首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutagenic properties of a unique abasic site in mammalian cells   总被引:7,自引:0,他引:7  
The mutagenic properties of a true unique abasic site located opposite a guanine residue were studied. An oligonucleotide containing a chemically-produced abasic site was inserted into a shuttle vector able to replicate both in simian cells and in bacteria. Plasmid DNA was rescued from simian cells and screened in bacteria by differential hybridization with a labelled oligonucleotide probe. Mutations were easily detected and sequenced. Results showed that opposite a guanine the abasic site was error free repaired or replicated by mammalian cells with an efficiency of 99%. Point mutations occurred at a frequency of approximately 1% in control host cells and at more than 3% in UV-pre-irradiated host cells. Adenine, cytosine or thymine were found to have been inserted opposite the abasic site. No preferential insertion for a particular base was observed in contrast to that reported in bacteria.  相似文献   

2.
Mutagenesis at abasic sites was investigated in E.coli and simian kidney (COS) cells using a duplex shuttle vector containing synthetic analogs of deoxyribose on the phosphodiester backbone. Lesions were positioned on opposite strands of the vector. When the tetrahydrofuranyl analog was used as the abasic site, AT or TA pairs (65-80%) were introduced at the site of the bistrand lesion. Mutagenesis occurred in the absence of SOS induction. Single base deletions (> 80%) dominated the mutational spectra for propanyl and ethanyl analogs of abasic sites lacking a ring structure. For all abasic site analogs, a small proportion of G/C and C/G pairs (6-10%) were observed. dAMP was incorporated predominantly opposite tetrahydrofuranyl sites positioned in the single strand region of a gapped duplex vector. We conclude from these studies that abasic sites positioned in a bistrand configuration are highly mutagenic in E.coli and COS cells. Repair DNA synthesis may be involved in this process.  相似文献   

3.
The mutagenic properties of UV-induced photoproducts, both the cis-syn thymine-thymine dimer (TT) and the thymine-thymine pyrimidine pyrimidone (6-4) photoproduct [T(6-4)T] were studied in mammalian cells using shuttle vectors. A shuttle vector able to replicate in both mammalian cells and bacteria was produced in its single-stranded DNA form. A unique photoproduct was inserted at a single restriction site and after recircularization of the single-stranded DNA vector, this latter was transfected into simian COS7 cells. After DNA replication the vector was extracted from cells and used to transform bacteria. Amplified DNA was finally analyzed without any selective screening, DNA from randomly picked bacterial colonies being directly sequenced. Our results show clearly that both lesions are mutagenic, but at different levels. Mutation frequencies of 2 and 60% respectively were observed with the TT dimer and the T(6-4)T. With the TT dimer the mutations were targeted on the 3'-T. With the T(6-4)T a large variety of mutations were observed. A majority of G-->T transversions were semi-targeted to the base before the 5'-T of the photoproduct. These kinds of mutations were not observed when the same plasmid was transfected directly into SOS-induced JM105 bacteria or when the T(6-4)T oligonucleotide inserted in a different plasmid was replicated in SOS-induced SMH10 Escherichia coil bacteria. These semi-targeted mutations are therefore the specific result of bypass of the T(6-4)T lesion in COS7 cells by one of the eukaryotic DNA polymerases.  相似文献   

4.
We have investigated the mutagenic properties of an abasic site in DNA by transfecting SOS-induced and uninduced cells of E. coli with a single-stranded M13mp7-based vector that carries a single example of this lesion at one or other of two unique and adjacent sites. Random samples of progeny phage were sequenced to determine the nature of the replication events that occurred at and around these locations. 5% to 7% of the vectors could be replicated in SOS-induced cells, but only 0.1% to 0.7% of them gave plaques in the absence of SOS induction. In SOS-induced cells, 93% and 96% of the phage replicated resulted from the insertion of a nucleotide opposite the abasic site, while the remainder resulted from a targeted omission of a single nucleotide. At one of the sites, nucleotide insertions were 54% dAMP, 25% dTMP, 20% dGMP and 1% dCMP. At the other site they were 80% dAMP, 4% dTMP, 15% dGMP and 1% dCMP. The sequence variation in all but two of the 204 sequences analyzed was restricted to the abasic site itself. In the remaining two, a change at the abasic site was accompanied by a mutation at an immediately flanking nucleotide.  相似文献   

5.
The mutational potency of apurinic/apyrimidinic (AP) sites induced by heat-treatment under acidic conditions has been studied in mammalian cells. Abasic sites were induced on a single-stranded DNA shuttle vector carrying the supF tRNA gene, eliminating, therefore, any ambiguity concerning the damaged strand. This vector was able to replicate both in mammalian cells and in bacteria where the mutations induced in animal cells on the supF tRNA gene were screened by the white/blue beta-galactosidase assay in the presence of isopropyl-1-thio-beta-D-galactopyranoside and 5-bromo-4-chloro-3-indoyl-beta-D-galactoside. All white colonies contained plasmid with a mutation on the target gene which was directly sequenced. Our results show that one AP site was induced/22 min of heating as measured by sensitivity of DNA to alkali denaturation or treatment with the AP-endonuclease activity of the FPG protein (Fapy-DNA glycosylase). Putative AP sites decrease survival of the plasmid with a lethal hit of one AP site/single-stranded molecule. Mutation frequency was increased by a factor of approximately six after 2 h at 70 degrees C. Most of the induced mutations were point mutations not distributed at random and clustered in the gene region which will give rise to the mature tRNA. Mutations were abolished by treatments that eliminated AP sites such as alkali treatment or incubation with the Fapy-DNA glycosylase protein. Under our experimental conditions, when only single mutations were taken into account, the order of base insertion opposite AP sites was G greater than A greater than T greater than C.  相似文献   

6.
7.
An abasic site in DNA creates a strong block to DNA polymerase and is a mutagenic base lesion. In this study, we present structural and dynamic properties of duplex oligodeoxynucleotides containing G, C and T opposite a model abasic site studied by one and two-dimensional nuclear magnetic resonance spectroscopy. We have demonstrated that A opposite the abasic site was positioned within the helix as if paired with T, and that the A residue melted co-operatively with the surrounding helix. We report here that G opposite the abasic site is also observed to be predominantly intrahelical in a normal anti conformation at low temperature. With increasing temperature, the mobility of the G residue increases rapidly and apparently is in a "melted state" well before denaturation of the helix. At low temperature, two species are found for T opposite the abasic site; one, intrahelical, one extrahelical. These species are in slow exchange with one another on a proton nuclear magnetic resonance time-scale. The two species then move into fast exchange with increasing temperature and the proportion of the extra-helical form increases. When C is positioned opposite the abasic site, both the C residue and the abasic sugar are extrahelical, the helix collapses, and the adjacent G.C base-pairs stack over one another. On the basis of these observations, we propose a model that explains why the abasic site acts to block DNA replication. Further, we suggest an explanation for the observed polymerase preference for base selection at abasic sites.  相似文献   

8.
DNA with abasic sites has been prepared by deamination of cytosine followed by treatment of the product with uracil N-glycosylase. Termination in vitro on such templates does not occur until treatment with uracil N-glycosylase. DNA terminated one base before abasic sites created from C's has been used as a template in "second stage" reactions. With enzymes devoid or deficient in 3' greater than 5' exonuclease activity purines, particularly adenine, are preferentially added opposite the putative abasic site. 2-Aminopurine behaves more like adenine than like guanine in these experiments. Polymerase beta preferentially incorporates A opposite abasic sites produced from T, and G opposite abasic sites produced from C. We have eliminated an obvious artefact (e.g. strand switching) which might account for this observation.  相似文献   

9.
Oxidative damage to DNA produces abasic sites resulting from the formal hydrolysis of the nucleotides' glycosidic bonds, along with a variety of oxidized abasic sites. The C4'-oxidized abasic site (C4-AP) is produced by several DNA-damaging agents. This lesion accounts for approximately 40% of the DNA damage produced by bleomycin. The effect of a C4'-oxidized abasic site incorporated at a defined site in a template was examined on Klenow fragments with and without 3' --> 5' exonuclease activity. Both enzymes preferentially incorporated dA > dG > dC, T opposite C4-AP. Neither enzyme is able to extend the primer past the lesion. Experiments with regular AP sites in an otherwise identical template indicate that Klenow does not differentiate between these two disparate abasic sites. Extension of the primer by alternative polymerases pol II, pol II exo(-), pol IV, and pol V was examined. Pol II exo(-) was most efficient. Qualitative translesion synthesis experiments showed that pol II exo(-) preferentially incorporates T opposite C4-AP, followed in order by dG, dA, and dC. Thymidine incorporation opposite C4'-AP is distinct from the pol II exonuclease interaction with a regular AP site in an otherwise identical template. These in vitro experiments suggest that bypass polymerases may play a crucial role in survival of cells in which C4-AP is produced, and unlike a typical AP site, the C4-AP lesion may not follow the "A-rule". The interaction between bypass polymerases and a C4-AP lesion could explain the high levels of G:C --> T:A transversions in cells treated with bleomycin.  相似文献   

10.
Cleavage of the N-glycosidic bond that connects the nucleobase to the backbone in DNA leads to abasic sites, the most frequent lesion under physiological conditions. Several DNA polymerases preferentially incorporate an A opposite this lesion, a phenomenon termed "A-rule." Accordingly, KlenTaq, the large fragment of Thermus aquaticus DNA polymerase I, incorporates a nucleotide opposite an abasic site with efficiencies of A > G > T > C. Here we provide structural insights into constraints of the active site during nucleotide selection opposite an abasic site. It appears that these confines govern the nucleotide selection mainly by interaction of the incoming nucleotide with Tyr-671. Depending on the nucleobase, the nucleotides are differently positioned opposite Tyr-671 resulting in different alignments of the functional groups that are required for bond formation. The distances between the α-phosphate and the 3'-primer terminus increases in the order A < G < T, which follows the order of incorporation efficiency. Additionally, a binary KlenTaq structure bound to DNA containing an abasic site indicates that binding of the nucleotide triggers a remarkable rearrangement of enzyme and DNA template. The ability to resolve the stacking arrangement might be dependent on the intrinsic properties of the respective nucleotide contributing to nucleotide selection. Furthermore, we studied the incorporation of a non-natural nucleotide opposite an abasic site. The nucleotide was often used in studying stacking effects in DNA polymerization. Here, no interaction with Tyr-761 as found for the natural nucleotides is observed, indicating a different reaction path for this non-natural nucleotide.  相似文献   

11.
G Selvaraj  V N Iyer 《Plasmid》1985,13(1):70-74
A mobilizable cosmid derivative of an IncP group plasmid was constructed by cloning the oriT region of RK2, a wide host-range plasmid, and the minimal DNA sequence of bacteriophage lambda required for efficient packaging in vitro. This cosmid is 13 kb in size and has unique restriction sites for EcoRI, XhoI, HindIII, and SalI. The XhoI and HindIII sites are within the kanamycin-resistance gene and the SalI site is in the tetracycline-resistance gene. This plasmid was mobilizable from an Escherichia coli donor to a number of diverse gram-negative bacteria at a frequency of 0.8 to 10 per 100 donors. This vector is one of the smallest of all wide host-range cosmids described in the literature. As part of this study, another mobilizable IncP group plasmid vector has also been constructed which, in addition to the sites listed above, has a unique BglII site, but which lacks the packager sequence.  相似文献   

12.
Clustered DNA damages are defined as two or more closely located DNA damage lesions that may be present within a few helical turns of the DNA double strand. These damages are potential signatures of ionizing radiation and are often found to be repair resistant. Types of damaged lesions frequently found inside clustered DNA damage sites include oxidized bases, abasic sites, nucleotide dimers, strand breaks or their complex combinations. In this study, we used a bistranded two-lesion abasic cluster DNA damage model to access the repair process of DNA in condensate form.Oligomer DNA duplexes (47 bp) were designed to have two deoxyuridine in the middle of the sequences, three bases apart in opposite strands. The deoxyuridine residues were converted into abasic sites by treatment with UDG enzyme creating an abasic clustered damage site in a precise position in each of the single strand of the DNA duplex. This oligomer duplex having compatible cohesive ends was ligated to pUC19 plasmid, linearized with HindIII restriction endonuclease. The plasmid–oligomer conjugate was transformed into condensates by treating them with spermidine. The efficiency of strand cleavage action of ApeI enzyme on the abasic sites was determined by denaturing PAGE after timed incubation of the oligomer duplex and the oligomer–plasmid conjugate in presence and absence of spermidine. The efficiency of double strand breaks was determined similarly by native PAGE. Quantitative gel analysis revealed that rate of abasic site cleavage is reduced in the DNA condensates as compared to the oligomer DNA duplex or the linear ligated oligomer–plasmid conjugates. Generation of double strand break is significantly reduced also, suggesting that their creation is not proportionate to the number of abasic sites cleaved in the condensate model. All these suggest that the ApeI enzyme have difficulty to access the abasic sites located deep into the condensates leading to repair refractivity of the damages. In addition, we found that presence of a polyamine such as spermidine has no notable effect in the incision activity of ApeI enzyme in linear oligomer DNA duplexes in our experimental concentration.  相似文献   

13.
Abasic sites represent the most frequent DNA lesions in the genome that have high mutagenic potential and lead to mutations commonly found in human cancers. Although these lesions are devoid of the genetic information, adenine is most efficiently inserted when abasic sites are bypassed by DNA polymerases, a phenomenon termed A‐rule. In this study, we present X‐ray structures of a DNA polymerase caught while incorporating a nucleotide opposite an abasic site. We found that a functionally important tyrosine side chain directs for nucleotide incorporation rather than DNA. It fills the vacant space of the absent template nucleobase and thereby mimics a pyrimidine nucleobase directing for preferential purine incorporation opposite abasic residues because of enhanced geometric fit to the active site. This amino acid templating mechanism was corroborated by switching to pyrimidine specificity because of mutation of the templating tyrosine into tryptophan. The tyrosine is located in motif B and highly conserved throughout evolution from bacteria to humans indicating a general amino acid templating mechanism for bypass of non‐instructive lesions by DNA polymerases at least from this sequence family.  相似文献   

14.
We report a highly sensitive method to quantify abasic sites and deoxyribose oxidation products arising in damaged DNA. The method exploits the reaction of aldehyde- and ketone-containing deoxyribose oxidation products and abasic sites with [(14)C]methoxyamine to form stable oxime derivatives, as originally described by Talpaert-Borle and Liuzzi [Reaction of apurinic/apyrimidinic sites with [(14)C]methoxyamine. A method for the quantitative assay of AP sites in DNA, Biochim. Biophys. Acta 740 (1983) 410-416]. The sensitivity of the method was dramatically improved by the application of accelerator mass spectrometry to quantify the (14)C, with a limit of detection of 1 lesion in 10(6) nucleotides in 1 microg of DNA. The method was validated using DNA containing a defined quantity of abasic sites, with a >0.95 correlation between the quantities of abasic sites and those of methoxyamine labels. The original applications of this and similar oxyamine derivatization methods have assumed that abasic sites are the only aldehyde-containing DNA damage products. However, deoxyribose oxidation produces strand breaks and abasic sites containing a variety of degradation products with aldehyde and ketone moieties. To assess the utility of methoxyamine labeling for quantifying strand breaks and abasic sites, the method was applied to plasmid DNA treated with gamma-radiation and peroxynitrite. For gamma-radiation, there was a 0.99 correlation between the quantity of methoxyamine labels and the quantity of strand breaks and abasic sites determined by a plasmid nicking assay; the abasic sites comprised less than 10% of the radiation-induced DNA damage. Studies with peroxynitrite demonstrate that the method, in conjunction with DNA repair enzymes that remove damaged bases to produce aldehydic sugar residues or abasic sites, is also applicable to quantifying nucleobase lesions in addition to strand break products. Compared to other abasic site quantification techniques, the modified method offers the advantage of providing a straightforward and direct measurement of aldehyde- and ketone-containing strand breaks and abasic sites, with the potential for direct labeling in cells prior to DNA isolation.  相似文献   

15.
Abasic sites are common DNA lesions resulting from spontaneous depurination and excision of damaged nucleobases by DNA repair enzymes. However, the influence of the local sequence context on the structure of the abasic site and ultimately, its recognition and repair, remains elusive. In the present study, duplex DNAs with three different bases (G, C or T) opposite an abasic site have been synthesized in the same sequence context (5′-CCA AAG6 XA8C CGG G-3′, where X denotes the abasic site) and characterized by 2D NMR spectroscopy. Studies on a duplex DNA with an A opposite the abasic site in the same sequence has recently been reported [Chen,J., Dupradeau,F.-Y., Case,D.A., Turner,C.J. and Stubbe,J. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry, 46, 3096–3107]. Molecular modeling based on NMR-derived distance and dihedral angle restraints and molecular dynamics calculations have been applied to determine structural models and conformational flexibility of each duplex. The results indicate that all four duplexes adopt an overall B-form conformation with each unpaired base stacked between adjacent bases intrahelically. The conformation around the abasic site is more perturbed when the base opposite to the lesion is a pyrimidine (C or T) than a purine (G or A). In both the former cases, the neighboring base pairs (G6-C21 and A8-T19) are closer to each other than those in B-form DNA. Molecular dynamics simulations reveal that transient H-bond interactions between the unpaired pyrimidine (C20 or T20) and the base 3′ to the abasic site play an important role in perturbing the local conformation. These results provide structural insight into the dynamics of abasic sites that are intrinsically modulated by the bases opposite the abasic site.  相似文献   

16.
DNA polymerase preferentially inserts purine nucleotides opposite non-instructive lesions such as abasic sites during DNA replication. In order to elucidate the mechanism of the preferential insertion, a DNA template containing a model abasic site and primers containing 4 different nucleotides (A,G,C,T) at primer terminus were synthesized. The stability of the primer terminus nucleotide placed opposite the abasic site was evaluated on the basis of its sensitivity to 3'-5' exonuclease associated with DNA polymerase.  相似文献   

17.
The oxidative base damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is a highly mutagenic lesion because replicative DNA polymerases insert adenine (A) opposite 8-oxoG. In mammalian cells, the removal of A incorporated across from 8-oxoG is mediated by the glycosylase MUTYH during base excision repair (BER). After A excision, MUTYH binds avidly to the abasic site and is thus product inhibited. We have previously reported that UV-DDB plays a non-canonical role in BER during the removal of 8-oxoG by 8-oxoG glycosylase, OGG1 and presented preliminary data that UV-DDB can also increase MUTYH activity. In this present study we examine the mechanism of how UV-DDB stimulates MUTYH. Bulk kinetic assays show that UV-DDB can stimulate the turnover rate of MUTYH excision of A across from 8-oxoG by 4–5-fold. Electrophoretic mobility shift assays and atomic force microscopy suggest transient complex formation between MUTYH and UV-DDB, which displaces MUTYH from abasic sites. Using single molecule fluorescence analysis of MUTYH bound to abasic sites, we show that UV-DDB interacts directly with MUTYH and increases the mobility and dissociation rate of MUTYH. UV-DDB decreases MUTYH half-life on abasic sites in DNA from 8800 to 590 seconds. Together these data suggest that UV-DDB facilitates productive turnover of MUTYH at abasic sites during 8-oxoG:A repair.  相似文献   

18.
Reineks EZ  Berdis AJ 《Biochemistry》2004,43(2):393-404
Despite the nontemplating nature of the abasic site, dAMP is often preferentially inserted opposite the lesion, a phenomenon commonly referred to as the "A-rule". We have evaluated the molecular mechanism accounting for this unique behavior using a thorough kinetic approach to evaluate polymerization efficiency during translesion DNA replication. Using the bacteriophage T4 DNA polymerase, we have measured the insertion of a series of modified nucleotides and have demonstrated that increasing the size of the nucleobase does not correlate with increased insertion efficiency opposite an abasic site. One analogue, 5-nitroindolyl-2'-deoxyriboside triphosphate, was unique as it was inserted opposite the lesion with approximately 1000-fold greater efficiency compared to that for dAMP insertion. Pre-steady-state kinetic measurements yield a kpol value of 126 s(-1) and a Kd value of 18 microM for the insertion of 5-nitroindolyl-2'-deoxyriboside triphosphate opposite the abasic site. These values rival those associated with the enzymatic formation of a natural Watson-Crick base pair. These results not only reiterate that hydrogen bonding is not necessary for nucleotide insertion but also indicate that the base-stacking and/or desolvation capabilities of the incoming nucleobase may indeed play the predominant role in generating efficient DNA polymerization. A model accounting for the increase in catalytic efficiency of this unique nucleobase is provided and invokes pi-pi stacking interactions of the aromatic moiety of the incoming nucleobase with aromatic amino acids present in the polymerase's active site. Finally, differences in the rate of 5-nitroindolyl-2'-deoxyriboside triphosphate insertion opposite an abasic site are measured between the bacteriophage T4 DNA polymerase and the Klenow fragment. These kinetic differences are interpreted with regard to the differences in various structural components between the two enzymes and are consistent with the proposed model for DNA polymerization.  相似文献   

19.
A simian virus 40-based shuttle vector was used to characterize UV-induced mutations generated in mammalian cells. The small size and placement of the mutagenesis marker (the supF suppressor tRNA gene from Escherichia coli) within the vector substantially reduced the frequency of spontaneous mutations normally observed after transfection of mammalian cells with plasmid DNA; hence, UV-induced mutations were easily identified above the spontaneous background. UV-induced mutations characterized by DNA sequencing were found primarily to be base substitutions; about 56% of these were single-base changes, and 17% were tandem double-base changes. About 24% of the UV-induced mutants carried multiple mutations clustered within the 160-base-pair region sequenced. The majority (61%) of base changes were the G . C----A . T transitions; the other transition (A . T----G . C) and all four transversions occurred at about equal frequencies. Hot spots for UV mutagenesis did not correspond to hot spots for UV-induced photoproduct formation (determined by a DNA synthesis arrest assay); in particular, sites of TT dimers were underrepresented among the UV-induced mutations. These observations suggest to us that the DNA polymerase(s) responsible for mutation induction exhibits a localized loss of fidelity in DNA synthesis on UV-damaged templates such that it synthesizes past UV photoproducts, preferentially inserting adenine, and sometimes misincorporates bases at undamaged sites nearby.  相似文献   

20.
Ionizing radiations often induce multiple and clustered DNA lesions at the site of DNA interaction. As a model, we have studied the toxicity and the mutagenicity of two adjacent oxidative bases as clustered DNA lesions in mammalian cells using shuttle vectors. The chosen oxidative lesions were 8-oxo-7,8-dihydroguanine, the formylamine residue resulting from the oxidation of a pyrimidine base and the tandem lesion 8-oxo-7,8-dihydroguanine/formylamine where both modifications are located at a vicinal position. A single-stranded DNA shuttle vector carrying a unique DNA lesion was constructed, transfected into simian COS7 cells and mutations induced after replication in mammalian cells were screened in bacteria. 8-oxo-7,8-dihydroguanine, as expected, does not affect greatly survival (70% bypass) whereas formylamine and the tandem lesions are blocking alterations, DNA polymerase bypass being of 45% and 17%, respectively. Base insertion opposite the lesion was studied. Under our experimental conditions, replication of 8-oxo-7, 8-dihydroguanine finally gives rise to guanine:cytosine pairing, rendering this lesion only slightly mutagenic. This is not the case for the formylamine that codes preferentially for adenine (71%). In addition, one-base deletions were observed targeted to the site to the lesion. Cytosine and thymine were inserted opposite the lesion with similar but low frequencies. Thus, coding properties of the formylamine render this residue very mutagenic when coming from the oxidative alteration of a cytosine. The coding properties of the tandem damage are a combination of the contribution of the two isolated lesions with a very high percentage of adenine insertion (94%) opposite the formylamine residue of the tandem lesion. The toxicity as well as the mutation spectrum of the tandem lesion allow us to speculate about the molecular mechanism with which the DNA polymerase replicates these two lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号