首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gentisate 1,2-dioxygenase from the extreme halophile Haloferax sp. D1227 (Hf. D1227) was purified using a three-step procedure. The enzyme was found to be a homotetramer of 42 000 ± 1000 Da subunits, with a native molecular weight of 174 000 ± 6000 Da. The optimal salt concentration, temperature, and pH for enzyme activity were 2 M KCl or NaCl, 45°C, and pH 7.2, respectively. The gene encoding Hf. D1227 gentisate 1,2-dioxygenase was cloned, sequenced, and expressed in Haloferax volcanii. The deduced amino acid sequence exhibited a 9.2% excess acidic over basic amino acids typical of halophilic enzymes. Four novel histidine clusters and a possible extradiol dioxygenase fingerprint region were identified. Received: November 19, 1997 / Accepted: May 12, 1998  相似文献   

2.
A pink-pigmented halophilic Archaeon, Strain D1227, was isolated from soil contaminated with oil brine and shown to be a member of the genus Haloferax, based on: (1) its hybridization with a 16S rRNA probe universal for the Archaea; (2) its resistance to a broad spectrum of antibiotics that affect Bacteria; (3) its requirement for at least 0.86 M NaCl and 25 mM Mg2+ for growth; (4) its possession of C50-carotenoids characteristic of the halophilic Arachaea; (5) the thin layer chromatographic pattern of its polar lipids, which was identical to that of other species of Haloferax; and (6) its pleomorphic cell morphology. However, in contrast to the known species of Archaea, Haloferax strain D1227 was able to use aromatic substrates (e.g., benzoate, cinnamate, and phenylpropanoate) as sole carbon and energy sources for growth. Physiologically similar organisms, such as Haloferax volcanii, Haloferax mediterrani, Haloarcula vallismortis, and Haloarcula hispanica, could not grow on these aromatic substrates. When grown on 14C-benzoate, strain D1227 mineralized 70% of the substrate and assimilated 19% of the 14C-label into cell biomass. In addition to growth on aromatic substrates, D1227 was also capable of growth on a variety of carbohydrates and organic acids. Optimum growth of strain D1227 occurred at 45°C in media containing 1.7–2.6 M NaCl and 100 mM Mg2+. Under optimum growth conditions, the cell shape varied from that of an oblate spheroid on mineral salts medium alone, to discshaped, irregular or triangular cells on the same medium amended with yeast extract and tryptone. To our knowledge, this is the first unequivocal demonstration of the ability of an Archacon to grow by mineralization of aromatic substrates, and it adds a new dimension to our appreciation of the physiological diversity of this group of prokaryotes.Abbreviations Ha. Haloarcula - Hf. Haloferax  相似文献   

3.
4.
Anaerobic degradation of hydroquinone was studied with the fermenting bacterium strain HQGö1. The rate of hydroquinone degradation by dense cell suspensions was dramatically accelerated by addition of NaHCO3. During fermentation of hydroquinone in the presence of 14C-Na2CO3 benzoate was formed as a labelled product, indicating an initial ortho-carboxylation of hydroquinone to gentisate. Gentisate was activated to the corresponding CoA-ester in a CoA ligase reaction at a specific activity of 0.15 mol x min–1 x mg protein–1. Gentisyl-CoA was reduced to benzoyl-CoA with reduced methyl viologen as electron donor by simultaneous reductive elimination of both the ortho and meta hydroxyl group. The specific activity of this novel gentisyl-CoA reductase was 17 nmol x min–1 x mg protein–1. Further degradation to acetate was catalyzed by enzymes which occur also in other bacteria degrading aromatic compounds via benzoyl-CoA.  相似文献   

5.
冯莉  许楹  周宁一 《微生物学通报》2018,45(8):1611-1620
【背景】细菌、酵母或植物来源的超氧化物歧化酶(Superoxide dismutase,SOD)编码基因在异源宿主中表达并提高宿主耐盐性的研究已有一些报道,其异源宿主也多为植物,而古菌来源的超氧化物歧化酶编码基因在细菌中成功表达并提高其耐盐性的研究尚无报道。【目的】寻找嗜盐古菌Haloferax sp.D1227中的超氧化物歧化酶编码基因并鉴定其功能,将其在4-硝基苯酚降解细菌Burkholderia sp.SJ98中表达,研究该古菌的超氧化物歧化酶对菌株SJ98耐盐性和降解4-硝基苯酚功能的影响。【方法】通过生物信息学方法寻找嗜盐古菌D1227中潜在的超氧化物歧化酶编码基因,利用表达载体p ET-28a和广泛宿主载体p BBR1MCS-2将其分别在E.coli BL21(DE3)和4-硝基苯酚的降解菌株SJ98中异源表达,检测细胞抽提液和纯化蛋白的超氧化物歧化酶比活力。分别以葡萄糖和4-硝基苯酚为碳源,在M9培养基和添加500 mmol/L Na Cl(Na Cl含量约3%)的M9培养基中分别培养细菌SJ98的重组菌株和空载体重组菌株,利用全自动生长曲线分析仪和高效液相色谱等方法检测重组菌株的生长能力和对4-硝基苯酚的降解能力。【结果】通过生物信息学分析,在嗜盐古菌D1227基因组中发现了潜在的超氧化物歧化酶编码基因sod A,其在E.coli BL21(DE3)和菌株SJ98中分别异源表达均具有超氧化物歧化酶活力[细胞抽提液的比活力分别为21.07±0.02 U/mg和84.56±0.16 U/mg,从BL21(DE3)菌株纯化的蛋白Sod AD1227比活力为179.46±3.43 U/mg]。在添加500 mmol/L Na Cl的M9培养基中培养时,以葡萄糖为碳源,重组菌株SJ98[p BBR-sod A]仍可正常生长,而空载体对照菌株SJ98[p BBR1MCS-2]几乎丧失了生长能力;以4-硝基苯酚为碳源,菌株SJ98[p BBR-sod A]保持了利用底物生长和降解底物的能力,而菌株SJ98[p BBR1MCS-2]的生长和降解能力几乎丧失。用软件Phyre2模拟分析Sod AD1227的单体结构,该蛋白拥有Fe/Mn-SOD家族的典型结构特征,推测其属于Fe/Mn-SOD家族。【结论】本研究为利用古菌SOD对细菌进行改造以适应高盐环境中降解有机污染物的应用提供了潜在的可行性。  相似文献   

6.
7.
AIMS: The aim of this work was to study the biodegradation of benzyldimethylalkylammonium chloride (BAC) by Aeromonas hydrophila sp. K, an organism isolated from polluted soil and capable of utilizing BAC as sole source of carbon and energy. METHODS AND RESULTS: High performance liquid chromatography and gas chromatography-mass spectrometry (GC-MS) analysis was used to study BAC degradation pathway. It was shown that during BAC biodegradation, formation of benzyldimethylamine, benzylmethylamine, benzylamine, benzaldehyde and benzoic acid occurred. Formation of benzyldimethylamine as the initial metabolite suggested that the cleavage of Calkyl-N bond occurred as the first step of BAC catabolism. Liberation of benzylmethylamine and benzylamine likely resulted from subsequent demethylation reactions, followed by deamination with formation of benzaldehyde. Benzaldehyde was rapidly converted into benzoic acid, which was further degraded. CONCLUSIONS: Aer. hydrophila sp. K is able to degrade BAC. A degradation pathway for BAC and related compounds is proposed. SIGNIFICANCE AND IMPACT OF STUDY: These findings are significant for understanding biodegradation pathways of benzyl-containing quaternary ammonium compounds.  相似文献   

8.
李敏  王桂莲  马璐  张琇 《微生物学通报》2021,48(5):1550-1559
[背景]蓄积在土壤中的阿魏酸类化感自毒物质对农作物生长产生危害,利用有益微生物分解该类物质是一项有效的治理措施.[目的]从自然界土壤分离获得能高效降解阿魏酸的菌株,并评估典型环境因子对降解效能的影响,以期为该菌在阿魏酸类自毒物质降解领域中的应用提供理论依据.[方法]采用一次性投加高浓度化合物的驯化方法分离筛选得到能有效...  相似文献   

9.
Dimer structure and liquid structure of fatty acids in the binary liquid mixture of dodecanoic (LA) and 3-phenylpropionic acids (PPA) were studied through the measurements of DSC, self-diffusion coefficient (D), density, viscosity, 13C NMR spin-lattice relaxation time, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS). The phase diagram of LA/PPA mixture exhibited a typical eutectic pattern, which means that LA and PPA are completely immiscible in solid phase. In the liquid phase of the LA/PPA mixture, D of LA always differed from that of PPA irrespective of their compositions. This exhibited that, in the liquid phase of the binary mixture of fatty acids giving a complete eutectic in the solid phase, the fatty acid dimers are composed of the same fatty acid species irrespective of their compositions. The liquid structure of the LA/PPA mixture was clarified through the SAXS and also the SANS measurements.  相似文献   

10.
Degradation of arylarsenic compounds by microorganisms   总被引:2,自引:0,他引:2  
Microorganisms were not directly accumulated when soil contaminated to about 0.5 mM with diphenylarsinic acid (DPAA) was used as the sole source of carbon. However, using toluene as the carbon source yielded several isolates, which were then used in cultivation with DPAA as the sole source of carbon. By these methods, Kytococcus sedentarius strain NK0508, which can grow in up to 0.038 mM DPAA, was isolated. The toxicity of DPAA retarded the growth of K. sedentarius and the direct accumulation of DPAA-utilizing microorganisms from environmental samples. This strain can utilize about 80% of DPAA and phenylarsonic acid as the sole source of carbon for 3 days. Degradation products of DPAA were determined to be cis, cis, muconate and arsenic acid. When K. sedentarius was cultivated with methylphenylarsinic acid and diphenylmethylarsine, about 90% and 10% degradation of the two compounds, respectively, were observed. Diphenylmethylarsine oxide, possibly synthesized by methylation of DPAA, was detected as one of the transformation products. These results suggest that degradation is initiated by splitting of the phenyl groups from the arylarsenic compounds with subsequent hydroxylation of the phenyl groups and ring opening to yield cis, cis, muconate.  相似文献   

11.
微小杆菌(Exiguobacterium sp.)对肉桂酸降解行为   总被引:1,自引:0,他引:1  
【目的】为有效缓解自毒物质肉桂酸对西瓜等作物生长的危害,从宁夏中卫硒砂瓜连作土壤中分离筛选得到一株高效降解肉桂酸的菌株,研究其基本降解特性。【方法】分离筛选得到一株能有效利用肉桂酸生长的菌株,采用16S r RNA基因序列分析进行菌株鉴定,运用高效液相色谱法和西瓜幼苗生长毒性实验检测降解特性。【结果】从多年西瓜连作土壤中筛选得到一株高效降解肉桂酸的细菌R30,鉴定为Exiguobacterium sp.,其96 h内对肉桂酸的降解率可达99%以上,最适降解温度和p H分别为30°C、p H 7.0。除肉桂酸外,该菌也能够高效降解香豆酸、阿魏酸、苯甲酸等其他酚酸类物质,表现出一定的底物广谱性;检测96 h降解液对西瓜种子萌发直至幼苗生长阶段的影响表明,该菌株可有效缓解肉桂酸对西瓜幼苗的生长抑制作用。【结论】菌株R30在肉桂酸、香豆酸、阿魏酸、苯甲酸等酚酸类物质导致的农作物连作障碍治理领域具有潜在的开发应用价值。  相似文献   

12.
From a methanogenic fixed-bed reactor fed with hydroquinone as sole energy and carbon source, a rodshaped bacterium was isolated in pure culture which could degrade hydroquinone and gentisate (2,5-dihydroxybenzoate). In syntrophic coculture with either Desulfovibrio vulgaris or Methanospirillum hungatei, also benzoate could be degraded. Other substrates such as sugars, fatty acids, alcohols, and cyclohexane derivatives were not degraded. Sulfate, sulfite, or nitrate were not used as external electron acceptor. The isolate was a Gram-negative, non-motile, nonsporeforming strict anaerobe; the guanine-plus-cytosine content of the DNA was 53.2±1.0 mol%. In pure culture, hydroquinone was degraded to acetate and benzoate, probably via an intermediate carboxylation. In syntrophic mixed cultures, all three substrates were converted completely to acetate. Phenol was never detected as a fermentation product.  相似文献   

13.
In order to study differences in gamma-decalactone production in yeast, four species of Sporidiobolus were cultivated with 5% of methyl ricinoleate as the lactone substrate. In vivo studies showed different time courses of intermediates of ricinoleic acid breakdown between the four species. In vitro studies of the beta-oxidation system were conducted with crude cell extracts of Sporidiobolus spp. and with ricinoleyl-CoA (RCoA) as substrate. The beta-oxidation was detected by measuring acyl-CoA oxidase, 3-hydroxyacyl-CoA dehydrogenase activities, and acetyl-CoA production. The time courses of the CoA esters resulting from RCoA breakdown by crude extract of Sporidiobolus spp. permit the proposal of different metabolic models in the yeast. These models explained the differences observed during in vivo studies.  相似文献   

14.
Degradation of 3-phenylbutyric acid by Pseudomonas sp.   总被引:1,自引:0,他引:1       下载免费PDF全文
Pseudomonas sp. isolated by selective culture with 3-phenylbutyrate (3-PB) as the sole carbon source metabolized the compound through two different pathways by initial oxidation of the benzene ring and by initial oxidation of the side chain. During early exponential growth, a catechol substance identified as 3-(2,3-dihydroxyphenyl)butyrate (2,3-DHPB) and its meta-cleavage product 2-hydroxy-7-methyl-6-oxononadioic-2,4-dienoic acid were produced. These products disappeared during late exponential growth, and considerable amounts of 2,3-DHPB reacted to form brownish polymeric substances. The catechol intermediate 2,3-DHPB could not be isolated, but cell-free extracts were able only to oxidize 3-(2,3-dihydroxyphenyl)propionate of all dihydroxy aromatic acids tested. Moreover, a reaction product caused by dehydration of 2,3-DHPB on silica gel was isolated and identified by spectral analysis as (--)-8-hydroxy-4-methyl-3,4-dihydrocoumarin. 3-Phenylpropionate and a hydroxycinnamate were found in supernatants of cultures grown on 3-PB; phenylacetate and benzoate were found in supernatants of cultures grown on 3-phenylpropionate; and phenylacetate was found in cultures grown on cinnamate. Cells grown on 3-PB rapidly oxidized 3-phenylpropionate, cinnamate, catechol, and 3-(2,3-dihydroxyphenyl)propionate, whereas 2-phenylpropionate, 2,3-dihydroxycinnamate, benzoate, phenylacetate, and salicylate were oxidized at much slower rates. Phenylsuccinate was not utilized for growth nor was it oxidized by washed cell suspensions grown on 3-PB. However, dual axenic cultures of Pseudomonas acidovorans and Klebsiella pneumoniae, which could not grow on phenylsuccinate alone, could grow syntrophically and produced the same metabolites found during catabolism of 3-PB by Pseudomonas sp. Washed cell suspensions of dual axenic cultures also immediately oxidized phenylsuccinate, 3-phenylpropionate, cinnamate, phenylacetate, and benzoate.  相似文献   

15.
Cell structure modifications and beta-oxidation induction were monitored in two strains of Sporidiobolus, Sp. Ruinenii and Sp. pararoseus after cultivation on ricinoleic acid methyl ester. Ultrastructural observations of the yeast before and after cultivation on fatty acid esters did not reveal major modifications in Sp. ruinenii. Unexpectedly, in Sp. pararoseus a proliferation of the mitochondrion was observed. After induction, Sp. ruinenii principally exhibited an increase in the activities of acyl-CoA oxidase (ACO), hydroxyacyl-CoA deshydrogenase (HAD), thiolase and catalase. In contrast, Sp. pararoseus lacked ACO and catalase activities, but an increase in acyl-CoA deshydrogenase (ACDH) and enoyl-CoA hydratase (ECH) activity was observed. These data suggest that in Sp. ruinenii, beta-oxidation is preferentially localized in the microbody, whereas in Sp. pararoseus it might be localized in the mitochondria.  相似文献   

16.
A new rod-shaped, gram-negative, non-sporeforming, strictly anaerobic bacterium (strain HHQ7) was enriched and isolated from marine mud samples with hydroxyhydroquinone (1,2,4-trihydroxybenzene) as sole substrate. Strain HHQ7 fermented hydroxyhydroquinone, pyrogallol (1,2,3-trihydroxybenzene), phloroglucinol (1,3,5-trihydroxybenzene) and gallic acid (3,4,5-trihydroxybenzoate) to 3 mol acetate (plus 1 mol CO2 in the case of gallic acid) per mol of substrate. Resorcinol accumulated intermediately during growth on hydroxy-hydroquinone. No other aliphatic or aromatic substrates were utilized. Sulfate, sulfite, sulfur, nitrate, and fumarate were not reduced with hydroxyhydroquinone as electron donor. The strain grew in sulfide-reduced mineral medium supplemented with 7 vitamins. The DNA base ratio was 59% G+C. Strain HHQ7 is classified as a new species of the genus Pelobacter, P. massiliensis. Experiments with dense cell suspensions of hydroxyhydroquinone-and pyrogallol-grown cells showed different kinetics of hydroxyhydroquinone and pyrogallol degradation, as well as different patterns of resorcinol accumulation, indicating that these substrates are metabolized by different transhydroxylation reactions.  相似文献   

17.
A novel pathway for 2-aminophenol metabolism by Pseudomonas sp. AP-3 is proposed. The proposed pathway is similar to that known for meta-cleavage of catechol except that one of the hydroxyl groups on the metabolites is replaced by an amino group. During the degradation of 2-aminophenol, 2-amino-2,4-pentadienoic acid is the last metabolite containing an amino group. We, therefore, propose a modified meta-cleavage pathway for the 2-aminophenol metabolism. Received: 27 November 1997 / Accepted: 14 May 1998  相似文献   

18.
Production of R-3-hydroxybutyric acid (3HB) was observed when genes of β-ketothiolase (PhbA), acetoacetyl CoA reductase (PhbB), and thioesterase II (TesB) were jointly expressed in Escherichia coli. TesB, generally regarded as a medium chain length acyl CoA thioesterase, was found, for the first time, to play an important role for transforming short chain length 3-hydroxybutyrate-CoA to its free fatty acid, namely, 3HB. E. coli BW25113 (pSPB01) harboring phbA, phbB, and tesB genes produced approximately 4 g/l 3HB in shake flask culture within 24 h with glucose used as a carbon source. Under anaerobic growth conditions, 3HB production was found to be more effective, achieving 0.47 g 3HB/g glucose compared with only 0.32 g 3HB/g glucose obtained from aerobic process. When growth was conducted on sodium gluconate, 6 g/l 3HB was obtained. In a 24-h fed-batch growth process conducted in a 6-l fermentor containing 3 l glucose mineral medium, 12 g/l 3HB was produced from 17 g/l cell dry weight (CDW). This was the highest 3HB productivity achieved by a one-stage fermentation process for 3HB production. Liu and Ouyang contributed equally to the paper.  相似文献   

19.
The sub-cellular location of enzymes of fatty acid β-oxidation in plants is controversial. In the current debate the role and location of particular thiolases in fatty acid degradation, fatty acid synthesis and isoleucine degradation are important. The aim of this research was to determine the sub-cellular location and hence provide information about possible functions of all the putative 3-ketoacyl-CoA thiolases (KAT) and acetoacetyl-CoA thiolases (ACAT) in Arabidopsis. Arabidopsis has three genes predicted to encode KATs, one of which encodes two polypeptides that differ at the N-terminal end. Expression in Arabidopsis cells of cDNAs encoding each of these KATs fused to green fluorescent protein (GFP) at their C-termini showed that three are targeted to peroxisomes while the fourth is apparently cytosolic. The four KATs are also predicted to have mitochondrial targeting sequences, but purified mitochondria were unable to import any of the proteins in vitro. Arabidopsis also has two genes encoding a total of five different putative ACATs. One isoform is targeted to peroxisomes as a fusion with GFP, while the others display no targeting in vivo as GFP fusions, or import into isolated mitochondria. Analysis of gene co-expression clusters in Arabidopsis suggests a role for peroxisomal KAT2 in β-oxidation, while KAT5 co-expresses with genes of the flavonoid biosynthesis pathway and cytosolic ACAT2 clearly co-expresses with genes of the cytosolic mevalonate biosynthesis pathway. We conclude that KATs and ACATs are present in the cytosol and peroxisome, but are not found in mitochondria. The implications for fatty acid β-oxidation and for isoleucine degradation in mitochondria are discussed.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

20.
Abstract Growth of Bacillus sp. DSM 2923 on nicotinic acid in mineral medium was dependent on the concentration of sodium molybdate added. Addition of increasing amounts of tungstate to the medium resulted in an inhibition of growth on nicotinic acid or 6-hydroxynicotinic acid as sole source of carbon and energy. Chlorate-resistant mutants were isolated which were not able to degrade nicotinic acid and 6-hydroxynicotinic acid nor to reduce nitrate. Additionally, enzyme activities of nicotinic acid dehydrogenase and 6-hydroxynicotinic acid dehydrogenase increased with increasing concentrations of molybdate (10−8 to 10−6 M) added to the medium, and decreased with increasing amounts of tungstate (10−6 to 10−5 M) in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号