共查询到20条相似文献,搜索用时 0 毫秒
1.
Gray NS 《Current opinion in neurobiology》2001,11(5):608-614
Combinatorial chemistry has become a popular tool for the preparation of collections of compounds that can be used to find inhibitors and substrates for different protein targets. It has evolved to provide small molecule libraries, which, with the concomittant use of affinity chromatography, gene expression profiling and complementation, can be used to identify compounds and their protein targets in biological systems, including the neurological system. 相似文献
2.
There have been recent attempts to use the principles of combinatorial chemistry and high-throughput screening strategies for catalyst identification. With the technology available that allows the synthesis of large libraries, scientists of varied backgrounds have implemented screening efforts to identify active and selective catalysts. Within this context, several techniques have come to light in the past year: infrared thermography is used to identify optimal catalysts by monitoring the change in temperature for exothermic reactions; fluorescence and colored-dye assays, a familiar tool to biologists, is being applied to the identification of catalysts that exhibit the highest activity. Whereas none of these screening methods provide a general solution to the problem of screening large combinatorial libraries (there is likely to be no general solution), each advance represents an important intellectual and technological step forward. 相似文献
3.
Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores. 总被引:5,自引:0,他引:5
The spectroscopic properties of a new series of fatty acid analogs in which a dipyrrometheneboron difluoride fluorophore forms a segment of the acyl methylene chain are presented and their characteristics as fluorescent membrane probes are examined. When incorporated as a low mole fraction component in model phospholipid membranes, the probes retain the principal characteristics of the parent fluorophore: green fluorescence emission with high quantum yield, extensive spectral overlap, and low environmental sensitivity. The fluorescence quantum yield is typically two to three times that of comparable membrane probes based on the nitrobenzoxadiazole fluorophore. The spectral overlap results in a calculated F?rster energy transfer radius (Ro) of about 57 A. Consequently, increasing fluorescence depolarization and quenching are observed as the mole fraction of the probe species incorporated in the membrane is increased. Low environmental sensitivity is manifested by retention of high quantum yield emission in aqueous dispersions of fatty acids. Partition coefficient data derived from fluorescence anisotropy measurements and iodide quenching experiments indicate that in the presence of fluid phase phospholipid bilayers the aqueous fraction of fatty acid is very small. Fluorescence intensity and anisotropy responses to phospholipid phase transitions are examined and found to be indicative of nonrandom fluorophore distribution in the gel phase. It is concluded that the spectroscopic properties of the fatty acid probes and their phospholipid derivatives are particularly suited to applications in fluorescence imaging of cellular lipid distribution and membrane level studies of lateral lipid segregation. 相似文献
4.
Site-specific probes provide a powerful tool for structure and function studies of nucleic acids, especially in elucidating tertiary structures of large ribozymes and other folded RNA molecules. Among many types of extrinsic labels, fluorophores are most attractive because they can provide structural information at millisecond time resolution, thus allowing real-time observation of structural transition during biological function. Methods for introducing fluorophores in RNA molecules are summarized here. These methods are robust and readily applicable to the labeling of other types of probes. However, as each case of RNA modification is unique, fine tuning of the general methodology is beneficial. 相似文献
6.
Using a mixture of scientific intuition, iteration and serendipity, combinatorial materials science is an approach to the discovery and study of new materials that combines high-speed chemical synthesis, high-throughput screening and high-capacity information processing to create, analyse and interpret large numbers of new and diverse material compositions. Technology has now been developed that makes this powerful integration possible. The classes of materials under investigation include catalysts, luminescent, optical, magnetic and dielectric materials, and structural polymers. 相似文献
7.
Socher E Jarikote DV Knoll A Röglin L Burmeister J Seitz O 《Analytical biochemistry》2008,375(2):318-330
The ability to accurately quantify specific nucleic acid molecules in complex biomolecule solutions in real time is important in diagnostic and basic research. Here we describe a DNA-PNA (peptide nucleic acid) hybridization assay that allows sensitive quantification of specific nucleic acids in solution and concomitant detection of select single base mutations in resulting DNA-PNA duplexes. The technique employs so-called FIT (forced intercalation) probes in which one base is replaced by a thiazole orange (TO) dye molecule. If a DNA molecule that is complementary to the FIT-PNA molecule (except at the site of the dye) hybridizes to the probe, the TO dye exhibits intense fluorescence because stacking in the duplexes enforces a coplanar arrangement even in the excited state. However, a base mismatch at either position immediately adjacent to the TO dye dramatically decreases fluorescence, presumably because the TO dye has room to undergo torsional motions that lead to rapid depletion of the excited state. Of note, we found that the use of d-ornithine rather than aminoethylglycine as the PNA backbone increases the intensity of fluorescence emitted by matched probe-target duplexes while specificity of fluorescence signaling under nonstringent conditions is also increased. The usefulness of the ornithine-containing FIT probes was demonstrated in the real-time PCR analysis providing a linear measurement range over at least seven orders of magnitude. The analysis of two important single nucleotide polymorphisms (SNPs) in the CFTR gene confirmed the ability of FIT probes to facilitate unambiguous SNP calls for genomic DNA by quantitative PCR. 相似文献
8.
9.
A series of novel iron-specific fluorescent probes is reported where the chelator function unusually forms part of the fluorescent moiety. The ability of this range of molecules to permeate human erythrocyte ghost membranes was investigated. 相似文献
10.
Combinatorial biosynthesis for new drug discovery 总被引:5,自引:0,他引:5
Hutchinson CR 《Current opinion in microbiology》1998,1(3):319-329
Combinatorial biosynthesis involves interchanging secondary metabolism genes between antibiotic-producing microorganisms to create unnatural gene combinations or hybrid genes if only part of a gene is exchanged. Novel metabolites can be made by both approaches, due to the effect of a new enzyme on a metabolic pathway or to the formation of proteins with new enzymatic properties. The method has been particularly successful with polyketide synthase (PKS) genes: derivatives of medically important macrolide antibiotics and unusual polycyclic aromatic compounds have been produced by novel combinations of the type I and type II PKS genes, respectively. Recent extensions of the approach to include deoxysugar biosynthesis genes have expanded the possibilities for making new microbial metabolites and discovering valuable drugs through the genetic engineering of bacteria. 相似文献
11.
12.
A new class of modified oligonucleotides (combination probes) has been designed and synthesised for use in genetic analysis and RNA detection. Their chemical structure combines an intercalating anchor with a reporter fluorophore on the same thymine nucleobase. The intercalator (thiazole orange or benzothiazole orange) provides an anchor, which upon hybridisation of the probe to its target becomes fluorescent and simultaneously stabilizes the duplex. The anchor is able to communicate via FRET to a proximal reporter dye (e.g. ROX, HEX, ATTO647N, FAM) whose fluorescence signal can be monitored on a range of analytical devices. Direct excitation of the reporter dye provides an alternative signalling mechanism. In both signalling modes, fluorescence in the unhybridised probe is switched off by collisional quenching between adjacent intercalator and reporter dyes. Single nucleotide polymorphisms in DNA and RNA targets are identified by differences in the duplex melting temperature, and the use of short hybridization probes, made possible by the stabilisation provided by the intercalator, enhances mismatch discrimination. Unlike other fluorogenic probe systems, placing the fluorophore and quencher on the same nucleobase facilitates the design of short probes containing multiple modifications. The ability to detect both DNA and RNA sequences suggests applications in cellular imaging and diagnostics. 相似文献
13.
In recent years, interest in organocatalysis, the catalysis with small organic molecules, has been revitalized. Independently, high-throughput-screening and combinatorial chemistry became practical methodologies in the discovery of novel catalytic entities. The logical extension of these methodologies to organocatalysis has led to several interesting results, which are highlighted in this review. 相似文献
14.
15.
M G Shengeliia M M Gachava M A Tsartsidze B A Lomsadze 《Nauchnye doklady vysshe? shkoly. Biologicheskie nauki》1984,(11):34-36
DNA interaction with cholesterol at various lipid concentrations has been investigated by the fluorescent probes method. It has been shown that the intensity of acridine orange fluorescence in the DNA-cholesterol complex decreases at 24 micrograms/ml cholesterol and at 45 micrograms/ml it increases. The number of binding sites and the degree of polarization of fluorescence change simultaneously. Binary mechanism of cholesterol binding with DNA has been suggested: surface binding takes place at low concentrations, intercalation--at high lipid concentrations. 相似文献
16.
17.
Y Mikata A Ugai K Yasuda S Itami S Tamotsu H Konno S Iwatsuki 《Chemistry & biodiversity》2012,9(9):2064-2075
Quinoline-based tetradentate ligands with glucose pendants, N,N'-bis[2-(β-d-glucopyranosyloxy)ethyl]-N,N'-bis[(6-methoxyquinolin-2-yl)methyl]ethylenediamine (N,N'-6-MeOBQBGEN) and its N,N-counterpart, N,N-6-MeOBQBGEN, have been prepared, and their fluorescence-spectral changes upon Zn binding were investigated. Upon excitation at 336?nm, N,N'-6-MeOBQBGEN showed weak fluorescence (?≈ 0.016) in HEPES buffer (HEPES 50?mM, KCl 100?mM, pH?7.5). In the presence of Zn, N,N'-6-MeOBQBGEN exhibited a significant increase in fluorescence (?=0.096) at 414?nm. The fluorescence enhancement is specific for Zn and Cd (I(Cd) /I(Zn) of 50% at 414?nm). On the other hand, N,N-6-MeOBQBGEN exhibited a smaller fluorescence enhancement upon Zn complexation (?=0.043, λ(ex) =334?nm, λ(em) =407?nm) compared with N,N'-6-MeOBQBGEN. Fluorescence microscopic analysis using PC-12 rat adrenal cells revealed that N,N'-6-MeOBQBGEN exhibits a 1.8-fold higher fluorescence-signal response to Zn ion concentration compared with sugar-depleted compound 2 (N,N'-bis[(6-methoxyquinolin-2-yl)methyl]ethylenediamine), due to its enhanced uptake into cells due to the targeting ability of the attached carbohydrates. 相似文献
18.
Expression of GFP and other fluorescent proteins depends on cis-regulatory elements. Because these elements rarely direct expression to specific cell types, GFP production cannot always be sufficiently limited. Here we show that reconstitution of GFP, YFP, and CFP previously split into two polypeptides yields fluorescent products when coexpressed in C. elegans. Because this reconstitution involves two components, it can confirm cellular coexpression and identify cells expressing a previously uncharacterized promoter. By choosing promoters whose expression patterns overlap for a single cell type, we can produce animals with fluorescence only in those cells. Furthermore, when one partial GFP polypeptide is fused with a subcellularly localized protein or peptide, this restricted expression leads to the fluorescent marking of cellular components in a subset of cells. 相似文献
19.
20.
The effect of temperature on the binding equilibria of calcium-sensing dyes has been extensively studied, but there are also important temperature-related changes in the photophysics of the dyes that have been largely ignored. We conducted a systematic study of thermal effects on five calcium-sensing dyes under calcium-saturated and calcium-free conditions. Quin-2, chlortetracycline, calcium green dextran, Indo-1, and Fura-2 all show temperature-dependent effects on fluorescence in all or part of the range tested (5-40 degrees C). Specifically, the intensity of the single-wavelength dyes increased at low temperature. The ratiometric dyes, because of variable effects at the two wavelengths, showed, in general, a reduction in the fluorescence ratio as temperature decreased. Changes in viscosity, pH, oxygen quenching, or fluorescence maxima could not fully explain the effects of temperature on fluorescence. The excited-state lifetimes of the dyes were determined, in both the presence and absence of calcium, using multifrequency phase-modulation fluorimetry. In most cases, low temperature led to prolonged fluorescence lifetimes. The increase in lifetimes at reduced temperature is probably largely responsible for the effects of temperature on the physical properties of the calcium-sensing dyes. Clearly, these temperature effects can influence reported calcium concentrations and must therefore be taken into consideration during any investigation involving variable temperatures. 相似文献