首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integration of viral DNA into the host cell genome is a critical step in the life cycle of HIV. This essential reaction is catalyzed by integrase (IN) through two steps, 3'-processing and DNA strand transfer. Integrase is an attractive target for drug design because there is no known cellular analogue and integration is essential for successful replication of HIV. A computational three-dimensional (3-D) database search was used to identify novel HIV-1 integrase inhibitors. Starting from the previously identified Y3 (4-acetylamino-5-hydroxynaphthalene-2,7-disulfonic acid) binding site on the avian sarcoma virus integrase (ASV IN), a preliminary search of all compounds in the nonproprietary, open part of the National Cancer Institute 3-D database yielded a collection of 3100 compounds. A more rigorous scoring method was used to rescreen the 3100 compounds against both ASV IN and HIV-1 IN. Twenty-two of those compounds were selected for inhibition assays against HIV-1 IN. Thirteen of the 22 showed inhibitory activity against HIV-1 IN at concentrations less than 200 microM and three of them showed antiviral activities in HIV-1 infected CEM cells with effective concentrations (EC50) ranging from 0.8 to 200 microM. Analysis of the computer-generated binding modes of the active compounds to HIV-1 IN showed that simultaneous interaction with the Y3 site and the catalytic site is possible. In addition, interactions between the active compounds and the flexible loop involved in the binding of DNA by IN are indicated to occur. The structural details and the unique binding motif between the HIV-1 IN and its inhibitors identified in the present work may contribute to the future development of IN inhibitors.  相似文献   

2.
We describe the synthesis and enzymatic activity of a library of beta-carboxamido phosphonates as inhibitors of imidazole glycerol phosphate dehydratase (IGPD). Biological results suggest the presence of an enzymatic interaction site not previously observed for other inhibitors of IGPD.  相似文献   

3.
Some unexpected promiscuous inhibitors were observed in a virtual screening protocol applied to select cruzain inhibitors from the ZINC database. Physical-chemical and pharmacophore model filters were used to reduce the database size. The selected compounds were docked into the cruzain active site. Six hit compounds were tested as inhibitors. Although the compounds were designed to be nucleophilically attacked by the catalytic cysteine of cruzain, three of them showed typical promiscuous behavior, revealing that false positives are a prevalent concern in VS programs.  相似文献   

4.
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis (TB), employs ten enzymes including imidazoleglycerol-phosphate dehydratase (IGPD) for de novo biosynthesis of histidine. The absence of histidine-biosynthesis in humans combined with its essentiality for Mtb makes the enzymes of this pathway major anti-TB drug targets. We explored the inhibitory potential of a small molecule β-(1,2,4-Triazole-3-yl)-DL-alanine (DLA) against Mtb IGPD. DLA exhibits an in vitro inhibitory efficacy in the lower micromolar range. Higher-resolution crystal structures of native and substrate-bound Mtb IGPD provided additional structural features of this important drug target. Crystal structure of IGPD-DLA complex at a resolution of 1.75 Å, confirmed that DLA locks down the function of the enzyme by binding in the active site pocket of the IGPD mimicking the substrate-binding mode to a high degree. In our biochemical study, DLA showed an efficient inhibition of Mtb IGPD. Furthermore, DLA also showed bactericidal activity against Mtb and Mycobacterium smegmatis and inhibited their growth in respective culture medium. Importantly, owing to the favorable ADME and physicochemical properties, it serves as an important lead molecule for further derivatizations.  相似文献   

5.
Imidazole glycerol-phosphate dehydratase (IGPD) catalyzes the sixth step of histidine biosynthesis. The enzyme is of fundamental biochemical interest, because it catalyzes removal of a non-acidic hydrogen atom in the dehydration reaction. It is also a potential target for development of herbicides. IGPD is a metalloenzyme in which transition metals induce aggregation and are required for catalysis. Addition of 1 equivalent of Mn(2+)/subunit is shown by analytical ultracentrifugation to induce the formation of 24-mers from trimeric IGPD. Two histidine-rich motifs may participate in metal binding and aggregation. The 2.3-A crystal structure of metal-free trimeric IGPD from the fungus Filobasidiella neoformans reveals a novel fold containing an internal repeat, apparently the result of gene duplication. The 95-residue alpha/beta half-domain occurs in a few other proteins, including the GHMP kinase superfamily (galacto-homoserine-mevalonate-phosphomevalonate), but duplication to form a compact domain has not been seen elsewhere. Conserved residues cluster at two types of sites in the trimer, each site containing a conserved histidine-rich motif. A model is proposed for the intact, active 24-mer in which all highly conserved residues, including the histidine-rich motifs in both the N- and C-terminal halves of the polypeptide, cluster at a common site between trimers. This site is a candidate for the active site and also for metal binding leading to aggregation of trimers. The structure provides a basis for further studies of enzyme function and mechanism and for development of more potent and specific herbicides.  相似文献   

6.
Glycogen synthase kinase-3 (GSK-3beta) has been emerging as a key therapeutic target for type-2 diabetics, Alzheimer's disease, cancer, and chronic inflammation. For the purpose of finding biologically active and novel compounds and providing new idea for drug-design, we performed virtual screening using commercially available database. Three-dimensional common feature pharmacophore model was developed by using HipHop program provided in Catalyst software and it was used as a query for screening database. Recursive partitioning (RP) model was developed as a filtering system, which was able to classify active and inactive compounds. Eventually, a sequential virtual screening procedure (SQSP) was conducted by applying the common feature pharmacophore and RP model in succession to discover novel potent GSK-3beta inhibitors. The final 56 hit compounds were carefully selected considering predicted docking mode in crystal structures. Subsequent enzyme assay for human GSK-3beta protein confirmed that three compounds of these hit compounds exhibit micromolar inhibitory activity. Here, we report novel hit compounds and their binding mode in the active site of GSK-3beta crystal structure.  相似文献   

7.
Germination of monocotyledonous plants involves activation and de novo synthesis of enzymes that degrade cell walls and starch and mobilize stored endosperm reserves for embryo growth. Two-dimensional (2-D) gel electrophoresis and mass spectrometry were applied to identify major water-soluble proteins in extracts of mature barley (Hordeum vulgare) seeds and to follow their fate during germination. About 1200 and 600 spots of pI 4-7 were detected on 2-D gels by silver staining and colloidal Coomassie Brilliant Blue staining, respectively. About 300 spots were selected for in-gel digestion followed by matrix-assisted laser desorption/ionization-mass spectrometry-peptide map fingerprint analysis. Database searches using measured peptide masses resulted in 198 identifications of 103 proteins in 177 spots. These include housekeeping enzymes, chaperones, defence proteins (including enzyme inhibitors), and proteins related to desiccation and oxidative stress. Sixty-four of the identifications were made using expressed sequence tags (ESTs). Numerous spots in the 2-D gel pattern changed during germination (micromalting) and an intensely stained area which contained large amounts of the serpin protein Z appeared centrally on the 2-D gel. Spots containing alpha-amylase also appeared. Identification of 22 spots after three days of germination represented 13 different database entries and 11 functions including hydrolytic enzymes, chaperones, housekeeping enzymes, and inhibitors.  相似文献   

8.
Dopa decarboxylase (DDC), a pyridoxal 5'-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide) is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide) are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a) to use virtual screening to identify potential human DDC inhibitors and (b) to evaluate the reliability of our virtual-screening (VS) protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i) values ≥10 μM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i) values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i) value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.  相似文献   

9.
10.
An automatic procedure is proposed to identify, from the protein sequence database, conserved amino acid patterns (or sequence motifs) that are exclusive to a group of functionally related proteins. This procedure is applied to the PIR database and a dictionary of sequence motifs that relate to specific superfamilies constructed. The motifs have a practical relevance in identifying the membership of specific superfamilies without the need to perform sequence database searches in 20% of newly determined sequences. The sequence motifs identified represent functionally important sites on protein molecules. When multiple blocks exist in a single motif they are often close together in the 3-D structure. Furthermore, occasionally these motif blocks were found to be split by introns when the correlation with exon structures was examined.  相似文献   

11.
BACKGROUND: Trypanothione reductase (TR) helps to maintain an intracellular reducing environment in trypanosomatids, a group of protozoan parasites that afflict humans and livestock in tropical areas. This protective function is achieved via reduction of polyamine-glutathione conjugates, in particular trypanothione. TR has been validated as a chemotherapeutic target by molecular genetics methods. To assist the development of new therapeutics, we have characterised the structure of TR from the pathogen Trypanosoma cruzi complexed with the substrate trypanothione and have used the structure to guide database searches and molecular modelling studies. RESULTS: The TR-trypanothione-disulfide structure has been determined to 2.4 A resolution. The chemical interactions involved in enzyme recognition and binding of substrate can be inferred from this structure. Comparisons with the related mammalian enzyme, glutathione reductase, explain why each enzyme is so specific for its own substrate. A CH***O hydrogen bond can occur between the active-site histidine and a carbonyl of the substrate. This interaction contributes to enzyme specificity and mechanism by producing an electronic induced fit when substrate binds. Database searches and molecular modelling using the substrate as a template and the active site as receptor have identified a class of cyclic-polyamine natural products that are novel TR inhibitors. CONCLUSIONS: The structure of the TR-trypanothione enzyme-substrate complex provides details of a potentially valuable drug target. This information has helped to identify a new class of enzyme inhibitors as novel lead compounds worthy of further development in the search for improved medicines to treat a range of parasitic infections.  相似文献   

12.
A derivatization reaction, guanidination, was recently reported that increases MALDI-TOF MS sensitivity toward lysine-terminated peptides. Its application conveys sequence information that can be used as a parameter in peptide mass mapping database searches. This paper presents a systematic study of the impact of guanidination on proteomic analysis of an entire bacterial organelle. Sixty-two 2-D gel isolated proteins from Caulobacter crescentus stalks were studied. A novel computer algorithm, Prodigies, was developed to analyze the data. Absolute confidence limits associated with protein assignments were established using Monte Carlo simulations of database searches. The advantages of guanidination are illustrated using both experimental and theoretical data.  相似文献   

13.
Imidazole glycerol phosphate dehydratase (IGPD) catalyses the dehydration of imidazole glycerol phosphate to imidazole acetol phosphate, an important late step in the biosynthesis of histidine. IGPD, isolated as a low molecular weight and inactive apo-form, assembles with specific divalent metal cations to form a catalytically active high molecular weight metalloenzyme. Oxo-vanadium ions also assemble the protein into, apparently, the same high molecular weight form but, uniquely, yield a protein without catalytic activity. The VO2+ derivative of IGPD has been investigated by electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopy. The spin Hamiltonian parameters indicate the presence of multiple 14N nuclei in the inner coordination sphere of VO2+ which is corroborated by ENDOR and ESEEM spectra showing resonances attributable to interactions with 14N nuclei. The isotropic superhyperfine coupling component of about 7 MHz determined by ENDOR is consistent with a nitrogen of coordinated histidine imidazole(s). The ESEEM Fourier-transform spectra further support the notion that the VO2+ substituted enzyme contains inner-sphere nitrogen ligands. The isotropic and anisotropic 14N superhyperfine coupling components are similar to those reported for other equatorially coordinated enzymatic histidine imidazole systems. ESEEM resonances from axial 14N ligands are discussed.  相似文献   

14.
In order to study the O-GlcNAc modification in vivo, it is evident that a range of specific small molecule inhibitors would be a valuable asset. One strategy for the design of such compounds would be to utilise 3-D structural information in tandem with knowledge of catalytic mechanism. The last few years has seen major breakthroughs in our understanding of the 3-D structure of the enzymes involved in the O-GlcNAc modification notably from the study of the tetratricopeptide repeat (TPR) domain of the human O-GlcNAc transferase, of the bacterial homologs of the O-GlcNAc hydrolase and more latterly bacterial homologs of the O-GlcNAc transferase itself. Of particular note are the bacterial O-GlcNAc hydrolase homologs that provide near identical active centres to the human enzyme. These have informed the design and/or subsequent analysis of inhibitors of this enzyme which have found great use in the chemical dissection of the O-GlcNAc in vivo, as described by Macauley and Vocadlo elsewhere in this issue.  相似文献   

15.
16.
ChemDB is a chemical database containing nearly 5M commercially available small molecules, important for use as synthetic building blocks, probes in systems biology and as leads for the discovery of drugs and other useful compounds. The data is publicly available over the web for download and for targeted searches using a variety of powerful methods. The chemical data includes predicted or experimentally determined physicochemical properties, such as 3D structure, melting temperature and solubility. Recent developments include optimization of chemical structure (and substructure) retrieval algorithms, enabling full database searches in less than a second. A text-based search engine allows efficient searching of compounds based on over 65M annotations from over 150 vendors. When searching for chemicals by name, fuzzy text matching capabilities yield productive results even when the correct spelling of a chemical name is unknown, taking advantage of both systematic and common names. Finally, built in reaction models enable searches through virtual chemical space, consisting of hypothetical products readily synthesizable from the building blocks in ChemDB. AVAILABILITY: ChemDB and Supplementary Materials are available at http://cdb.ics.uci.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

17.
Mining the NCI antiviral compounds for HIV-1 integrase inhibitors   总被引:2,自引:0,他引:2  
HIV-1 integrase (IN) is an essential enzyme for effective viral replication and is a validated target for the development of antiretroviral drugs. Currently, there are no approved drugs targeting this enzyme. In this study, we have identified 11 structurally diverse small-molecule inhibitors of IN. These compounds have been selected by mining the moderately active antiviral molecules from a collection of 90,000 compounds screened by the National Cancer Institute (NCI) Antiviral Program. These compounds, which were screened at the NCI during the past 20 years, resulted in approximately 4000 compounds labeled as 'moderately active.' In our study, chalcone 11 shows the most potent activity with an IC(50) of 2+/-1 microM against purified IN in the presence of both Mn(2+) and Mg(2+) as cofactors. Docking simulations using the 11 identified inhibitors as a training set have elucidated two unique binding areas within the active site: the first encompasses the conserved D64-D116-E152 motif, while the other involves the flexible loop region formed by amino acid residues 140-149. The tested inhibitors exhibit favorable interactions with important amino acid residues through van der Waals and H-bonding contacts.  相似文献   

18.
Nitrophenyl derivatives as aldose reductase inhibitors   总被引:2,自引:0,他引:2  
Nitrophenyl derivatives were recently discovered as a new class of ALR2 inhibitors by means of docking and database screening of the National Cancer Institute database of organic molecules. The nitro group was predicted to bind to the Tyr48 and His110 active site residues of the enzyme, the site where acidic ALR2 inhibitors such as carboxylic acids bind in their anionic form. Given the novelty of these compounds, we decided to expand their structure–activity relationships by synthesizing and testing a series of derivatives and the corresponding compounds having a carboxylic group instead of the nitro moiety; the results obtained were rationalized by means of docking and molecular dynamics simulations. On the whole there is an agreement between inhibitory data and the results of molecular modeling experiments, supporting the hypothesized binding mode of these compounds.  相似文献   

19.
Protein prenylation is a post translational modification that is indispensable for Ras–Rho mediated tumorigenesis. In mammals, three enzymes namely protein farnesyltransferase (FTase), geranylgeranyl transferase1 (GGTase1), and geranylgeranyl transferase2 (GGTase2) were found to be involved in this process. Usually proteins of Ras family will be farnesylated by FTase, Rho family will be geranylgeranylated by GGTase1. GGTase2 is exclusive for geranylgeranylating Rab protein family. FTase inhibitors such as FTI- 277 are potent anti-cancer agents in vitro. In vivo, mutated Ras proteins can either improve their affinity for FTase active site or undergo geranylgeranylation which confers resistance and no activity of FTase inhibitors. This led to the development of GGTase1 inhibitors. A well-defined 3-D structure of human GGTase1 protein is lacking which impairs its in silico and rational designing of inhibitors. A 3-D structure of human GGTase1 was constructed based on primary sequence available and homology modeling to which pubchem molecules library was virtually screened through AutoDock Vina. Our studies show that natural compounds Camptothecin (-8.2 Kcal/mol), Curcumin (-7.3 Kcal/mol) have higher binding affinities to GGTase-1 than that of established peptidomimetic GGTase-1 inhibitors such as GGTI-297 (-7.5 Kcal/mol), GGTI-298 (-7.5 Kcal/mol), CHEMBL525185 (-7.2 Kcal/mol).  相似文献   

20.
Absorption from culture solution of the herbicides 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 3-(p-chlorophenyl)-1, 1-dimethylurea (Monuron) by excised barley (Hordeum vulgare L.) roots was studied to determine whether absorption was due to an active or a passive mechanism. Herbicide absorption was followed at low temperature, under anaerobic conditions, and in the presence of metabolic inhibitors and compounds of structure similar to that of the herbicide. Total absorption was divided into two phases, exchangeable and nonexchangeable herbicide, by washing the roots for 1 hour following absorption. Absorption of both exchangeable and non-exchangeable 2, 4-D appeared to depend on a supply of metabolic energy which suggests that an active mechanism may be involved. A possible conclusion is that 2, 4-D is absorbed by roots by an adsorption mechanism and that energy is required to maintain the integrity of the absorbing surfaces of the cell. In contrast, absorption of Monuron was independent of an energy supply. It is concluded that the bulk of the Monuron absorbed was taken up passively by diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号