首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of changes in salinity, pH, and temperature on tetraspores and sporelings ofDictyopteris australis were investigated under laboratory conditions, The spores and sporelings showed a narrow range of tolerance to salinity (30.0‰ to 32.2‰). The spores did not germinate beyond this range. Growth of the sporelings was almost the same at salinities 30.6‰ and 32.2‰, but mortality was higher at 32.2‰. The alga showed a tolerance to pH from 7.5 to 8.4. However, growth of the viable sporelings was maximum at pH 8.2. The optimal temperature for survival and growth of the sporelings of the alga is 23°C. Temperatures above 28°C and below 18°C were found to be highly detrimental.  相似文献   

2.
Protein synthesis is a major determinant of growth and yet little is known about the environmental factors that influence protein synthesis rates in farmed freshwater prawns. To this end, post-larvae and juveniles of Macrobrachium rosenbergii were exposed to various salinities (0, 14, 30‰) to determine whole-animal rates of fractional protein synthesis (ks) and oxygen uptake. In the post-larvae that migrate upstream from brackish to freshwater areas, whole-animal ks was unaffected by salinity, but rates of oxygen uptake were significantly lower at 14‰. In the freshwater juveniles, a different response was observed, as mean ks was significantly higher at 14‰ compared with 0‰, but rates of oxygen uptake remained unchanged. Such differences are thought to be related to the energetic costs of osmoregulation and to the ability to maintain osmotic gradients in freshwater. In an additional experiment, acclimation temperature (20, 26, 30 °C) had a direct effect on ks in juveniles held at 0‰. In all cases, changes in ks resulted from alterations in RNA activity at constant RNA capacity. In juveniles at least, whole-animal rates of protein synthesis were highest at 14‰ and 30 °C which corresponds to the optimal salinity and temperature recommended for the growth and culture of M. rosenbergii.  相似文献   

3.

Background

Micro-tidal wetlands are subject to strong seasonal variations of soil salinity that are likely to increase in amplitude according to climate model predictions for the Caribbean. Whereas the effects of constant salinity levels on the physiology of mangrove species have been widely tested, little is known about acclimation to fluctuations in salinity.

Aims and methods

The aim of this experiment was to characterize the consequences of the rate of increase in salinity (slow versus fast) and salinity fluctuations over time versus constant salt level. Seedling mortality, growth, and leaf gas exchange of three mangrove species, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle were investigated in semicontrolled conditions at different salt levels (0, 685, 1025, and 1370 mM NaCl).

Results

Slow salinity increase up to 685 mM induced acclimation, improving the salt tolerance of A. germinans and L. racemosa, but had no effect on R. mangle. During fluctuations between 0 and 685 mM, A. germinans and R. mangle were not affected by a salinity drop to zero, whereas L. racemosa took advantage of the brief freshwater episode as shown by the durable improvement of photosynthesis and biomass production.

Conclusions

This study provides new insights into physiological resistance and acclimation to salt stress. We show that seasonal variations of salinity may affect mangrove seedlings’ morphology and physiology as much as annual mean salinity. Moreover, more severe dry seasons due to climate change may impact tree stature and species composition in mangroves through higher mortality rates and physiological disturbance at the seedling stage.  相似文献   

4.
Adaptivity to short-term and long-term changes in water temperature and salinity was studied in larvae of the bivalve mollusk Mytilus trossulus. It was shown that water temperature of 4°C mostly suppressed growth and development of larvae. A temperature of 20°C promoted an enhanced larval growth and development. Though a temperature of 20°C caused enhanced larval growth, the temperature was not optimal, while its effect caused quality diversity of larval development, owing to the difference in their growth rates. Such diversity was not observed at moderate temperatures of 10 and 15°C. At 20°C, fast-growing mussel larvae were very sensitive to temperature drops. Growth of slowly-growing individuals did not depend on temperature in the range of 10 to 20°C. Daily temperature variations by 3–8°C did not markedly affect growth and development of the larvae. A continuous 24-h exposure to temperature drops by 3–8°C did not influence these very important physiological characteristics either. A salinity drop down to 8‰ exerted an adverse effect only on early larvae. Later on, the larvae showed their ability to adapt to such a strong desalination. The negative effect of reduced salinity (to 8‰) upon mussel larvae was increased at a temperature increase to 20°C.  相似文献   

5.
Management of non-indigenous invasive species (NIS) is challenging owing in part to limitations of early detection and identification. The advent of environmental DNA (eDNA) techniques provides an efficient way to detect NIS when their abundance is extremely low. However, eDNA-based methods often suffer from uncertain detection sensitivity, which requires detailed testing before applying these methods in the field. Here we developed an eDNA tool for early detection of the highly invasive golden mussel, Limnoperna fortunei, based on the mitochondrial cytochrome c oxidase subunit I gene (COI). Further, we tested technical issues, including sampling strategy and detection sensitivity, based on a laboratory experiment. We then applied the method to field samples collected from water bodies in China where this mussel has or is expected to colonize. Results showed that the detection limit varied extensively among our newly developed primer pairs, ranging from 4 × 10?2 to 4 × 10?6 ng of total genomic DNA. Laboratory detection was affected by the availability of eDNA (i.e., both mussel abundance and incubation time). Detection capacity was higher in laboratory samples containing re-suspended matter from the bottom layer versus that collected from the surface. Among 25 field sites, detection was 100% at sites with high mussel abundance and as low as 40% at sites with low abundance when tested using our most sensitive primer pair. Early detection of NIS present at low abundance in nature requires not only sensitive primers, but also an optimized sampling strategy to reduce the occurrence of false negatives. Careful selection and detailed testing of primer pairs ensures effective eDNA-based species detection in surveillance and management programs.  相似文献   

6.
Microalgae are ideal candidates for bioremediation and biotechnological applications. However, salinity and nutrient resource availability vary seasonally and between cultivation sites, potentially impacting on biomass productivity. The aim of this study was to screen pollutant-tolerant freshwater microalgae (Desmodesmus armatus, Mesotaenium sp., Scenedesmus quadricauda and Tetraedron sp.), isolated from Tarong power station ash-dam water, for their tolerance to cultivation at a range of salinities. To determine if biochemical composition could be manipulated, the effects of 4-day nutrient limitation were also determined. Microalgae were cultured at 2, 8, 11 and 18 ppt salinity, and nutrient uptake was monitored daily. Growth, total lipid, fatty acid (FA), and amino acid contents were quantified in biomass harvested while nutrient-replete and, after 4 days, nutrient-deplete. D. armatus showed the highest salinity tolerance actively growing in up to 18 ppt while Mesotaenium sp. was the least halotolerant with decreasing growth rates from 11 ppt. However, Mesotaenium sp. at 2 and 8 ppt had the highest biomass productivity and nutrient requirements of the four species, making it ideal for nutrient remediation of eutrophic freshwater effluents. Salinity and nutrient status had minimal influence on total lipid and FA contents in D. armatus and Mesotaenium sp., while nutrient depletion induced an increase of total lipid and FAs in S. quadricauda and Tetraedron sp., which was further increased with increasing salinity. As none of the growth conditions affected amino acid profiles of the species, these findings provide a basis for species selection based on site-specific salinity conditions and nutrient resource availability.  相似文献   

7.
Both phenotypic plasticity and local genetic adaptation may contribute to a species’ ability to inhabit different environmental conditions. While phenotypic plasticity is usually considered costly, local adaptation takes generations to respond to environmental change and may be constrained by strong gene flow. The majority of marine species have complex life-cycles with pelagic stages that might be expected to promote gene flow and plastic responses, and yet several notable examples of local adaptation have been found in species with broadcast larvae. In the ascidian, Ciona intestinalis (Linnaeus, 1767),—a common marine species with broadcast spawning and a short larval stage—previous studies have found marked differences in salinity tolerance of early life-history stages among populations from different salinity regimes. We used common-garden experiments to test whether observed differences in salinity tolerance could be explained by phenotypic plasticity. Adult ascidians from two low salinity populations [2–5 m depth, ~25 practical salinity units (PSU)], and two full salinity populations (25–27 m depth, ~31 PSU) were acclimated for 2–4 weeks at both 25 and 31 PSU. Gametes were fertilized at the acclimation salinities, and the newly formed embryos were transferred to 10 different salinities (21–39 PSU) and cultured to metamorphosis. Adult acclimation salinity had an overriding and significant effect on larval metamorphic success: tolerance norms for larvae almost fully matched the acclimation salinity of the parents, independent of parental origin (deep or shallow). However we also detected minor population differences that could be attributed to either local adaptation or persistent environmental effects. We conclude that differences in salinity tolerance of C. intestinalis larvae from different populations are driven primarily by transgenerational phenotypic plasticity, a strategy that seems particularly favourable for an organism living in coastal waters where salinity is less readily predicted than in the open oceans.  相似文献   

8.
In order to estimate the potential use of the mean wholebody acetylcholinesterase (AChE) activity from the ragworm Nereis diversicolor for the biological assessment of pollution by anticholinesterase agents in estuarine areas, we measured the effects of the main abiotic factors (i.e. temperature and salinity) on AChE activity. We report here that AChE activity tends to decrease in individuals sampled in tanks at a salinity of 30‰ as temperature increases. No tendencies in the evolution of AChE activity were observed in individuals sampled in tanks at a salinity of 15‰. In contrast, salinity seems to have a greater effect on AChE activity than temperature. At a temperature of 12°C, a salinity of 30‰ provokes a significant transient increase of AChE 2 days after the beginning of the maintenance period compared with a salinity of 15‰. The effects are short-term stress effects. We noticed only a transient increase of AChE activity between 2 days for individuals maintained in tanks at temperature of 20°C and salinity of 15 and 30‰, respectively, and 8 days for individuals maintained in tanks at salinity of 30‰ and at a temperature of 12°C after the beginning of the maintenance period, confirming the more pronounced effect of salinity over temperature.  相似文献   

9.
Intertidal hermit crabs were stepwise acclimated to 10, 20, and 30‰ salinity (S) and 21 ± 1 °C. Hemolymph osmolality, sodium, chloride, and magnesium were isosmotic (isoionic) to ambient sea water at 30‰ and hyperosmotic (hyperionic) at 20 and 10‰ S, while hemolymph potassium was significantly hyperionic in all acclimation salinities. Total body water did not differ significantly at any acclimation salinity. Oxygen uptake rates were higher in summer-than winter-adapted crabs. No salinity effect on oxygen consumption occurred in winter-adapted individuals. Summer-adapted, 30‰ acclimated crabs had a significantly lower oxygen consumption rate than those acclimated 10 and 20‰ S. Crabs exposed to 30 10 30‰ and 10 30 10‰ semidiurnal (12 h) and diurnal (24.8 h) fluctuating salinity regimes showed variable osmoregulatory and respiratory responses. Hemolymph osmolality followed the osmolality of the fluctuating ambient sea water in all cases, but was regulated hyperosmotically. Hemolymph sodium, chloride, and magnesium concentrations were similar to hemolymph osmolality changes. Sodium levels fluctuated the least. Hemolymph potassium was regulated hyperionically during all fluctuation patters, but corresponded to sea water potassium only under diurnal conditions. The osmoregulatory ability of Clibanarius vittatus (Bosc) resembles that reported for several euryhaline brachyuran species. The time course of normalized oxygen consumption rate changed inversely with salinity under semidiurnal and diurnal 10 30 10‰ S fluctuations. Patterns of 30 10 30‰ S cycles had no effect on oxygen consumption rate time course changes. The average hourly oxygen consumption rates during both semidiurnal fluctuations were significantly lower than respective control rates, but no statistical difference was observed under diurnal conditions.  相似文献   

10.
The submersed aquatic vegetation (SAV) species Vallisneria americana Michx. (tape grass) is a valuable resource in the Caloosahatchee estuary and in many other aquatic systems. Given the variable nature of freshwater inflows and environmental conditions in the Caloosahatchee, it is necessary to understand how tape grass will respond to high and low salinity conditions at different light and temperature levels. Specifically, quantitative information is needed as input to modeling tools that can be applied to predict growth and survival of tape grass under a range of environmental conditions present in the estuary. We determined growth rates for small and medium sized tape grass plants obtained from the Caloosahatchee estuary, southwest coastal Florida, USA in freshwater (0.5 psu) under high (331 μE m?2 s?1) and low light (42 μE m?2 s?1) and at 10 psu under high light conditions. We ran six treatments at five temperatures spanning 13–32 °C for 8–9 weeks. The optimum temperature for growth was roughly 28 °C, with a minimum threshold temperature of 13 °C and a maximum threshold temperature of 38 °C. Plants grew fastest in freshwater, at high light and temperatures greater than 20 °C. The slowest growth rates were observed at 13 °C regardless of salinity, light or plant size. Our results suggest that tape grass growth is strongly influenced by water temperature and that additional stressors such as low light and elevated salinity can reduce the range of temperature tolerance, especially at colder water temperatures.  相似文献   

11.
The spread of non-native Rio Grande cichlids (Herichthys cyanoguttatus) in southeast Louisiana includes brackish habitats. We studied the effects of three different salinity levels on the biology of juvenile H. cyanoguttatus for 13 months to determine the potential of this species to spread through local estuaries. The highest salinity tolerated was 30.0 psu, and these fish did not survive acclimation to the 32 psu treatment. Fish in brackish conditions grew slower than fish in freshwater conditions, indicating a potential long-term detriment to juvenile fish living in brackish conditions. Aggression levels were notably higher for fish in brackish (15 psu) vs. freshwater conditions. This persisted through the entire experiment even after acclimation back to freshwater. This study indicates that higher salinity habitats in Louisiana can be tolerated by this species. It also raises a question about the effect of higher salinities on aggressive behavior.  相似文献   

12.
Wrasse used as cleaner fish with farmed Atlantic salmon Salmo salar can be subjected to large and rapid temperature and salinity fluctuations in late autumn and early winter, when summer-warmed surface water is affected by early snowmelt episodes. Because of their containment in sea cages, wrasse which are essentially acclimated to summer temperatures may be rapidly exposed to winter conditions. Short-term tolerance of low temperature and low salinity by three species of wrasse, goldsinny Ctenolabrus rupestris rock cook Centrolabrus exoletus corkwing Crenilabrus melops caught during the summer, and winter-caught corkwing, was investigated. A 3–day period at 30 or 32‰ salinity and temperature 8, 6 or 4° C (for summer-caught fish; 4° C only for winter-caught) was followed by a decline in salinity to 24, 16 or 8‰ over c. 36 h, followed by a further 24 h at these salinities held constant, at each of the three temperatures. Controls in 30 or 32‰ were maintained at 8, 6 or 4° C. Mortality of summer-caught corkwing and rock cook was high at 4° C, whereas the influence of salinity on mortality was small. Mortality of goldsinny was low or zero in all treatments. Surviving corkwing and rock cook after 3 days at 4° C and 32‰ salinity had elevated plasma osmolality: in summer-caught corkwing, plasma [Cl°] and [Na+] were high, whereas in rock cook only [Na+] was high. Haematocrit was low in summer-caught corkwing, high in rock cook. In survivors of all three species at the end of the experiment, values of all these parameters were comparable with those of fish at the beginning of the experiment, except that survivors at low salinity (8, 16‰) had low plasma osmolality, at all temperatures, and in surviving rock cook in these treatments haematocrit was high and plasma [Cl?] was low. Winter-caught corkwing had higher osmolality, [Na+] and [Cl?] than summer-caught corkwing; there was no difference in haematocrit. Survival of wintercaught corkwing exposed to four salinities at 4° C was much higher than that of summercaught corkwing under the same conditions. Little change in blood physiology was recorded for winter-caught corkwing, with only fish subjected to 8‰ and 4° C showing signs of osmoregulatory stress. The interspecific and seasonal differences in survival and blood physiology at low temperature and low salinity are discussed in relation to wrasse survival over winter, both in the field and in salmon farms.  相似文献   

13.
Lyngbya aestuarii, one of the dominant cyanobacterium grows in different salinity gradients of Chilika lagoon. It was isolated in axenic culture and its ecophysiology with response to different concentrations of salinity was studied in vitro to understand its adaptation strategies in the changing salinities of the lagoon. Changes in morphological features of the organism were observed with salinity gradients higher than 28 g/L and lower than 14 g/L salinity. Increase in growth was accompanied by increase of chlorophyll-a, carotenoid and cell protein contents of the organism from 3.5 to 28 g/L. Cellular carbohydrate content was higher with increasing salinity of the medium up to 90 g/L. No detrimental effect on pigment synthesis and macromolecular content of the organism was observed at the salinity level ranging from 7 to 56 g/L salinity. Methanolic extract of L. aestuarii showed prominent absorption at 334 nm in the UV-B region of the spectrum due to mycosporine-like amino acid (MAA) and the quantity of MAA increased with increasing salinity. At 7 g/L salinity 150, 93, 58, 34 and 18 kDa proteins were up-regulated; however, at 14 g/L 37, 26 and 28 kDa proteins and in 0, 3.5 and 90 g/L 122, 32 and 20 kDa proteins were repressed; this shows similarities of salinity-induced protein modifications as observed in higher plants. Super oxide dismutase activity also increased in the cells grown at 56 g/L salinity. We conclude because of having these effective adaptation strategies, L. aestuarii cope very well with the changing salinity in different seasons and grows well in the different sectors of the lagoon.  相似文献   

14.
In order to evaluate the combined effects of simulated acid rain (SAR) and salinity on the physiological responses of macroalgae, Ulva prolifera was cultured under three salinity treatments (5, 10, 25 ‰) and at different pH, i.e., at pH 4.4 (C), pH 4.4(F), where the pH of the culture increased from 4.4 to approximately 7.8 during the cultivation period, or in absence of SAR at pH 8.2(C), at 100 μmol(photon) m–2 s–1 and 20°C. Compared to 25‰ salinity, Relative growth rate (RGR) of U. prolifera was enhanced by 10‰ salinity, but decreased by 5‰ salinity. No significant differences in RGR were observed between the pH 8.2(C) and pH 4.4(F) treatments, but the chlorophyll a content was reduced by SAR. Negative effects of SAR on the photosynthesis were observed, especially under low salinity treatments. Based on the results, we suggested that the U. prolifera showed a tolerance to a wide range of salinity in contrast to the low pH induced by acid rain.  相似文献   

15.
We studied the effects of different combinations of temperature (5, 10, 14, 17, 20, and 22°C) and salinity (from 32 to 8‰) on the development of the starfish Asterias amurensis Lutken from Vostok Bay, Sea of Japan. Embryonic development is the most vulnerable stage; it passes successfully at 10–17°C and the salinity range of 32 to 26‰. Blastulae are the most tolerant of changing environmental factors. They survive and develop at the temperatures of 5–17°C and in the salinity range of 32–18‰. Gastrulae and bipinnariae survive under higher temperature values and salinity from 32 to 20‰. The tolerance for decreased salinity during the process of fertilization and in the latest stage of development, the brachiolaria with the developing juvenile starfish, was confined to the salinity range of 32–22‰, which agrees with the tolerance of adult starfish Asterias amurensis. Thus, for normal development of the Amur starfish in the early stages, some particular conditions of temperature and salinity are required. This is, probably, due to adaptive capabilities of each developmental stage and the peculiarities of the ecological conditions at particular depths.  相似文献   

16.
Temperature and salinity tolerances of juvenile Metapenaeus bennetlae Racek and Dall were estimated by abrupt exposure to critically high or low levels of each factor following acclimation to 12 combinations of temperature (17, 22, 27 and 32°C) with salinity (5, 20 and 35‰.). No significant differences were found between tolerances of males and females. Acclimation temperature influenced both temperature and salinity tolerances, while acclimation salinity affected only the salinity tolerance. Irrespective of temperature and salinity acclimation levels, juvenile M. bennettae were able to tolerate temperatures from 8.1 to 32.9°C and salinities from 1.0 to 62.0‰ These findings are discussed in relation to similar published studies.  相似文献   

17.
Open ponds are the preferred cultivation system for large-scale microalgal biomass production. To be more sustainable, commercial scale biomass production should rely on seawater, as freshwater is a limiting resource, especially in places with high irradiance. If seawater is used for both pond fill and evaporative volume makeup, salinity of the growth media will rise over time. It is not possible for any species to achieve optimum growth over the whole saline spectrum (from seawater salinity level up to salt saturation state). In this study, we investigated the effects of gradual salinity increase (between 35 and 233 ppt) on biomass productivity and biochemical composition (lipid and carbohydrate) of six marine, two halotolerant, and a halophilic microalgae. A gradual and slow stepped salinity increase was found to expand the salinity tolerance range of tested species. A gradual reduction in biomass productivity and maximum photochemical efficiency was observed as a consequence of increased salinity in all tested species. Among the marine microalgae, Tetraselmis showed highest biomass productivity (32 mg L?1 day?1) with widest salinity tolerance range (35 to 109 ppt). Halotolerant Amphora and Navicula were able to grow from 35 ppt to 129 ppt salinity. Halophilic Dunaliella was the only species capable of growing between 35 and 233 ppt and showed highest lipid content (56.2%) among all tested species. This study showed that it should be possible to maintain high biomass in open outdoor cultivation utilizing seawater by growing Tetraselmis, Amphora, and Dunaliella one after another as salinity increases in the cultivation system.  相似文献   

18.
Bioinvasion events causing serious environmental damage have been a concern with the mariculture of Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, suggesting the importance of studying the biological aspects of drifting specimens of K. alvarezii for monitoring programs. The present study aims to evaluate the tolerance and growth of drifting color variants of K. alvarezii under different temperatures and salinities to determine their physiological capacity for growing outside cultivation rafts. Drifting color variants were collected in Paraíba State, Brazil, in November 2011(dry month) and August 2012 (rainy month), and cultivated in the laboratory under different temperatures (20, 24, 28, and 32 °C) and salinities (15, 25, 35, 45, and 55 psu). Growth rates as well as pigment and protein contents were determined. Results showed that drifting specimens collected in the dry month showed higher tolerance to variation in temperature (20 to 28 °C) and salinity (25 to 35 psu) than drifting specimens collected in the rainy month. Higher growth rates occurred in samples cultured at 20 and 24 °C (2.8–3 % day?1) and 25 to 35 psu (3.4–3.5 % day?1), suggesting temperature and salinity optima. Higher phycobiliprotein levels were observed in the red and brown variants under hypersaline conditions (45 and 55 psu). Higher chlorophyll a contents were associated with samples cultivated at 20–24 °C and 24–35 psu. Based on the results of the present study, drifting specimens collected in dry month are more tolerant to temperature and salinity variations, suggesting that the drifting K. alvarezii should be monitored especially during this period to prevent its establishment outside the cultivation rafts and dispersion along the northeastern coast of Brazil.  相似文献   

19.
Mussels are the most problematic organisms encountered in the water intake systems of electrical power plants. Various fouling control measures are adopted, among which heat treatment is considered the relatively more attractive from economic and ecological points of view. Thermal tolerance experiments were carried out to determine the effects of mussel size (2-20 mm shell length), season (breeding vs non-breeding), nutritional status (fed vs non-fed), acclimation temperature (5-25 degrees C) and acclimation salinity (1-35%o) on the mortality pattern of three important mussel species, viz. a freshwater mussel Dreissena polymorpha, a brackish water mussel Mytilopsis leucophaeata and a marine mussel Mytilus edulis under different temperatures (36-41 degrees C). The mussels in the 10 mm size group exposed to 36 degrees C showed 100% mortality after 38 min (D. polymorpha), 84 min (M. edulis) and 213 min (M. leucophaeata). The effect of mussel size on M. edulis and M. leucophaeata mortality at different temperatures was significant, with the largest size group of mussels showing greater resistance, while no significant size-dependence was observed in the case of D. polymorpha. All the three mussel species collected during the non-breeding season (June-October). Nutritional status had no significant influence on the thermal tolerance of the three mussels; fed and non-fed mussels showed 100% mortality at comparable rates. Acclimation temperature had a significant effect on the mortality of all three species. Survival time at any given target temperature increased with increasing acclimation temperature. The acclimation salinity showed no significant effect on the thermal tolerance of the three mussel species. In comparison, M. leucophaeata was more tolerant to high temperature stress than the other two species. The present studies clearly show that various factors can influence the mortality of D. polymorpha, M. edulis and M. leucophaeata to elevated temperatures. The results, therefore, suggest that if heat treatment were to be used as a control measure for these mussels, it has to be employed judiciously, depending on the mussel species, mussel size, breeding season, water temperature and salinity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号