首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Cell lines that are mutated in interferon (IFN) responses have been critical in establishing an essential role for the JAK family of nonreceptor tyrosine kinases in interferon signalling. Mutant gamma1A cells have previously been shown to be complemented by overexpression of JAK2. Here, it is shown that these cells carry a defect in, and can also be complemented by, the beta-subunit of the IFN-gamma receptor, consistent with the hypothesis that the mutation in these cells affects JAK2-receptor association. In contrast, mutant gamma2A cells lack detectable JAK2 mRNA and protein. By using gamma2A cells, the role of various domains and conserved tyrosine residues of JAK2 in IFN-gamma signalling was examined. Individual mutation of six conserved tyrosine residues, mutation of a potential phosphatase binding site, or mutation of the arginine residue in the proposed SH2-like domain had no apparent effect on signalling in response to IFN-gamma. Results with deletion mutants, however, indicated that association of JAK2 with the IFN-gammaR2 subunit requires the amino-terminal region but not the pseudokinase domain. Consistent with this, in chimeras with JAK1, the JAK2 amino-terminal region was required for receptor association and STAT1 activation. Conversely, a JAK1-JAK2 chimera with the amino-terminal domains of JAK1 linked to the pseudokinase and kinase domains of JAK2 is capable of reconstituting JAK-STAT signalling in response to IFN-alpha and -gamma in mutant U4C cells lacking JAK1. The specificity of the JAKs may therefore lie mainly in their structural interaction with different receptor and signalling proteins rather than in the substrate specificity of their kinase domains.  相似文献   

3.
4.
5.
6.
Two antipeptide antibodies, one against the peptide corresponding to residues 307-327 (alpha Y91) and one against the peptide corresponding to the C-terminal portion (alpha C92) of the deduced amino acid sequence of the extracellular signal-regulated kinase 1 (ERK1), precipitated two 41-kDa and/or two 43-kDa phospho-proteins from mitogen-stimulated Swiss 3T3 cells. Electrophoretic mobilities on two-dimensional gels of the immunoprecipitated 41- and 43-kDa phosphoproteins were similar to those of the 41- and 43-kDa cytosol proteins, whose increased tyrosine phosphorylation we and others had originally identified in various mitogen-stimulated cells (Cooper, J. A., Sefton, B. M., and Hunter, T. (1984) Mol. Cell. Biol. 4, 30-37; Kohno, M. (1985) J. Biol. Chem. 260, 1771-1779); phosphopeptide map analysis revealed that they were respectively identical molecules. All those phosphoproteins contained phosphotyrosine, and the more acidic forms contained additional phosphothreonine. Immunoprecipitated 41- and 43-kDa phosphoproteins had serine/threonine kinase activity toward myelin basic protein (MBP) and microtuble-associated protein 2 (MAP2). With the combination of two-dimensional gel electrophoresis and the kinase assay in MBP-containing polyacrylamide gels of the alpha Y91 immunoprecipitates, with or without phosphatase 2A treatment, we showed that only their acidic forms were active. These results clearly indicate that 41- and 43-kDa proteins, the increased tyrosine phosphorylation of which is rapidly and commonly induced by mitogen stimulation of fibroblasts, are family members of ERKs/MAP2 kinases and that phosphorylation both on tyrosine and threonine residues is necessary for their activation.  相似文献   

7.
Two site-specific antibodies have been prepared by immunizing rabbits with chemically synthesized peptides derived from the partial cDNA-predicted amino acid sequence of extracellular signal-regulated kinase 1 (ERK1), which has been proposed to encode the microtubule-associated protein 2 (MAP2) kinase (Boulton, T. G., Yancopoulos, G. D., Gregory, J. S., Slauer, C., Moomaw, C., Hsu, J., and Cobb, M. H. (1990) Science 249, 64-67). With immunoprecipitation in the presence of sodium dodecyl sulfate (SDS) and Western blotting, an antibody to the peptide containing triple tyrosine residues (alpha Y91) resembling one of the insulin receptor autophosphorylation sites specifically recognized 42- and 44-kDa proteins. On the other hand, an antibody to the peptide corresponding to the COOH terminus portions (alpha C92) of the ERK1 cDNA gene product recognized the 44-kDa protein much more efficiently than the 42-kDa protein. With immunoprecipitation in the absence of SDS, alpha Y91 could barely recognize these two proteins and alpha C92 recognized the 44-kDa protein but failed to recognize the 42-kDa protein. Kinase assays in myelin basic protein (MBP)-containing gel, after SDS-polyacrylamide gel electrophoresis, revealed that insulin or 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated MBP kinase activity in alpha Y91 immunoprecipitates comigrated at molecular mass 42 and 44 kDa. On the other hand, the stimulated MBP kinase activity in alpha C92 immunoprecipitates comigrated only at molecular mass 44 kDa. Insulin stimulated the MBP kinase activity in gels and phosphorylation of these two proteins by greater than 10-fold with a maximal level at 5 min. Insulin and TPA rapidly stimulate the phosphorylation of the 42- and 44-kDa proteins via de novo threonine and tyrosine phosphorylation. Tryptic phosphopeptide mapping analysis of the 42- and 44-kDa proteins, respectively, revealed a single major phosphopeptide containing phosphothreonine and phosphotyrosine, which was common to both insulin- and TPA-stimulated phosphoproteins. Protein phosphatase 2A treatment of these two phosphoproteins caused a complete loss of kinase activity with selective dephosphorylation of phosphothreonine. These data strongly suggest that these two proteins are highly related to the mitogen-activated protein (MAP) kinase with an apparent molecular mass of 42 kDa (Ray, L. B., and Sturgill, T. W. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 3753-3757) and that these two immunologically similar but distinct MBP/MAP2 kinases may represent isozymic forms of MBP/MAP2 kinases. These data also demonstrate that insulin and TPA activate MBP/MAP2 kinase activity by de novo phosphorylation of threonine and tyrosine residues via a very similar pathway.  相似文献   

8.
Herpes simplex virus (HSV) 1 disaggregates the nuclear domain 10 (ND10) nuclear structures and disperses its organizing promyelocytic leukemia protein (PML). An earlier report showed that ectopic overexpression of PML precludes the disaggregation of ND10 but has no effect on viral replication. PML has been reported to mediate the effects of interferon (IFN) and viral mutants lacking ICP0 (Delta alpha 0 mutants). To test the hypothesis that HSV disaggregates ND10 structures and disperses PML to preclude IFN-mediated antiviral effects, we tested the accumulation of viral proteins and virus yields from murine PML(+/+) and PML(-/-) cells mock treated or exposed to IFN-alpha, IFN-gamma, or both and infected with the wild-type or Delta alpha 0 mutant virus. We report the following results. (i) The levels of growth of wild-type and mutant viruses and of accumulation of viral proteins were not significantly different in untreated PML(+/+) and PML(-/-) cells. (ii) Major effects of IFN-alpha and -gamma were observed in PML(+/+) cells infected with the Delta alpha 0 mutant virus, and more minor effects were observed in cells infected with the wild-type virus. The effects of the IFNs on either wild-type or the mutant virus in PML(-/-) cells were minimal. (iii) The mixture of IFN-alpha and -gamma was more effective than either IFN alone, but again, the effect was more drastic in PML(+/+) cells than in PML(-/-) cells. We concluded that the anti-HSV state induced by exogenous IFN is mediated by PML and that the virus targets the ND10 structures and disseminates PML in order to preclude the establishment of the antiviral state induced by IFNs.  相似文献   

9.
10.
11.
12.
Abstract: The mechanism for carbachol (CCh)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled pheochromocytoma PC12 cells with respect to the involvement of protein tyrosine phosphorylation and Ca2+. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol in the presence of 0.3% butanol. Pretreatment of cells with the tyrosine kinase inhibitors herbimycin A, genistein, and tyrphostin inhibited PLD activation by CCh. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands (111, 91, 84, 74, 65–70, 44, and 42 kDa) in PC12 cells treated with CCh. Phosphorylation of the 111-, 91-, 84-, and 65–70-kDa proteins peaked within 1 min, and their time-dependent changes seemingly correlated with that of PLD activation. Others (74, 44MAPK, and 42MAPK kDa) were phosphorylated rather slowly, and maximal tyrosine phosphorylation was observed at 2 min. Herbimycin A inhibited PLD activity and tyrosine phosphorylation of four proteins (111, 91, 84, and 65–70 kDa) in a preincubation time- and concentration-dependent fashion. In Ca2+-free buffer, CCh-induced [3H]phosphatidylbutanol formation and protein tyrosine phosphorylation were abolished. A Ca2+ ionophore, A23187, caused PLD activation and tyrosine phosphorylation of four proteins of 111, 91, 84, and 65–70 kDa only in the presence of extracellular Ca2+. Extracellular Ca2+ dependency for CCh-induced PLD activation was well correlated with that for tyrosine phosphorylation of the four proteins listed above, especially the 111-kDa protein. These results suggest that Ca2+-dependent protein tyrosine phosphorylation is closely implicated in CCh-induced PLD activation in PC12 cells.  相似文献   

13.
Recent studies have demonstrated that Cbl, the 120-kDa protein product of the c-cbl proto-oncogene, serves as a substrate of a number of receptor-coupled tyrosine kinases and forms complexes with SH3 and SH2 domain-containing proteins, pointing to its role in signal transduction. Based on genetic evidence that the Caenorhabditis elegans Cbl homolog, SLI-1, functions as a negative regulator of the LET-23 receptor tyrosine kinase and our demonstration that Cbl's evolutionarily conserved N-terminal transforming region (Cbl-N; residues 1 to 357) harbors a phosphotyrosine binding (PTB) domain that binds to activated ZAP-70 tyrosine kinase, we examined the possibility that oncogenic Cbl mutants may activate mitogenic signaling by deregulating cellular tyrosine kinase machinery. Here, we show that expression of Cbl-N and two other transforming Cbl mutants (CblY368 delta and Cbl366-382 delta or Cb170Z), but not wild-type Cbl, in NIH 3T3 fibroblasts leads to enhancement of endogenous tyrosine kinase signaling. We identified platelet-derived growth factor receptor alpha (PDGFR alpha) as one target of mutant Cbl-induced deregulation. In mutant Cbl transfectants, PDGFR alpha was hyperphosphorylated and constitutively complexed with a number of SH2 domain-containing proteins. PDGFR alpha hyperphosphorylation and enhanced proliferation of mutant Cbl-transfected NIH 3T3 cells were drastically reduced upon serum starvation, and PDGF-AA substituted for the maintenance of these traits. PDGF-AA stimulation of serum-starved Cbl transfectants induced the in vivo association of transfected Cbl proteins with PDGFR alpha. In vitro, Cbl-N directly bound to PDGFR alpha derived from PDGF-AA-stimulated cells but not to that from unstimulated cells, and this binding was abrogated by a point mutation (G306E) corresponding to a loss-of-function mutation in SLI-1. The Cbl-N/G306E mutant protein, which failed to induce enhanced growth and transformation of NIH 3T3 cells, also failed to induce hyperphosphorylation of PDGFR alpha. Altogether, these findings identify a novel mechanism of Cbl's physiological function and oncogenesis, involving its PTB domain-dependent direct interaction with cellular tyrosine kinases.  相似文献   

14.
Recent studies from this laboratory have identified novel cytoskeletal proteins that are phosphorylated on tyrosine in vivo in Rous sarcoma virus-transformed chick fibroblasts (Glenney, J. R., Jr., and Zokas, L. (1989) J. Cell Biol. 108, 2401-2408). In the present report, the phosphorylation of these proteins was examined in cells expressing the nonmyristylated mutants of src that are not transformed. A good correlation was found between transformation and the tyrosine phosphorylation of a 22-kDa protein. Tyrosine phosphorylation of the 22-kDa protein was reduced more than 95% in cells expressing the nonmyristylated mutants of src. Size fractionation revealed that the 22-kDa phosphoprotein in transformed chick fibroblasts is found in a Mr 150,000 complex. Monoclonal antibodies were used to screen various chicken tissues where the 22-kDa protein was found at high levels in muscle and lung with low levels in epithelial cells and brain. The 22-kDa protein becomes an excellent candidate for a mediator of transformation by the tyrosine kinase class of oncogenes.  相似文献   

15.
Park MY  Kim YE  Seo MR  Lee JR  Lee CH  Ahn JH 《Journal of virology》2006,80(6):2718-2727
Four phosphoproteins, of 34, 43, 50, and 84 kDa, with common amino termini are synthesized via alternative splicing from the UL112-113 region of the human cytomegalovirus genome. Although genetic studies provided evidence that both the UL112 and UL113 loci in the viral genome are required for efficient viral replication, whether the four proteins play specific roles or cooperate in replication is not understood. Here we present evidence, using in vitro and in vivo coimmunoprecipitation assays, that the four UL112-113 proteins both self-interact and interact with each other. A mapping study of the 84-kDa protein showed that the N-terminal region encompassing amino acids 1 to 125, which is shared in all UL112-113 proteins and highly conserved among betaherpesviruses, is required for both self-interaction and nuclear localization as foci. Further localization studies revealed that, unlike the 43-, 50-, and 84-kDa proteins, which were distributed as nuclear punctate forms, the 34-kDa form was located predominantly in the cytoplasm. However, when all four proteins were coexpressed simultaneously, all of the UL112-113 proteins were efficiently localized to the promyelocytic leukemia oncogenic domains. We also found that the ability of the UL112-113 proteins to relocate UL44 (the viral polymerase processivity factor) to prereplication foci relied on self-interaction and reached maximal levels when the four proteins were coexpressed. Therefore, our data suggest that interactions occurring among UL112-113 proteins via their shared N-terminal regions are important to both their intranuclear targeting and the recruitment of UL44 to subnuclear sites for viral replication.  相似文献   

16.
Using specific antibodies against the alpha subunit of the inhibitory GTP-binding protein Gi, we analyzed the association of Gi alpha with other cellular components in human platelets. Three tyrosine phosphorylated proteins with molecular mass of 63, 58, and 55 kDa were specifically associated with Gi alpha in resting platelets. Stimulation of platelets with epinephrine, but not with thrombin, induced an increase of the reactivity of the 63- and 55-kDa proteins to anti-phosphotyrosine antibodies on western blotting. By in vitro kinase assay we found that epinephrine induced the association of kinase activity with Gi alpha and that the 63-kDa protein was phosphorylated by this activity. The association of kinase activity with Gi alpha in epinephrine-stimulated platelets paralleled the association of pp60src with Gi alpha, as detected by western blotting analysis using specific anti-pp60src monoclonal antibodies. The interaction of pp60src with Gi alpha may play a role in the mechanism of platelet activation by epinephrine or in the epinephrine-induced potentiation of the action of other platelet agonists.  相似文献   

17.
18.
Signal regulatory proteins (SIRPs) are receptor-like transmembrane proteins, the majority of which contain a cytoplasmic proline-rich region and four cytoplasmic tyrosines that, when phosphorylated, bind SH2 domain-containing protein tyrosine phosphatases (SHP). We demonstrated previously that growth hormone (GH) induces tyrosyl phosphorylation of SIRPalpha and association of SIRPalpha with SHP-2. The GH-activated tyrosine kinase JAK2 associates with and tyrosyl-phosphorylates SIRPalpha1. Here we show that JAK2-SIRPalpha1 association does not require phosphotyrosines in SIRPalpha1 or JAK2 or the proline-rich region of SIRPalpha1. However, when the C-terminal 30 amino acids of SIRPalpha1 containing the proline-rich region and tyrosine 495 are deleted, tyrosyl phosphorylation of SIRPalpha1 by JAK2 and association of SHP-2 with SIRPalpha1 are reduced. GH-dependent tyrosyl phosphorylation of JAK2 is reduced when wild-type SIRPalpha1 compared with SIRPalpha1 lacking the four cytoplasmic tyrosines (SIRP 4YF) is expressed in cells, suggesting that SIRPalpha1 negatively regulates GHR/JAK2 signaling. Consistent with reduced JAK2 activity, overexpression of wild-type SIRPalpha1 but not SIRP 4YF reduces GH-induced phosphorylation of ERKs 1 and 2, STAT3, and STAT5B. These results suggest that SIRPalpha1 is a negative regulator of GH signaling and that the ability of SIRPalpha1 mutants to negatively regulate GHR-JAK2 signaling correlates with their ability to bind SHP-2.  相似文献   

19.
Bovine cerebral cortex contains two major substrates for ADP-ribosylation by pertussis toxin: a 39-kDa protein, alpha 39, and a 41-kDa protein, alpha 41 (Neer, E. J., Lok, J. M., and Wolf, L. G. (1984) J. Biol. Chem. 259, 14222-14229). Both of these proteins bind guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) with a similar affinity (Kd = 30 +/- 10 nM for alpha 39, Kd = 32 +/- 14 nM for alpha 41). Both proteins associate with a beta X gamma subunit made up of a 36-kDa beta component and a 6-kDa gamma component. We have previously shown that the beta X gamma unit is required for pertussis toxin-catalyzed ADP-ribosylation (Neer et al. (1984)). By measuring the amount of beta X gamma required for maximal incorporation of ADP-ribose, we now find that the EC50 for beta X gamma in this reaction is 3 +/- 1 times lower for alpha 41 than for alpha 39. ADP-ribosylation by pertussis toxin does not prevent dissociation of alpha 41 X beta X gamma or alpha 39 X beta X gamma by GTP gamma S. GTP gamma S decreases the sedimentation coefficient of ADP-ribosylated alpha 41 from 4.2 S to 3.0 S and the sedimentation coefficient of ADP-ribosylated alpha 39 from 4.3 S to 2.9 S. The conclusion that GTP gamma S dissociates both ADP-ribosylated heterotrimers was confirmed by the observation that GTP gamma S blocks precipitation of ADP-ribosylated alpha 39 or alpha 41 by anti-beta antibody. Neither alpha 41 X beta X gamma nor alpha 39 X beta X gamma is dissociated by GTP whether or not the proteins are ADP-ribosylated. The observation that alpha 41 more readily associates with beta X gamma than does alpha 39 may explain our earlier observation that alpha 41 is more readily ADP-ribosylated than alpha 39. In most intact membranes, only a 41-kDa ADP-ribosylated protein is seen. However, alpha 39 is also present in most tissues since we can detect it with anti-alpha 39 antibody. The functional consequences of pertussis toxin treatment may depend on whether one or both proteins are ADP-ribosylated. This in turn may depend on the ratio of alpha 41 and alpha 39 to beta X gamma in a given tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号