertion occurs at field strengths from 0.33 V/nm and higher, in simulations of up to 100 ns duration. Insertion of alamethicin occurs in two steps, corresponding to desolvation of the Gln7 side chain, and the backbone of Aib10 and Gly11. The proline induced helix kink angle does not change significantly during insertion. Polyalanine and alamethicin form stable helices both when inserted in octane and at the water/octane interface, where they partition in the same location. In water, both polyalanine and alamethicin partially unfold in multiple simulations. We present a detailed analysis of the insertion of alamethicin into the octane slab and the influence of the external field on the peptide structure. Our findings give new insight into the mechanism of channel formation by alamethicin and the structure and dynamics of membrane-associated helices.  相似文献   

4.
T. N. Kropacheva  J. Raap   《FEBS letters》1999,460(3):1219-504
The effect of a transmembrane potential on ion channel formation by zervamicin II (ZER-II) was studied in a vesicular model system. The dissipation of diffusion potential caused by addition of ZER-II to small phosphatidylcholine vesicles was monitored using fluorescent (Safranine T) and optical (Oxonol YI) probes. Cis-positive potentials facilitated channel formation, while at cis-negative potentials, ion fluxes were inhibited. A potential-independent behavior of ZER-II was observed at high peptide concentrations, most likely due to its membrane modifying property.  相似文献   

5.
The implicit membrane model IMM1 is extended to include the effect of transmembrane potential and used to investigate the optimal membrane binding configurations and energies for alamethicin helices. In the absence of voltage, the lowest energy configuration is on the membrane surface with a tilt allowing the N terminus to be fully buried. Slightly higher in energy is an also tilted configuration with the N terminus deeper in the membrane and almost crossing the membrane. In 26A membranes and in the presence of 0.1V voltage, the TM orientation becomes lower in energy. This is consistent with the assumption that voltage induces a transition from the interfacial to the inserted (TM) orientation. This effect of voltage is smaller in thicker membranes. The results are compared to previous experimental and theoretical studies and the findings are discussed in relation to the mechanism of channel formation by alamethicin.  相似文献   

6.
Alamethicin is an antibiotic which produces voltage gated channels in lipid bilayer membranes. Recently completed studies of the pressure dependence of alamethicin conductance have shown that its onset following application of a suprathreshold voltage step at a pressure of 100 MPa (1000 atm) is markedly slowed relative to that observed at ambient pressure. Furthermore, the time course of the onset of conductance becomes distinctly sigmoidal at elevated pressure, a condition which is not evident at atmospheric pressure. The decay of alamethicin conductance upon removal of suprathreshold applied voltage is also slowed by application of hydrostatic pressure, but it follows a single exponential time course at all pressures. In addition, kinetic parameters characterizing the onset and decay of conductance show distinctly different pressure dependences. These observations cannot be explained by a two state model in which alamethicin moves reversibly between nonconducting and conducting states. Therefore we re-examine critically a hypothesis made by previous workers, namely that alamethicin, in monomeric or aggregate form, moves upon application of suprathreshold voltage first from a nonconducting surface state to a nonconducting preassembly or precursor state, and then finally into a conducting state. Parameters of this three state model are related to a geometric factor which measures the degree of sigmoidal conductance response and which can be evaluated directly from experimental data. An alternative aggregation-type analysis, equivalent to that applied by Hodgkin & Huxley to the potassium conductance in squid axon, is also considered in the context of this same geometric factor. The possibility of distinguishing between these analyses on the basis of experimental data is discussed.  相似文献   

7.
Pressure effects on alamethicin conductance in bilayer membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
We report here the first observations of the effects of elevated hydrostatic pressure on the kinetics of bilayer membrane conductance induced by the pore-forming antibiotic, alamethicin. Bacterial phosphatidylethanolamine-squalene bilayer membranes were formed by the apposition of lipid monolayers in a vessel capable of sustaining hydrostatic pressures in the range, 0.1-100 MPa (1-1,000 atm). Principal observations were (a) the lifetimes of discrete conductance states were lengthened with increasing pressure, (b) both the onset and decay of alamethicin conductance accompanying application and removal of supra-threshold voltage pulses were slowed with increasing pressure, (c) the onset of alamethicin conductance at elevated pressure became distinctly sigmoidal, suggesting an electrically silent intermediate state of channel assembly, (d) the magnitudes of the discrete conductance levels observed did not change with pressure, and, (e) the voltage threshold for the onset of alamethicin conductance was not altered by pressure. Apparent activation volumes for both the formation and decay of conducting states were positive and of comparable magnitude, namely, approximately 100 A3/event. Observation d indicates that channel geometry and the kinetics of ion transport through open channels were not affected by pressure in the range employed. The remaining observations indicate that, while the relative positions of free-energy minima characterizing individual conducting states at a given voltage were not modified by pressure, the heights of intervening potential maxima were increased by its application.  相似文献   

8.
Alamethicin at a concentration of 2 micrograms/ml on one side of a lipid bilayer, formed at the tip of a patch clamp pipette from diphytanoyl phosphatidylcholine and cholesterol (2:1 mol ratio) in aqueous 0.5 M KCl, 5 mM Hepes, pH 7.0, exhibits an asymmetric current-voltage curve, only yielding alamethicin currents when the side to which the peptide has been added is made positive. Below room temperature, however, single alamethicin channels created in such membranes sometimes survive a sudden reversal of the polarity. These "reversed" channels are distinct from transiently observed states displayed as the channel closes after a polarity reversal. Such "reversed" channels can be monitored for periods up to several minutes, during which time we have observed them to fluctuate through more than 20 discrete conductance states. They are convenient for the study of isolated ion-conducting alamethicin aggregates because, after voltage reversal, no subsequent incorporation of additional ion-conducting aggregates takes place.  相似文献   

9.
The ionic conductances that underlie the resting membrane potential of visceral smooth muscle are not fully understood. Using the patch-clamp technique in the whole-cell configuration, single large conductance channels (LCCs) with unitary conductances of up to 400 pS were recorded in isolated smooth muscle cells of the opossum esophagus. These channels were active at physiological potentials (-100 to -40 mV) and opened with increasing frequency as the membrane potential was hyperpolarized. This voltage dependence gave rise to an inwardly rectifying macroscopic current which was half-maximally activated at -65 mV. The current through LCCs was carried by cations because reduction of external [NaCl] shifted the reversal potential of the LCC current towards the predicted Nernst potential for a nonselective cation current. These results suggest that LCCs may contribute to resting membrane potential in the circular muscle of the opossum esophagus.  相似文献   

10.
In a recent paper (Blaustein, R. O., T. M. Koehler, R. J. Collier, and A. Finkelstein, 1989. Proc. Natl. Acad. Sci. USA. 86:2209-2213) we described the general channel-forming properties of the PA65 fragment of anthrax toxin in planar phospholipid bilayer membranes. In the present paper we extend our previous studies of the permeability properties of this channel, using a series of symmetric tetraalkylammonium (TAA) ions. Our main finding is that at micromolar concentrations on either the cis (toxin-containing) or trans side of a membrane containing many (greater than 1,000) channels, these ions, ranging in size from tetramethylammonium to tetrahexylammonium, induce a voltage-dependent reduction of membrane conductance. (We attribute a similar voltage-dependent reduction of membrane conductance by millimolar concentrations of HEPES to a cationic form of this buffer present at micromolar concentrations.) In going from large negative to large positive voltages (on the TAA side) one sees that the conductance first decreases from its value in the absence of TAA, reaches a minimum, and then rises back at larger positive voltages toward the level in the absence of TAA. Our interpretation of this behavior is that these symmetric TAA ions block the cation-selective PA65 channel in a voltage-dependent manner. We postulate that there is a single site within the channel to which TAA ions can bind and thereby block the passage of the major current-carrying ion (potassium). A blocking ion is driven into the site by modest positive voltages, but is driven off the site and through the channel by larger positive voltages, thus explaining the relief of block. (In the accompanying paper [Blaustein, R. O., E. J. A. Lea, and A. Finkelstein. 1990. J. Gen. Physiol. 96:921-942] we confirm this interpretation of the data by analysis at the single-channel level.) This means that these blocking ions can pass through the channel; the permeability to tetrahexylammonium, the largest ion studied, implies that the narrowest part of the channel has a diameter of at least 11 A.  相似文献   

11.
S C Hartsel  D S Cafiso 《Biochemistry》1986,25(25):8214-8219
A new series of negatively charged, paramagnetic alkylsulfonate probes was synthesized and can be used to measure both the internal and the external surface potentials of model membrane systems. We tested for discreteness-of-charge effects in lipid membranes by comparing the surface potentials, estimated by use of these negatively charged amphiphiles, with that of a series of positively charged alkylammonium nitroxides in charged membranes. From the partitioning of these probes, the membrane surface potential was estimated in phosphatidylcholine membranes containing either phosphatidylserine or didodecyldimethylammonium bromide. The surface potentials, estimated with either positive or negative probes, were identical, within experimental error, in either positive or negative membranes, and they were well accounted for by a simple Gouy-Chapman-Stern theory. This symmetry, with respect to the sign of the charge, indicates that discreteness-of-charge effects are not significant in determining the potential-sensitive phase partitioning of these probes in model membranes. Thus, despite the fact that charge on membranes is discrete, models that assume a uniform density of charge in the plane of the membrane adequately account for the potentials measured by these amphiphilic probes.  相似文献   

12.
L P Kelsh  J F Ellena  D S Cafiso 《Biochemistry》1992,31(22):5136-5144
Alamethicin is a channel-forming peptide antibiotic that produces a highly voltage-dependent conductance in planar bilayers. To provide insight into the mechanisms for its voltage dependence, the dynamics of the peptide were examined in solution using nuclear magnetic resonance. Natural-abundance 13C spin-lattice relaxation rates and 13C-1H nuclear Overhauser effects of alamethicin were measured at two magnetic field strengths in methanol. This information was interpreted using a model-free approach to obtain values for the overall correlation times as well as the rates and amplitudes of the internal motions of the peptide. The picosecond, internal motions of alamethicin are highly restricted along the peptide backbone and indicate that it behaves as a rigid helical rod in solution. The side chain carbons exhibit increased segmental motion as their distance from the peptide backbone is increased; however, these motions are not unrestricted. Methyl group dynamics are also consistent with the restricted motions observed for the backbone carbons. There is no evidence from these dynamics measurements for a hinged motion of the peptide about proline-14. Alamethicin appears to be slightly less structured in methanol than in the membrane; as a result, alamethicin is also expected to behave as a rigid helix in the membrane. This suggests that the gating of this peptide involves changes in the orientation of the entire helix, rather than the movement of a segment of the peptide backbone.  相似文献   

13.
Alamethicin, a linear 20-amino acid antibiotic, forms voltage-dependent channels in lipid bilayer membranes. We show here that alamethicin-phospholipid conjugates can be prepared by photolysis of unilamellar vesicles containing alamethicin and a phosphatidylcholine analogue with a carbene precursor at the end of the C-2 fatty acyl chain. This result indicates that at least a portion of the alamethicin molecule is in contact with the hydrocarbon moiety of the membrane in the absence of an applied voltage. Furthermore, the alamethicin-phospholipid photoproduct is able to induce a voltage-gated conductance similar to that of natural alamethicin. The importance of these results in terms of mechanisms for channel gating is discussed.  相似文献   

14.
The mechanism of interaction of artificially generated lipid vesicles (approximately 500 A diameter) with Chinese hamster V79 cells bathed in a simple balanced salt solution was investigated. The major pathways of exogenous lipid incorporation in vesicle-treated cells are vesicle-cell fusion and vesicle-cell lipid exchange. At 37 degrees C, the fusion process is dominant, while at 2 degrees C or with energy depleted cells, exchange of lipids between vesicles and cells is important. The fusion mechanism was demonstrated using vesicles of [14C]lecithin containing trapped [13H]inulin. Consistent with a fusion hypothesis, both components became cell associated at 37 degrees C in nearly the same proportions as they were present in the applied vesicles. Additional arguments in favor of vesicle-cell fusion and against phagocytosis or adsorption of intact vesicles are presented. At 2 degrees C or with inhibitor-treated cells, the [3H]inulin uptake was largely suppressed, while the lipid uptake was reduced to a lesser extent. Evidence for vesicle-cell lipid exchange was obtained using V79 cells grown on 3H precursors for cellular lipids. [14C]lecithin vesicles, incubated with such cells, showed no change in their elution properties when subjected to molecular sieve chromatography on Sepharose 4B. However, radioactivity and thin-layer chromatographic analyses revealed that a variety of cell lipiids had been exchanged into the uniamellar vesicles. Further evidence for the fusion and exchange processes was obtained using vesicles prepared from mixtures of [3H]lecithin and [14C]cholesterol. A two-step fusion mechanism consistent with the present findings is proposed as a working model for other fusion studies.  相似文献   

15.
A study on the interactions of surfactin with phospholipid vesicles.   总被引:5,自引:0,他引:5  
Surfactin, an acidic lipopeptide produced by various strains of Bacillus subtilis, behaves as a very powerful biosurfactant and posses several other interesting biological activities. By means of differential scanning calorimetry and X-ray diffraction the effect of surfactin on the phase transition properties of bilayers composed of different phospholipids, including lipids forming hexagonal-HII phases, has been studied. The interactions of surfactin with phosphatidylcholine and phosphatidylglycerol seem to be optimal in the case of myristoyl acyl chains, which have a similar length to the surfactin hydrocarbon tail. Data are shown that support formation of complexes of surfactin with phospholipids. The ionized form of surfactin seems to be more deeply inserted into negatively charged bilayers when Ca2+ is present, also supporting the formation of surfactin-Ca2+ complexes. In mixtures with dielaidoylphosphatidylethanolamine, a hexagonal-HII phase forming lipid, surfactin displays a bilayer stabilizing effect. Our results are compatible with the marked amphiphilic nature of surfactin and may contribute to explain some of its interesting biological actions; for instance the formation of ion-conducting pores in membranes.  相似文献   

16.
The dipole moment of alamethicin, which produces voltage-dependent conductance in lipid-bilayer membranes, was measured in mixed solvents of ethanol and dioxane. The value of the dipole moment was found to increase from 40 to 75 DU (Debye units), as the concentration of ethanol increased from 0 (pure dioxane) to 40%. The relaxation frequency of alamethicin also changes from 10 to 40 MHz, depending upon the concentration of ethanol in mixed solvents. The length of alamethicin was calculated by using the relaxation time and was found to range from approximately 40 to 20 A. The dipole moment was independently calculated from voltage-dependent conductance and compared with the measured value. The calculated value was found to be larger than the value of direct measurements, indicating that several alamethicin molecules are required to form a conducting pore and that their dipole moments are oriented parallel to each other.  相似文献   

17.
Current-voltage relations have been measured across lecithin bilayers doped with alamethicin molecules. The results show that there are two aspects of the induced conductances, a voltage-dependent and a voltage-independent conductance. Both have been characterized as a function of alamethicin and KCl concentration. The two aspects of the conductances do not show the same changes with those two variables. The voltage-independent conductance is affected very little by changes in KCl concentration, and its dependance on alamethicin concentration reveals that it is produced by two or three alamethicin molecules. The voltage-dependent conductance is shifted by the changes in KCl concentration only when the concentrations are greater than or equal to 100 mM; below 100 mM KCl the slope of the log conductance-voltage curve is also reduced. The effect of changing alamethicin concentration reveals that nine or ten molecules are involved for KCl concentrations larger than 100 mM; if the KCl concentration is less than 100 mM, the effect of changing the alamethicin concentration is reduced. Time-dependent measurements have also been performed; only one time constant was found and it is strongly voltage-dependent. Also a very slow voltage-dependent absorption process is found. These results can be explained if it is assumed that pores are formed of a mixture of charged and uncharged alamethicin molecules when a voltage is applied and that uncharged alamethicin can also form pores without applying a voltage, once the absorption process has been started by previously applied voltages. The voltage dependence of the time constant seems to indicate that the voltage-dependent pore formation is produced by aggregates of charged alamethicin rather than independent molecules.  相似文献   

18.
De novo formation of cell pairs was used to examine the gating properties of single gap junction channels. Two separate cells of an insect cell line (clone C6/36, derived from the mosquito Aedes albopictus) were pushed against each other to provoke formation of gap junction channels. A dual voltage-clamp method was used to control the voltage gradient between the cells (Vj) and measure the intercellular current (Ij). The first sign of channel activity was apparent 4.7 min after cell contact. Steady-state coupling reached after 30 min revealed a conductance of 8.7 nS. Channel formation involved no leak between the intra- and extracellular space. The first opening of a newly formed channel was slow (25-28 ms). Each preparation passed through a phase with only one operational gap junction channel. This period was exploited to examine the single channel properties. We found that single channels exhibit several conductance states with different conductances gamma j; a fully open state (gamma j(main state)), several substates (gamma j(substates)), a residual state (gamma j(residual)) and a closed state (gamma j(closed)). The gamma j(main state) was 375 pS, and gamma j(residual) ranged from 30 to 90 pS. The transitions between adjacent substates were 1/7-1/4 of gamma j(main state). Vj had no effect on gamma j(main state), but slightly affected gamma j (residual). The lj transitions involving gamma j(closed) were slow (15-60 ms), whereas those not involving gamma j(closed) were fast (< 2 ms). An increase in Vj led to a decrease in open channel probability. Depolarization of the membrane potential (Vm) increased the incidence of slow transitions leading to gamma j(closed). We conclude that insect gap junctions possess two gates, a fast gate controlled by Vj and giving rise to gamma j(substates) and gamma j(residual), and a slow gate sensitive to Vm and able to close the channel completely.  相似文献   

19.
Summary Voltage-sensitive membrane potential probes were used to monitor currents resulting from positive or negative charge movement across small and large unilamellar phosphatidylcholine (PC) vesicles. Positive currents were measured for the paramagnetic phosphonium ion or for K+-valinomycin. Negative currents were indirectly measured for the anionic proton carriers CCCP and DNP by monitoring transmembrane proton currents. Phloretin, a compound that is believed to decrease dipole fields in planar bilayers, increases positive currents and decreases negative currents when added to egg PC vesicles. In these vesicles, positive currents are increased by phloretin addition to a much larger degree than CCCP currents are reduced. This asymmetry, with respect to the sign of the charge carrier, is apparently not the result of changes in the membrane dielectric constant. It is most easily explained by deeper binding minima at the membrane-solution interface for the CCCP anion, when compared to the phosphonium. The measured asymmetry and the magnitudes of the current changes are consistent with the predictions of a point dipole model. The use of potential-sensitive probes to estimate positive and negative currents, provides a methodology to monitor changes in the membrane dipole potential in vesicle systems.  相似文献   

20.
Encapsulation of polyuridylic acid in phospholipid vesicles.   总被引:2,自引:0,他引:2  
Entrapment of polyuridylic acid by neutral, positive and negatively charged phospholipid multilamellar vesicles was studied. The polyuridylic acid was found to be involved with the liposomes in two ways. Liposome-associated polyuridylic acid was readily degraded by bovine pancreatic RNase, while entrapped polynucleotide was found to be RNase-resistant. Sepharose 4B column chromatography showed the presence of liposome-associated and liposome entrapped polynucleotide. Approximately 14–26% of the polynucleotide became entrapped in the liposomes. Multilamellar vesicles prepared with dipalmitoylphosphatidylcholine or purified egg lecithin did not differ in the amount of polynucleotide entrapped nor in Sepharose 4B column chromatography behavior. Entrapment in liposomes protected the polynucleotide from degradation by serum nucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号