首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Husen  Jia  Dequan  Li 《Photosynthetica》2002,40(1):139-144
The responses to irradiance of photosynthetic CO2 assimilation and photosystem 2 (PS2) electron transport were simultaneously studied by gas exchange and chlorophyll (Chl) fluorescence measurement in two-year-old apple tree leaves (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd). Net photosynthetic rate (P N) was saturated at photosynthetic photon flux density (PPFD) 600-1 100 (mol m-2 s-1, while the PS2 non-cyclic electron transport (P-rate) showed a maximum at PPFD 800 mol m-2 s-1. With PPFD increasing, either leaf potential photosynthetic CO2 assimilation activity (Fd/Fs) and PS2 maximal photochemical activity (Fv/Fm) decreased or the ratio of the inactive PS2 reaction centres (RC) [(Fi – Fo)/(Fm – Fo)] and the slow relaxing non-photochemical Chl fluorescence quenching (qs) increased from PPFD 1 200 mol m-2 s-1, but cyclic electron transport around photosystem 1 (RFp), irradiance induced PS2 RC closure [(Fs – Fo)/Fm – Fo)], and the fast and medium relaxing non-photochemical Chl fluorescence quenching (qf and qm) increased remarkably from PPFD 900 (mol m-2 s-1. Hence leaf photosynthesis of young apple leaves saturated at PPFD 800 mol m-2 s-1 and photoinhibition occurred above PPFD 900 mol m-2 s-1. During the photoinhibition at different irradiances, young apple tree leaves could dissipate excess photons mainly by energy quenching and state transition mechanisms at PPFD 900-1 100 mol m-2 s-1, but photosynthetic apparatus damage was unavoidable from PPFD 1 200 mol m-2 s-1. We propose that Chl fluorescence parameter P-rate is superior to the gas exchange parameter P N and the Chl fluorescence parameter Fv/Fm as a definition of saturation irradiance and photoinhibition of plant leaves.  相似文献   

2.
We have examined tobacco transformed with an antisense construct against the Rieske-FeS subunit of the cytochromeb 6 f complex, containing only 15 to 20% of the wild-type level of cytochrome f. The anti-Rieske-FeS leaves had a comparable chlorophyll and Photosystem II reaction center stoichiometry and a comparable carotenoid profile to the wild-type, with differences of less than 10% on a leaf area basis. When exposed to high irradiance, the anti-Rieske-FeS leaves showed a greatly increased closure of Photosystem II and a much reduced capacity to develop non-photochemical quenching compared with wild-type. However, contrary to our expectations, the anti-Rieske-FeS leaves were not more susceptible to photoinhibition than were wild-type leaves. Further, when we regulated the irradiance so that the excitation pressure on photosystem II was equivalent in both the anti-Rieske-FeS and wild-type leaves, the anti-Rieske-FeS leaves experienced much less photoinhibition than wild-type. The evidence from the anti-Rieske-FeS tobacco suggests that rapid photoinactivation of Photosystem II in vivo only occurs when closure of Photosystem II coincides with lumen acidification. These results suggest that the model of photoinhibition in vivo occurring principally because of limitations to electron withdrawal from photosystem II does not explain photoinhibition in these transgenic tobacco leaves, and we need to re-evaluate the twinned concepts of photoinhibition and photoprotection.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlophenyl)-1,-dimethylurea - Fo and Fo minimal fluorescence when all PS II reaction centers are open in dark- and light-acclimated leaves, respectively - Fm and Fm maximal fluorescence when all PS II reaction centers are closed in dark- and light-acclimated leaves, respectively - Fv variable fluorescence (Fm-Fo) in dark acclimated leaves - Fv variable fluorescence (Fm-Fo) in lightacclimated leaves - NPQ non-photochemical quenching of fluorescence - PS I and PS II Photosystem I and II - P680 primary electron donor of the reaction center of PS II - PFD photosynthetic flux density - QA primary acceptor quinone of PS II - qp photochemical quenching of fluorescence - V+A+Z violaxanthin+antheraxanthin+zeaxanthin  相似文献   

3.
The effects of temperature on the dark relaxation kinetics of nonradiative energy dissipation in photosystem II were compared in lettuce (Lactuca sativa L.) chloroplasts and leaves of Aegialitis annulata R. Br. After high levels of violaxanthin de-epoxidation in the light, Aegialitis leaves showed a marked delay in the dark relaxation of nonradiative dissipation, measured as non-photochemical quenching (NPQ) of photosystem II chlorophyll a fluorescence. Aegialitis leaves also maintained a moderately high adenylate energy charge at low temperatures during and after high-light exposure, presumably because of their limited carbon-fixation capacity. Similarly, dark-sustained NPQ could be induced in lettuce chloroplasts after de-epoxidizing violaxanthin and light-activating the ATP synthase. The duration and extent of dark-sustained NPQ were strongly enhanced by low temperatures in both chloroplasts and leaves. Further, the NPQ sustained at low temperatures was rapidly reversed upon warming. In lettuce chloroplasts, low temperatures sharply decreased the ATP-hydrolysis rate while increasing the duration and extent of the resultant trans-thylakoid proton gradient that elicits the NPQ. This was consistent with a higher degree of energy-coupling, presumably due to reduced proton diffusion through the thylakoid membrane at the lower temperatures. The chloroplast adenylate pool was in equilibrium with the adenylate kinase and therefore both ATP and ADP contributed to reverse coupling. The low-temperature-enhanced NPQ quenched the yields of the dark level (Fo) and the maximal (Fm) fluorescence proportionally in both chloroplasts and leaves. The extent of NPQ in the dark was inversely related to the efficiency of photosystem II, and very similar linear relationships were obtained over a wide temperature range in both chloroplasts and leaves. Likewise, the dark-sustained absorbance changes, caused by violaxanthin de-epoxidation (A508nm) and energy-dependent light scattering (A536nm) were strikingly similar in chloroplasts and leaves. Therefore, we conclude that the dark-sustained, low-temperature-stimulated NPQ in chloroplasts and leaves is apparently directly dependent on lumen acidification and chloroplastic ATP hydrolysis. In leaves, the ATP required for sustained NPQ is evidently provided by oxidative phosphorylation in the mitochondria. The functional significance of this quenching process and implications for measurements of photo-protection versus photodamage in leaves are discussed.Abbreviations and Symbols A antheraxanthin - Chl chlorophyll - DPS de-epoxidation state of the xanthophyll cycle, ([Z+A]/[V+A+Z]) - F, F steady-state fluorescence in the absence, presence of thylakoid energization - Fo, Fo dark fluorescence level in the absence, presence of thylakoid energization - Fm, Fm maximal fluorescence in absence, presence of thylakoid energization - NPQ nonphotochemical quenching (Fm/Fm)–1 - V violaxanthin - Z zeaxanthin - NRD nonradiative dissipation - PFD photon flux density - [2ATP+ADP] - pH trans-thylakoid proton gradient - S pH-dependent light scattering - PSII (Fm–F)/Fm, photon yield of PSII photochemistry at the actual reduction state in the light or dark - [ATP+ADP+AMP] We thank Connie Shih for skillful assistance in growing plants and for conducting HPLC analyses. Support from an NSF/USDA/DOE postdoctoral training grant to A.G. is gratefully acknowledged. A.G. also wishes to thank Prof. Govindjee for valuable discussions. C.I.W.-D.P.B. Publication No. 1197.  相似文献   

4.
Non-photochemical chlorophyll fluorescence quenching (qN) in barley leaves has been analysed by monitoring its relaxation in the dark, by applying saturating pulses of light. At least three kinetically distinct phases to qN recovery are observed, which have previously been identified (Quick and Stitt 1989) as being due to high-energy state quenching (fast), excitation energy redistribution due to a state transition (medium) and photoinhibition (slow). However, measurements of chlorophyll fluorescence at 77 K from leaf extracts show that state transitions only occur in low light conditions, whereas the medium component of qN is very large in high light. The source of that part of the medium component not accounted for by a state transition is discussed.Abbreviations ATP adenosine 5-triphosphate - DCMU 3[3,4-dichlorophenyl]-1,1 dimethylurea - pH trans-thylakoid pH gradient - Fo, Fm room-temperature chlorophyll fluorescence yield with all reaction centres open, closed - Fv variable fluorescence = Fm–Fo - LHC II Light harvesting complex II - PS I, PS II Photosystem I, II - P700, P680 primary donor in photosystem I, II - qP photochemical quenching of variable fluorescence - qN non-photochemical quenching of variable fluorescence - qNe, qNt, qNi non-photochemical quenching due to high energy state, state transition, photoinhibition - qNf, qNm, qNs components of qN relaxing fast, medium, slow - qr quenching of r relative to the dark state - tricine N-tris[hydroxymethyl]methylglycine - r ratio of fluorescence maximum from photosystem II to that from photosystem I at 77 K  相似文献   

5.
Jacobsen  J. V.  Zwar  J. A.  Chandler  P. M. 《Planta》1985,165(3):430-438
The role of oxygen in the photoinactivation of the photosynthetic apparatus of Spinacia oleracea L. was investigated. Moderate irradiation (1200 mol photons m-2s-1) of spinach leaves in an atmosphere of pure nitrogen caused strong inhibition of subsequently measured net CO2 assimilation, whereas considerably less photoinhibition was observed in the presence of low partial pressures (10–20 mbar) of O2. The decrease in activity caused by anaerobiosis in the light was not based on stomatal closure; the decline of assimilation represents a photoinhibition, as activity was not impaired by low irradiation (80 mol photos m-2s-1). In contrast, gassing with pure N2 in the dark caused strong inhibition. Electron-transport rates and chlorophyll-fluorescence data of thylakoids isolated from photoinhibited leaves indicated damage to the electron-transport system, in particular to photosystem II reaction centers. In vitro, photoinhibition in isolated thylakoid membranes was also strongly promoted by anaerobiosis. Photoinhibition of electron-transport rates under anaerobic conditions was characterized by a pronounced increase in the initial fluorescence level, F0, of chlorophyll-fluorescence induction, in contrast to photoinhibition under aerobic conditions. The results are discussed in terms of two mechanisms of photoinhibition, one that is suppressed and a second that is promoted by oxygen.Abbreviations Chl chlorophyll - DCMU 3-(3, 4-dichlorophenyl)-1,1-dimethylurea - PSI, II photosystem I, II  相似文献   

6.
D. H. Greer  W. A. Laing 《Planta》1992,186(3):418-425
Kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) plants grown in an outdoor enclosure were exposed to the natural conditions of temperature and photon flux density (PFD) over the growing season (October to May). Temperatures ranged from 14 to 21° C while the mean monthly maximum PFD varied from 1000 to 1700 mol · m–2 · s–1, although the peak PFDs exceeded 2100 mol · m–2 · s–1. At intervals, the daily variation in chlorophyll fluorescence at 692 nm and 77K and the photon yield of O2 evolution in attached leaves was monitored. Similarly, the susceptibility of intact leaves to a standard photoinhibitory treatment of 20° C and a PFD of 2000 mol · m–2 · s–1 and the ability to recover at 25° C and 20 mol · m–2 · s–2 was followed through the season. On a few occasions, plants were transferred either to or from a shade enclosure to assess the suceptibility to natural photoinhibition and the capacity for recovery. There were minor though significant changes in early-morning fluorescence emission and photon yield throughout the growing season. The initial fluorescence, Fo, and the maximum fluorescence, Fm, were, however, significantly and persistently different from that in shade-grown kiwifruit leaves, indicative of chronic photoinhibition occurring in the sun leaves. In spring and autumn, kiwifruit leaves were photoinhibited through the day whereas in summer, when the PFDs were highest, no photoinhibition occurred. However, there was apparently no non-radiative energy dissipation occurring then also, indicating that the kiwifruit leaves appeared to fully utilize the available excitation energy. Nevertheless, the propensity for kiwifruit leaves to be susceptible to photoinhibition remained high throughout the season. The cause of a discrepancy between the severe photoinhibition under controlled conditions and the lack of photoinhibition under comparable, natural conditions remains uncertain. Recovery from photoinhibition, by contrast, varied over the season and was maximal in summer and declined markedly in autumn. Transfer of shade-grown plants to full sun had a catastrophic effect on the fluorescence characteristics of the leaf and photon yield. Within 3 d the variable fluorescence, Fv, and the photon yield were reduced by 80 and 40%, respectively, and this effect persisted for at least 20 d. The restoration of fluorescence characteristics on transfer of sun leaves to shade, however, was very slow and not complete within 15 d.Abbreviations and Symbols Fo, Fm, Fv initial, maximum, variable fluorescence - Fi Fv at t = 0 - F Fv at t = - PFD photon flux density - PSII photosystem II - leaf absorptance ratio - (a photon yield of O2 evolution (absorbed basis) - i a at t = 0 - a at t = We thank Miss Linda Muir and Amanda Yeates for their technical assistance in this study.  相似文献   

7.
Dennis H. Greer 《Planta》1995,197(1):31-38
Bean (Phaseolus vulgaris L.) plants were grown at two light periods of 8 and 13 h with a similar photon flux density (PFD) giving a daily photon receipt (DPR) of 17.9 and 38.2 mol · m–2, respectively. Shoot growth and leaf area development were followed at regular intervals and diurnal whole-plant photosynthesis measured. Single mature trifoliate leaves were exposed to photoinhibitory treatments at PFDs of 800 and 1400 mol · m–2 · s–1 and at temperatures of 12 and 20°C. Chlorophyll fluorescence and photon yields were measured at regular intervals throughout each treatment. Plants grown in 13 h had significantly greater leaf areas than those grown in 8 h. There were no differences in maximum rates of photosynthesis, photon yields and only minor but significant differences in Fv/Fm for plants in the two treatments, showing photosynthetic characteristics were dependent on PFD but not DPR. A significant decline in photosynthesis and Fv/Fm occurred over the 13-h but little change in photosynthesis for plants in the 8 h, indicating some feedback inhibition of photosynthesis was occurring. Plants grown in 8 h were consistently more susceptible to photoinhibition of photosynthesis at all treatments than 13-h plants. Nevertheless, photoinhibition was exacerbated by increases in PFD, and by decreases in temperature for leaves from both treatments. However, for plants from the 8-h day, exposing leaves to 12°C and 1400 mol · m–2 · s–1 caused photo-oxidation and severe bleaching but no visible damage on leaves from 13-h-grown plants. Closure of the photosystem II reaction-centre pool was partially correlated with increasing extents of photoinhibition but the relationship was similar for plants from both treatments. There remains no clear explanation for their wide differences in susceptibility to photoinhibition.Abbreviations and Symbols DPR daily photon receipt - F0 and Fm initial and maximal fluorescence - Fv/Fm fluorescence ratio in dark-treated leaves - F/Fm intrinsic efficiency of PSII during illumination - PFD photon flux density - i photon yield (incident basis) - psi quantum yield of PSII electron transport - Pmax maximum rate of photosynthesis - qN non-photochemical quenching coefficient - qP photochemical quenching coefficient Many thanks to my colleague William Laing who spent a considerable effort in developing the programme to run the photosynthesis apparatus. I am also indebted to one reviewer with whom I corresponded to resolve some issues in the paper. This project was funded by the New Zealand Foundation for Research, Science and Technology.  相似文献   

8.
Peng  Chang-Lian  Duan  Jun  Lin  Guizhu  Gilmore  A.M. 《Photosynthetica》2002,40(4):503-508
We compared photoinhibition sensitivity to high irradiance (HI) in wild-type barley (wt) and both its chlorina f 104-nuclear gene mutant, that restricts chlorophyll (Chl) a and Chl b synthesis, and its f 2-nuclear gene mutant, that inhibits all Chl b synthesis. Both Fv/Fm and PS2 decreased more significantly in f 2 than f 104 and wt with duration of HI exposure. Chl degraded more rapidly in the f 2 than in either f 104 or wt. Most sensitivity to photoinhibition was exhibited for f 2, whereas there was little difference in response to HI between the f 104 and wt. The highest de-epoxidation (DES) value at every time point of exposure to HI was measured for f 2, whereas the wt had the lowest value among the three strains. There were two lifetime components resolved for the conversion of violaxanthin (V) to zeaxanthin plus antheraxanthin (Z + A). The most rapid lifetime was around 6 min and the slower lifetime was >140 min, in both the mutants and wt. However, the wt and f 104 both displayed larger amplitudes of both de-epoxidation lifetimes than f 2. The difference between the final de-epoxidation state (DES = [Z + A]/[V + A + Z]) in the light compared to the dark expressed as DES for wt, f 104, and f 2 was 0.630, 0.623, and 0.420, respectively. The slow lifetime component and overall larger DES in the wt and f 104 correlated with more photoprotection, as indicated by relatively higher Fv/Fm and PS2, compared to the f 2. Hence the photoprotection against photoinhibition has no relationship with the absolute DES value, but there is a strong relationship with de-epoxidation rate and relative extent or DES.  相似文献   

9.
Li  X.-G.  Wang  X.-M.  Meng  Q.-W.  Zou  Q. 《Photosynthetica》2004,42(2):257-262
The effects of chilling treatment (4 °C) under low irradiance, LI (100 mol m2 s–1) and in the dark on subsequent recovery of photosynthesis in chilling-sensitive sweet pepper leaves were investigated by comparing the ratio of quantum yields of photosystem (PS) 2 and CO2 assimilation, PS2/CO2, measured in normal air (21 % O2, NA) and low O2-air (2% O2, LOA), and by analyzing chlorophyll (Chl) a fluorescence parameters. Chilling treatment in the dark had little effect on Fv/Fm and PS2/CO2, but it caused the decrease of net photosynthetic rate (P N) under saturating irradiance after 6-h chilling treatment, indicating that short-term chilling alone did not induce PS2 photoinhibition. Furthermore, photorespiration and Mehler reaction also did not obviously change during subsequent recovery after chilling stress in the dark. During chilling treatment under LI, there were obvious changes in Fv/Fm and PS2/CO2, determined in NA or LOA. Fv/Fm could recover fully in 4 h at 25 °C, and PS2/CO2 increased at the end of the treatment, as determined in both NA and LOA. During subsequent recovery, PS2/CO2 in LOA decreased faster than in NA. Thus the Mehler reaction might play an important role during chilling treatment under LI, and photorespiration was an important process during the subsequent recovery. The recovery of PN under saturating irradiance determined in NA and LOA took about 50 h, implying that there were some factors besides CO2 assimilation limiting the recovery of photosynthesis. From the progress of reduced P700 and the increase of the Mehler reaction during chilling under LI we propose that active oxygen species were the factors inducing PS1 photoinhibition, which prevented the recovery of photosynthesis in optimal conditions because of the slow recovery of the oxidizable P700.  相似文献   

10.
The possibility of a role for phosphate metabolism in the photosynthetic regulation that occurs during frost hardening was investigated in winter rye (Secale cereale L. cv. Musketeer). Leaves of frost-hardened and non-hardened winter rye were studied during photosynthetic induction, and at steady state after being allowed to take up 20 mM orthophosphate through the transpiration stream for 3 h. At the growth irradiance (350 mol·m-2·s-1) frost-hardening increased the stationary rate of CO2-dependent O2 evolution by 57% and 25% when measured at 5 and 20° C, respectively. Frosthardening also reduced the lag phase to stationary photosynthesis by 40% at 5° C and decreased the susceptibility of leaves to oscillations during induction and after interruption of the actinic beam during steady-state photosynthesis. These responses are all indicative of increased phosphate availability in frost-hardened leaves. As reported previously by Öquist and Huner (1993, Planta 189, 150–156), frost-hardening also decreased the reduction state of QA, the primary, stable quinone acceptor of PSII, and decreased the sensitivity of winter rye to photoinhibition of photosynthesis. Non-hardened rye leaves fed orthophosphate also showed an increased photosynthetic capacity (25% at 20° C and light saturation), lower reduction state of QA, a reduced sensitivity to photoinhibition and lower susceptibility to oscillations resulting from a brief interruption of the actinic light. Thus, the data indicate that phosphate metabolism plays a key role in photosynthetic acclimation of winter rye to low temperatures.Abbreviations Fo and Fo minimal fluorescence when all PSII reaction centres are open in dark-and light-acclimated leaves, respectively - Fm and Fm maximal fluorescence when all PSII reaction centres are closed in dark-and light-acclimated leaves, respectively - Fv variable fluoresence (Fm -Fo) in dark-acclimated leaves - Fv variable fluorescence (Fm-Fo) in light-acclimated leaves - PCR photosynthetic carbon reduction - PPFD photosynthetic photon flux density - QA the primary, stable quinone acceptor of PSII - qP photochemical quenching of fluorescence - qN non-photochemical quenching of fluorescence This work was supported by the Swedish Natural Sciences Research Council. The authors are indebted to Dr. N. Huner, Department of Plant Sciences, UWO, London, Canada, for helpful discussions during the initiation of this work and for the gift of rye seeds.  相似文献   

11.
The components of non-photochemical chlorophyll fluorescence quenching (qN) in barley leaves have been quantified by a combination of relaxation kinetics analysis and 77 K fluorescence measurements (Walters RG and Horton P 1991). Analysis of the behaviour of chlorophyll fluorescence parameters and oxygen evolution at low light (when only state transitions — measured as qNt — are present) and at high light (when only photoinhibition — measured as qNi — is increasing) showed that the parameter qNt represents quenching processes located in the antenna and that qNi measures quenching processes located in the reaction centre but which operate significantly only when those centres are closed. The theoretical predictions of a variety of models describing possible mechanisms for high-energy-state quenching, measured as the residual quenching, qNe, were then tested against the experimental data for both fluorescence quenching and quantum yield of oxygen evolution. Only one model was found to agree with these data, one in which antennae exist in two states, efficient in either energy transfer or energy dissipation, and in which those photosynthetic units in a dissipative state are unable to exchange energy with non-dissipative units.Abbreviations: Fo, Fm room-temperature chlorophyll fluorescence yield with all centres open, closed - Fv variable fluorescence yield - LHC II light-harvesting chlorophyll-protein complex of PS II - PS I, PS II Photosystem I, II - P700, P680 primary donor in Photosystem I, II - QA primary electron acceptor of PS II - Pmax maximum quantum yield of oxygen evolution - qN coefficient of non-photochemical quenching of variable fluorescence - qNe, qNt, qNi coefficient of non-photochemical quenching due to high-energy-state, state transition, photoinhibition - qO coefficient of quenching of dark level fluorescence - qP coefficient of photochemical quenching of variable fluorescence - P intrinsic quantum yield of open PS II reaction centres = s/qP - PS 2 quantum yield of PS = qP × Fv/Fm - S quantum yield of oxygen evolution = rate of oxygen evolution/light intensity  相似文献   

12.
Under conditions of iron-stress, the Photosystem II associated chlorophyll a protein complex designated CP 43, which is encoded by the isiA gene, becomes the major pigment-protein complex in Synechococcus sp. PCC 7942. The isiB gene, which is located immediately downstream of isiA, encodes the protein flavodoxin, which can functionally replace ferredoxin under conditions of iron stress. We have constructed two cyanobacterial insertion mutants which are lacking (i) the CP 43 apoprotein (designated isiA ) and (ii) flavodoxin (designated isiB ). The function of CP 43 was studied by comparing the cell characteristics, PS II functional absorption cross-sections and Chl a fluorescence parameters from the wild-type, isiA and isiB strains grown under iron-stressed conditions. In all strains grown under iron deprivation, the cell number doubling time was maintained despite marked changes in pigment composition and other cell characteristics. This indicates that iron-starved cells remained viable and that their altered phenotype suggests an adequate acclimation to low iron even in absence of CP 43 and/or flavodoxin. Under both iron conditions, no differences were detected between the three strains in the functional absorption crossection of PS II determined from single turnover flash saturation curves of Chl a fluorescence. This demonstrates that CP 43 is not part of the functional light-harvesting antenna for PS II. In the wild-type and the isiB strain grown under iron-deficient conditions, CP 43 was present in the thylakoid membrane as an uncoupled Chl-protein complex. This was indicated by (1) an increase of the yield of prompt Chl a fluorescence (Fo) and (2) the persistence after PS II trap closure of a fast fluorescence decay component showing a maximum at 685 nm.Abbreviations Chl chlorophyll - CP 43, CP 47 and CP 43 Chl a binding protein complexes of indicated molecular mass - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Fm and Fm fluorescence when all PS II reaction centers are dosed in dark- and light-acclimated cells, respectively - Fo fluorescence when all PS II reaction centers are open in dark acclimated cells - Fv variable fluorescence after dark acclimation (Fm–Fo)  相似文献   

13.
Egbert  K.J.  Martin  C.E. 《Photosynthetica》2002,40(1):35-39
Four fluorescence parameters [Fv/Fm = the intrinsic efficiency of energy conversion via photosystem 2 (PS2); Fv/Fm= the efficiency of energy conversion via PS2 in the light; P = fraction of absorbed radiant energy utilized for photosynthesis; and D = fraction of absorbed radiant energy dissipated as heat] were measured on leaves of seven species of succulents having epidermal windows. While the function of leaf windows has reportedly been to increase absorption of radiant energy and, hence, the rate of photosynthesis in these species, recent evidence indicates that this translucent portion of epidermal tissue, lacking chlorophyll, may also result in photoinhibition in these species, especially for those with growth habits aboveground. Species with aboveground and belowground growth habits were compared with their leaf windows covered with reflective tape and with windows unobstructed. Results showed no increase in photoinhibition for these species resulting from the radiant energy penetrating the window tissue. Although the efficiency of the photosynthetic mechanism was not significantly influenced by the additional radiant energy provided by the window for individual species, there were significant differences in the efficiencies of radiant energy capture (Fv/Fm) and utilization (P) between the two growth habits. Species with an aboveground growth habit were less efficient in radiant energy utilization compared with the species having a belowground growth habit.  相似文献   

14.
We investigated to what extent south-exposed leaves (E-leaves) of the evergreen ivy (Hedera helix L.) growing in the shadow of two deciduous trees suffered from photoinhibition of photosynthesis when leaf-shedding started in autumn. Since air temperatures drop concomitantly with increase in light levels, changes in photosynthetic parameters (apparent quantum yield, i and maximal photosynthetic capacity of O2 evolution, Pmax; chlorophyll-a fluorescence at room temperature) as well as pigment composition were compared with those in north-exposed leaves of the same clone (N-leaves; photosynthetic photon flux density PPFD< 100 mol · m–2 · s–2) and phenotypic sun leaves (S-leaves; PPFD up to 2000 mol · m–2 · s–1).In leaves exposed to drastic light changes during winter (E-leaves) strong photoinhibition of photosynthesis could be observed as soon as the incident PPFD increased in autumn. In contrast, in N-leaves the ratio of variable fluorescence to maximum fluorescence (FV/FMm) and i did not decline appreciably prior to severe frosts (up to -12° C) in January. At this time, i was reduced to a similar extent in all leaves, from about 0.073 mol O2 · mol–1 photons before stress to about 0.020. Changes in i were linearly correlated with changes in fv/fm (r = 0.955). The strong reduction in FV/FM on exposure to stress was caused by quenching in FM. The initial fluorescence (F0), however, was also quenched in all leaves. The diminished fluorescence yield was accompanied by an increase in zeaxanthin content. These effects indicate that winter stress in ivy primarily induces an increase in non-radiative energy-dissipation followed by photoinhibitory damage of PSII. Although a pronounced photooxidative bleaching of chloroplast pigments occurred in January (especially in E-leaves), photosynthetic parameters recovered completely in spring. Thus, the reduction in potential photosynthetic yield in winter may be up to three times greater in leaves subjected to increasing light levels than in leaves not exposed to a changing light environment.Abbreviations and Symbols F0, FM initial and maximal fluorescence yield when all PSII centres are open and closed - FV variable fluorescence (FM-F0) - Pmax maximal photosynthetic capacity at 1000 umol · m–2 · s–1 PPFD and CO2 saturation - PPFD photosynthetic photon flux density - i apparent quantum yield of photosynthetic O2 evolution - E-leaves, N-leaves shade leaves exposed, not exposed to drastic light changes during winter - S-leaves sun leaves from an open ivy stand Dedicated to Professor Otto Härtel on the occasion of his 80th birthdayThis work was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung.  相似文献   

15.
16.
The obligate shade plant, Tradescantia albiflora Kunth grown at 50 mol photons · m–2 s–1 and Pisum sativum L. acclimated to two photon fluence rates, 50 and 300 mol · m–2 · s–1, were exposed to photoinhibitory light conditions of 1700 mol · m–2 · s–1 for 4 h at 22° C. Photosynthesis was assayed by measurement of CO2-saturated O2 evolution, and photosystem II (PSII) was assayed using modulated chlorophyll fluorescence and flash-yield determinations of functional reaction centres. Tradescantia was most sensitive to photoinhibition, while pea grown at 300 mol · m–2 · s–1 was most resistant, with pea grown at 50 mol · m–2 · s–1 showing an intermediate sensitivity. A very good correlation was found between the decrease of functional PSII reaction centres and both the inhibition of photosynthesis and PSII photochemistry. Photoinhibition caused a decline in the maximum quantum yield for PSII electron transport as determined by the product of photochemical quenching (qp) and the yield of open PSII reaction centres as given by the steady-state fluorescence ratio, FvFm, according to Genty et al. (1989, Biochim. Biophys. Acta 990, 81–92). The decrease in the quantum yield for PSII electron transport was fully accounted for by a decrease in FvFm, since qp at a given photon fluence rate was similar for photoinhibited and noninhibited plants. Under lightsaturating conditions, the quantum yield of PSII electron transport was similar in photoinhibited and noninhibited plants. The data give support for the view that photoinhibition of the reaction centres of PSII represents a stable, long-term, down-regulation of photochemistry, which occurs in plants under sustained high-light conditions, and replaces part of the regulation usually exerted by the transthylakoid pH gradient. Furthermore, by investigating the susceptibility of differently lightacclimated sun and shade species to photoinhibition in relation to qp, i.e. the fraction of open-to-closed PSII reaction centres, we also show that irrespective of light acclimation, plants become susceptible to photoinhibition when the majority of their PSII reaction centres are still open (i.e. primary quinone acceptor oxidized). Photoinhibition appears to be an unavoidable consequence of PSII function when light causes sustained closure of more than 40% of PSII reaction centres.Abbreviations Fo and Fo minimal fluorescence when all PSII reaction centres are open in darkness and steady-state light, respectively - Fm and Fm maximal fluorescence when all PSII reaction centres are closed in darkand light-acclimated leaves, respectively - Fv variable fluorescence - (Fm-Fo) under steady-state light con-ditions - Fs steady-state fluorescence in light - QA the primary,stable quinone acceptor of PSII - qNe non-photochemical quench-ing of fluorescence due to high energy state - (pH); qNi non-photochemical quenching of fluorescence due to photoinhibition - qp photochemical quenching of fluorescence To whom correspondence should be addressedThis work was supported by the Swedish Natural Science Research Council (G.Ö.) and the award of a National Research Fellowship to J.M.A and W.S.C. We thank Dr. Paul Kriedemann, Division of Forestry and Forest Products, CSIRO, Canberra, Australia, for helpful discussions.  相似文献   

17.
Huang  Z.-A.  Jiang  D.-A.  Yang  Y.  Sun  J.-W.  Jin  S.-H. 《Photosynthetica》2004,42(3):357-364
Gas exchange, chlorophyll (Chl) fluorescence, and contents of photosynthetic pigments, soluble proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBPCO), and antioxidant enzymes were characterized in the fully expanded 6th leaves in rice seedlings grown on either complete (CK) or on nitrogen-deficient nutrient (N-deficiency) solutions during a 20-chase period. Compared with the control plants, the lower photosynthetic capacity at saturation irradiance (P max) was accompanied by an increase in intercellular CO2 concentration (Ci), indicating that in N-deficient plants the decline in P max was not due to stomatal limitation but due to the reduced carboxylation efficiency. The fluorescence parameters PS2, Fv/Fm, electron transport rate (ETR), and qP showed the same tendency as P max in N-deficient plants. Correspondingly, a higher qN paralleled the rise of the ratio of carotenoid (Car) to Chl contents. However, Fv/Fm was still diminished, suggesting that photoinhibition did occur in the photosystem 2 (PS2) reaction centres. In addition, the activities of antioxidant enzymes on a fresh mass basis were gradually lowered, leading to the aggravation of membrane lipid peroxidation with the proceeding N-deficiency. The accumulation of malonyldialdehyde resulted in the lessening of Chl and soluble protein content. Analyses of regression showed PS2 excitation pressure (1 - qP) was linearly correlated with the content of Chl and inversely with soluble protein (particularly RuBPCO) content. There was a lag phase in the increase of PS2 excitation pressure compared to the decrease of RuBPCO content. Therefore, the increased excitation pressure under N-deficiency is probably the result of saturation of the electron transport chain due to the limitation of the use of reductants by the Calvin cycle. Rice plants responded to N-deficiency and high irradiance by decreasing light-harvesting capacity and by increasing thermal dissipation of absorbed energy.  相似文献   

18.
High-light treatments (1750–2000 mol photons m–2 · s–1) of leaves from a number of higher-plant species invariably resulted in quenching of the maximum 77K chlorophyll fluorescence at both 692 and 734 nm (F M, 692 and F M, 734). The response of instantaneous fluorescence at 692 nm (F O, 692) was complex. In leaves of some species F O, 692 increased dramatically in others it was quenched, and in others yet it showed no marked, consistent change. Regardless of the response of F O, 692 an apparently linear relationship was obtained between the ratio of variable to maximum fluorescence (F V/F M, 692) and the photon yield of O2 evolution, indicating that photoinhibition affects these two variables to approximately the same extent. Treatment of leaves in a CO2–free gas stream containing 2% O2 and 98% N2 under weak light (100 mol · m–2 · s–1) resulted in a general and fully reversible quenching of 77K fluorescence at 692 and 734 nm. In this case both F O, 692 and F M, 692 were invariably quenched, indicating that the quenching was caused by an increased non-radiative energy dissipation in the pigment bed. We propose that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves. One results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in F O, 692; the other results from an increased non-radiative energy dissipation and leads to quenching of both F O, 692 and F M, 692 This general quenching had a much longer relaxation time than reported for pH-dependent quenching in algae and chloroplasts. Sun leaves, whose F V/F M, 692 ratios were little affected by high-light exposure in normal air, suffered pronounced photoinhibition when the exposure was made under conditions that prevent photosynthetic gas exchange (2% O2, 0% CO2). However, they were still less susceptible than shade leaves, indicating that the higher capacity for energy dissipation via photosynthesis is not the only cause of their lower susceptibility. The rate constant for recovery from photoinhibition was much higher in mature sun leaves than in mature shade leaves, indicating that differences in the capacity for continuous repair may in part account for the difference in their susceptibility to photoinhibition.Abbreviations and symbols kDa kilodalton - LHC-II light-harvesting chlorophyll-protein complex - PFD photon flux density (photon fluence rate) - PSI, PSII photosystem I, II - F O, F M, F V instantaneous, maximum, variable fluorescence emission - absorptance - a photon yield of O2 evolution (absorbed light) C.I.W.-D.P.B. Publication No. 925  相似文献   

19.
Ash (Fraxinus excelsior L.) and beech (Fagus sylvatica L.) seedlings were grown in the field under three levels of natural light: (1) open, (2) gap and (3) shade. Light acclimation of photosynthesis was characterized by means of modulated chlorophyll a fluorescence of intact leaves and growth parameters were measured at the end of the growing season. Measurements of maximum photochemical efficiency (Fv/Fm) of dark-adapted leaves at intervals through the day showed that ash had a higher Fv/Fm than beech in open and gap plots but not in shade plots. This indicated a larger build-up of photoinhibition in beech under gap and open conditions. Steady-state light response curves of the operating efficiency of PSII (Fq/Fm), the electron transport rate (ETR) and the photochemical efficiency factor (Fq/Fv) showed greater variability across light treatments in ash than in beech. Both species exhibited similar responses of non-photochemical quenching (NPQ) to light. When the data were normalized to the mean maximum irradiance in the growth environment, all photochemical parameters showed a reduction in variation across treatments, indicating that light acclimation in the two species occurred primarily through adjustments in rates of photochemistry. Adjustments in thermal heat dissipation were small in both species. This pattern was stronger in ash, suggesting a greater degree of phenotypic plasticity in photosynthetic capacity in this earlier successional species. Contrary to our expectations, the build-up of photoinhibition in beech did not appear to have a negative effect on total biomass accumulation relative to ash.Abbreviations ETR Electron transport rate - Fm Maximal fluorescence in the dark-adapted state - Fo Minimal fluorescence in the dark-adapted state - Fs Steady-state fluorescence in actinic light - Fv=FmFo Variable fluorescence in the dark-adapted state - Fv/Fm Maximum photochemical efficiency of photosystem II in the dark-adapted state - Fm Maximal fluorescence in actinic light - Fo Minimal fluorescence in actinic light - Fv=FmFo Variable fluorescence in actinic light - Fq=FmFs; Fq/Fm Operating efficiency of photosystem II in actinic light - Fq/Fv Efficiency factor of PSII photochemistry (also referred to as qP—photochemical quenching) - Fv/Fm Maximum efficiency of PSII under actinic light if all reaction centres were open - NPQ Stern-Volmer non-photochemical quenching - PPFD Photosynthetic photon flux density (mol m–2 s–1) refers to photosynthetically active irradiance measured with a cosine-corrected quantum sensor - PPFFR Photosynthetic photon flux fluence rate (mol m–2 s–1) refers to photosynthetically active irradiance measured with a spherical quantum sensor. Fluorescence nomenclature follows Oxborough and Baker (2000).  相似文献   

20.
D. H. Greer  W. A. Laing  T. Kipnis 《Planta》1988,174(2):152-158
Photoinhibition of photosynthesis was induced in attached leaves of kiwifruit grown in natural light not exceeding a photon flux density (PFD) of 300 mol·m-2·s-1, by exposing them to a PFD of 1500 mol·m-2·s-1. The temperature was held constant, between 5 and 35° C, during the exposure to high light. The kinetics of photoinhibition were measured by chlorophyll fluorescence at 77K and the photon yield of photosynthetic O2 evolution. Photoinhibition occurred at all temperatures but was greatest at low temperatures. Photoinhibition followed pseudo first-order kinetics, as determined by the variable fluorescence (F v) and photon yield, with the long-term steady-state of photoinhibition strongly dependent on temperature wheareas the observed rate constant was only weakly temperature-dependent. Temperature had little effect on the decrease in the maximum fluorescence (F m) but the increase in the instantaneous fluorescence (F o) was significantly affected by low temperatures in particular. These changes in fluorescence indicate that kiwifruit leaves have some capacity to dissipate excessive excitation energy by increasing the rate constant for non-radiative (thermal) energy dissipation although temperature apparently had little effect on this. Direct photoinhibitory damage to the photosystem II reaction centres was evident by the increases in F o and extreme, irreversible damage occurred at the lower temperatures. This indicates that kiwifruit leaves were most susceptible to photoinhibition at low temperatures because direct damage to the reaction centres was greatest at these temperatures. The results also imply that mechanisms to dissipate excess energy were inadequate to afford any protection from photoinhibition over a wide temperature range in these shade-grown leaves.Abbreviations and symbols fluorescence yield correction coefficient - F o, F m, F v instantaneous, maximum, variable fluorescence - K D, K F, K P, K T rate constants for non-radiative energy dissipation, fluorescence, photochemistry, energy transfer to photosystem I - PFD photon flux density - PSI, II photosystem I, II - i photon yield of photosynthesis (incident light)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号