首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A second site specific endonuclease with a novel specificity has been isolated from Thermus thermophilus strain 111 and named Tth111II. The enzyme is active at temperature up to 80 degrees C and requires Mg2+ or Mn2+ for activity. Tth111II cleaves phi X174RFDNA into 11 fragments. From the analysis of 5' terminal sequences of the phi X174RFDNA fragments produced by Tth111II action, it was concluded that Tth111II recognized the DNA sequence (See formula in text) and cleaved the sites as indicated by arrows.  相似文献   

2.
A second site specific endonuclease with novel specificity has been purified from Thermus thermophilus strain 111 and named Tth111II. The enzyme is active at temperature up to 80 degrees C and requires Mg2+ or Mn2+ for endonuclease activity. Tth111II cleaves phi X174RFDNA into 11 fragments and lambda NA into more than 25 fragments. From the 5'-terminal sequences of TthlllII fragments of phi X174RFDNA determined by the two dimensional homochromatography and the survey on nucleotide sequence of phi X174RFDNA, it was concluded that Tth111II recognizes the DNA sequence (see former index) and cleaves the sites as indicated by the arrows.  相似文献   

3.
A site specific endonuclease with novel specificity has been isolated from Thermus thermophilus strain 111 and named Tth111I. Tth111I cleaves lambda DNA into three fragments of 23.5, 25.7 and 50.8% of the total length, and ColE1 DNA into two fragments of nearly equal length. The sequences around Tth111I cleavage sites of ColE1 and lambda DNA were determined by the Maxam and Gilbert method and the two dimensional mapping method. The results suggest that Tth111I recognizes the DNA sequence (formula: see text) and cleaves the site as indicated by the arrows. Assuming that the first T.A pair in the sequence can be replaced for any base pair, the Tth111I recognition sequence has the symmetry with the two-fold axis as most type II restriction endonucleases do.  相似文献   

4.
A new restriction endonuclease from Spirulina platensis.   总被引:2,自引:1,他引:1       下载免费PDF全文
Three restriction endonucleases, Sp1I, Sp1II and Sp1III have been purified partially from Spirulina platensis subspecies siamese and named. Sp1I cleaves bacteriophage lambda DNA at one site, phi X 174 RF DNA at two sites, but does not cleave pBR322 DNA. This enzyme recognizes the sequence 5'CGTACG3' 3'GCATCG5' and cuts the site indicated by the arrows. Sp1II is an isoschizomer of Tth111I and Sp1III is an isoschizomer of HaeIII.  相似文献   

5.
The purified A protein and A* protein of bacteriophage phi X174 have been tested for endonuclease activity on single stranded viral phi X174 DNA. The A protein (55.000 daltons) nicks single-stranded DNA in the same way and at the same place as it does superhelical RFI DNA, at the origin of DNA replication. The A* protein (37.000 daltons) can cleave the single-stranded viral DNA at many different sites. It has however a strong preference for the origin of replication. Both proteins generate 3'OH ends and blocked 5' termini at the nick site.  相似文献   

6.
B C Lin  M C Chien    S Y Lou 《Nucleic acids research》1980,8(24):6189-6198
A type II restriction endonuclease Xmn I with a novel site specificity has been isolated from Xanthomonas manihotis. Xmn I does not cleave SV40 DNA, but cleaves phi X174 DNA into three fragments, which constitute 76.61%, 18.08% and 5.31% of the total length of 5386 base pairs, and cleaves pBR322 DNA into two fragments of 55.71% and 44.29% of the entire 4362 base pairs. The nucleotide sequences around the cleavage sites made by Xmn I are not exactly homologous, but they have a common sequence of 5' GAANNNNTTC 3' according to a simple computer program analysis on nucleotide sequences of phi X174 DNA, pBR322 DNA and SV40 DNA. The results suggest that the cleavage site of Xmn I is located within its recognition sequence of 5' GAANNNNTTC 3'.  相似文献   

7.
A type II restriction endonuclease designated Sse8387I was partially purified from Streptomyces sp. 8387. This enzyme cleaved adenovirus 2 DNA at three sites, lambda phage DNA at five sites, and pUC18 and M13mp18 RF DNA at one site each, but did not cleave the DNAs from pBR322, SV40, or phi X174. Sse8387I recognized the octanucleotide sequence 5'-CCTGCA decreases GG-3', cleaving where shown by the arrow. Sse8387I is the first restriction endonuclease to be reported that recognizes an octanucleotide sequence consisting of all four nucleotides, G, A, T, and C. The frequency of occurrence of Sse8387I sites within sequenced regions of primate genomes was 2.4 times that of NotI sites.  相似文献   

8.
A new type II sequence-specific restriction endonuclease, SauI, was isolated from Streptomyces aureofaciens IKA18/4. The purified enzyme was free of contaminating exonuclease and phosphatase activities. SauI cleaved lambda DNA at two sites, but did not cleave pBR322, simian virus 40, or phi X174 DNA. SauI recognized the septanucleotide sequence 5'-CCTNAGG-3' and cleaved at the position indicated by the arrow, producing a trinucleotide 5'-terminal extension.  相似文献   

9.
We isolated and characterized a new type II restriction endonuclease which recognizes the palindromic heptanucleotide sequence 5'-AGGWCCT-3' and cleaves double-stranded DNA after the first G in the sequence from a microorganism belonging to Streptomyces species. This enzyme cleaves adenovirus 2 DNA at eight sites, but does not cleave lambda phage, pBR322, pUC18 and 19, M13mp18 and 19, SV40, ColE1 and phi X174 DNAs.  相似文献   

10.
Highly purified nuclease TT1 from T. thermophilus HB8 acts on a linear single- and double-stranded DNA as an exonuclease and produces 5'-mononucleotides either from the 5'- or 3'-terminus. It was found that the enzyme also possesses an endonuclease activity specific for superhelical (form I) and single-stranded circular DNA. Form I of various kinds of DNA (phi X174, PM2, Co1E1 and RF 1010 etc.) is nicked to yield first relaxed circles (form II) and then nicked at the opposite site to yield unit length linear DNA (form III), which is subsequently hydrolyzed from the 5'- or 3'-terminus. A single cleavage of the form I of phi X174 DNA seemed to occur at a limited number of unique sites. Both endonuclease and the known exonuclease activities co-migrate on polyacrylmide gels, show the same pH and temperature optima, are stimulated by Mg2+ and are inactivated by EDTA similarly.  相似文献   

11.
The nuclease specificity of the bacteriophage phi X174 A* protein.   总被引:6,自引:3,他引:3       下载免费PDF全文
The A* protein of bacteriophage phi X174 is a single-stranded DNA specific nuclease. It can cleave phi X viral ss DNA in many different places. The position of these sites have been determined within the known phi X174 nucleotide sequence (1). From the sequences at these sites it is clear that the A* protein recognizes and cleaves at sites that show only partial homology with the origin of RF DNA replication in the phi X DNA. Different parts of the origin sequence can be deduced that function as a signal for recognition and cleavage by the A* protein. We conclude that different parts within the DNA recognition domain of the A* protein are functional in the recognition of the origin sequence in single-stranded DNA. The existence of different DNA recognition domains in the A* protein, and therefore also in the A protein, leads to a model that can explain how the A protein performs its multiple function in the phi X174 DNA replication process (2).  相似文献   

12.
A novel type II restriction and modification (R-M) system, Sth368I, which confers resistance to phiST84, was found in Streptococcus thermophilus CNRZ368 but not in the very closely related strain A054. Partial sequencing of the integrative conjugative element ICESt1, carried by S. thermophilus CNRZ368 but not by A054, revealed a divergent cluster of two genes, sth368IR and sth368IM. The protein sequence encoded by sth368IR is related to the type II endonucleases R.LlaKR2I and R.Sau3AI, which recognize and cleave the sequence 5'-GATC-3'. The protein sequence encoded by sth368IM is very similar to numerous type II 5-methylcytosine methyltransferases, including M.LlaKR2I and M.Sau3AI. Cell extracts of CNRZ368 but not A054 were found to cleave at the GATC site. Furthermore, the C residue of the sequence 5'-GATC-3' was found to be methylated in CNRZ368 but not in A054. Cloning and integration of a copy of sth368IR and sth368IM in the A054 chromosome confers on this strain phenotypes similar to those of CNRZ368, i.e., phage resistance, endonuclease activity of cell extracts, and methylation of the sequence 5'-GATC-3'. Disruption of sth368IR removes resistance and restriction activity. We conclude that ICESt1 encodes an R-M system, Sth368I, which recognizes the sequence 5'-GATC-3' and is related to the Sau3AI and LlaKR2I restriction systems.  相似文献   

13.
Type II restriction endonucleases cleave duplex DNA at nucleotide sequences displaying 2-fold symmetry. Our data show that Msp I cleaves single strand oligonucleotides, d(G-A-A-C-C-G-G-A-G-A) and d(T-C-T-C-C-G-G-T-T) at 4 degrees, 25 degrees, and 37 degrees C reaction temperatures. The rate of cleavage of d(G-A-A-C-C-G-G-A-G-A) is several-fold faster than that of d(T-C-T-C-C-G-G-T-T). Single strand phi X174 DNA is also, cleaved by Msp I endonuclease giving well defined fragments. 5'-Nucleotide analysis of the fragments generated from single strand and replicating form DNA suggest that cleavage occurs at the recognition sequence d(C-C-G-G). The data show that Msp I endonuclease cleaves single strand oligonucleotides and prefers a recognition sequence surrounded by purine nucleotides. A general model for endonuclease cleavage of single strand and duplex DNA is presented.  相似文献   

14.
A Type II restriction endonuclease, designated FseI, has been partially purified from a Frankia species (NRRL 18528). This enzyme cleaves Adenovirus 2 DNA at three sites, but does not cleave the DNAs from bacteriophages lambda, T7, and phi X174, the animal virus SV40, pUC18 and pBR322. FseI recognizes the octanucleotide sequence 5' GGCCGG decreases CC 3' and cleaves as indicated by the arrow. The frequency of occurrence of FseI sites within sequenced regions of the human genome is similar to that for NotI sites.  相似文献   

15.
The TspDTI restriction endonuclease, which shows a novel recognition specificity 5'-ATGAA(N(11/9))-3', was isolated from Thermus sp. DT. TspDTI appears to be a 'twin' of restriction endonuclease TspGWI from Thermus sp. GW, as we have previously reported. TspGWI was isolated from the same location as TspDTI, it recognizes a related sequence 5'-ACGGA(N(11/9))-3' and has conserved cleavage positions. Both enzymes resemble two other class-IIS endonucleases from Thermus sp.: TaqII and Tth111II. N-terminal amino acid sequences of TspGWI tryptic peptides exhibit 88.9-100% similarity to the TaqII sequence. All four enzymes were purified to homogeneity; their polypeptide sizes (114.5-122 kDa) make them the largest class-IIS restriction endonucleases known to date. The existence of a Thermus sp. sub-family of class-IIS restriction endonucleases of a common origin is herein proposed.  相似文献   

16.
A restriction endonuclease from Staphylococcus aureus.   总被引:23,自引:10,他引:13       下载免费PDF全文
A specific endonuclease, Sau 3AI, has been partially purified from Staphylococcus aureus strain 3A by DEAE-cellulose chromatography. The enzyme cleaves adenovirus type 5 DNA many times, SV40 DNA eight times but does not cleave double-stranded phi X174 DNA. It recognizes the sequence (see article) and cleaves as indicated by the arrows. Evidence is presented that this enzyme plays a role in the biological restriction-modification system of Staphylococcus aureus strain 3A.  相似文献   

17.

Background

We previously defined a family of restriction endonucleases (REases) from Thermus sp., which share common biochemical and biophysical features, such as the fusion of both the nuclease and methyltransferase (MTase) activities in a single polypeptide, cleavage at a distance from the recognition site, large molecular size, modulation of activity by S-adenosylmethionine (SAM), and incomplete cleavage of the substrate DNA. Members include related thermophilic REases with five distinct specificities: TspGWI, TaqII, Tth111II/TthHB27I, TspDTI and TsoI.

Results

TspDTI, TsoI and isoschizomers Tth111II/TthHB27I recognize different, but related sequences: 5'-ATGAA-3', 5'-TARCCA-3' and 5'-CAARCA-3' respectively. Their amino acid sequences are similar, which is unusual among REases of different specificity. To gain insight into this group of REases, TspDTI, the prototype member of the Thermus sp. enzyme family, was cloned and characterized using a recently developed method for partially cleaving REases.

Conclusions

TspDTI, TsoI and isoschizomers Tth111II/TthHB27I are closely related bifunctional enzymes. They comprise a tandem arrangement of Type I-like domains, like other Type IIC enzymes (those with a fusion of a REase and MTase domains), e.g. TspGWI, TaqII and MmeI, but their sequences are only remotely similar to these previously characterized enzymes. The characterization of TspDTI, a prototype member of this group, extends our understanding of sequence-function relationships among multifunctional restriction-modification enzymes.  相似文献   

18.
The bacteriophage phi X174 gene A encodes two proteins: gene A protein and A* protein. Purified A* protein acts as a single-stranded, DNA-specific endonuclease which remains covalently attached to the 5'-end of the cleavage site. Incubation of A* protein with the synthetic heptamer CAACTTG or with oligonucleotides which yield this heptamer after cleavage with the A* protein yields oligonucleotides with the sequences CAACTTGAG, CAACTTGAGG and CAACTTGAGGA. This indicates that A* protein carries an oligonucleotide with the sequence--AG, -AGG or -AGGA. The oligonucleotide can be transferred to the 3'-end of the heptamer CAACTTG. This suggests that A* protein reacts with a specific DNA sequence in the infected cell.  相似文献   

19.
The A* protein of phi X174 is an inhibitor of DNA replication   总被引:6,自引:1,他引:5       下载免费PDF全文
Extracts prepared from phi X174 infected E. coli cells inhibited in vitro RF replication The inhibition was dependent upon the presence of A* protein in the reaction and served as an assay to highly purify the A* protein. Purified A* protein bound tightly to duplex DNA as well as single-stranded DNA. The binding of the A* protein to duplex DNA inhibited (I) its single-stranded DNA specific endonucleolytic activity; (II) in vitro synthesis of viral (+) single stranded DNA on an A-RFII DNA complex template; (III) ATP hydrolysis by rep protein and unwinding of the strands of RF DNA. We propose that this inhibitory activity is responsible in vivo for the shut off of E. coli chromosome replication during phi X174 infection, and has a role in the transition from semiconservative RF DNA replication to single-stranded DNA synthesis in the life cycle of phi X174.  相似文献   

20.
Gene A protein, a bacteriophage phi X174-encoded endonuclease involved in phi X replicative form (RF) DNA replication, nicks not only phi X RFI DNA but also RFI DNAs of several other spherical single-stranded DNA bacteriophages. The position of the phi X gene A protein nick and the nucleotide sequence surrounding this site in RF DNAs of the bacteriophages U3, G14, and alpha 3 were determined. Comparison of the nucleotide sequences which surround the nick site of the gene A protein in RF DNAs of phi X174, G4, St-1, U3, G14, and alpha 3 revealed that a strongly conserved 30-nucleotide stretch occurred in RF DNAs of all six phages. However, perfect DNA sequence homology around this site was only 10 nucleotides, the decamer sequence CAACTTGATA. The present results support the hypothesis that, for nicking of double-stranded supercoiled DNA by the phi X gene A protein, the presence of the recognition sequence CAACTTGATA and a specific gene A protein binding sequence upstream from the recognition sequence are required. The sequence data obtained so far from phages U3, G14, St-1, and alpha 3 have been compared with the nucleotide sequences and amino acid sequences of both phi X and G4. According to this comparison, the evolutionary relationship between phages G4, U3, and G14 is very close, which also holds for phages alpha 3 and St-1. However, the two groups are only distantly related, both to each other and to phi X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号